船载液体晃荡载荷特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶液舱晃荡问题已成为载液货船结构设计过程中面临的一个共性问题,尤其是在大型原油货轮(VLCC)、液化石油气船(LPG)及液化天然气船(LNG)等液货船上的开发与应用上表现的尤为突出。晃荡一般发生在船体在波浪中的运动频率与液舱内液体固有振动频率相近的时候,当晃荡发生时,液体将对液舱结构产生强烈的冲击,甚至损坏船体结构。因此,在载液货船的研发设计中,液舱晃荡分析是一项非常重要的研究课题。
     晃荡问题是一种典型的流固耦合问题,是一种非常复杂的流体运动现象,具有高度的非线性和随机性。影响晃荡的参数有很多,晃荡的剧烈程度与外界的激励频率、舱室的几何形状及尺寸、内部构件、液体充装高度、液体属性等因素有关。本文研究的主要内容是以晃荡分析的数值方法为基础,运用MSC.Dytran程序对一个模型液舱的晃荡情况进行仿真模拟,并探讨不同的液舱内部结构形式及激励频率对晃荡的影响,主要工作内容如下:
     (1)阐述了分析液体晃荡的三种基本方法:纯理论分析法、数值分析法、实验方法,从流体运动方式的描述、控制方程的离散及自由液面的追踪这三个关键点来详细的阐述了数值分析方法的原理。
     (2)重点讨论了基于有限体积法的晃荡分析的原理、步骤及相应的特点。采用大型通用有限元程序MSC.Dytran对液舱内液体进行了数值模拟和分析,实现液体晃荡的全过程数值仿真,得到了舱内自由液面运动时间历程及流体对舱壁冲击压力的时间历程图。
     (3)分析了模型液舱内液体不同装载率水平下的晃荡载荷及自由液面波动图,并与德克萨斯大学所做的摇荡实验结论进行对比,验证了用通用大型有限元程序MSC.Dytran来进行液体晃荡分析的可行性与可靠性。
     (4)从能量角度分析液体的晃荡并指出制荡舱壁制晃的原理。利用MSC.Dytran分析在同样激励情况下,对内部有障碍物和没有障碍物的两种液舱晃荡进行对比分析;讨论了不同的激励频率对晃荡的影响。并且得出相关结论。
Sloshing in tanks is becoming main interest in tank structure design, especially on the development and application of large liquid carries, such as VLCC、LPG and LNG. Generally speaking, sloshing often occurs when the frequency of ship motion in waves coincides with the inherent vibration frequency of the liquid inside the tanks, when sloshing occurs, sloshing causes violent fluid impacts on tank boundary structure with high pressure, and even damage to the hull structure. Therefore, tank sloshing analysis is a very important research topic in the R & D design of liquid carries.
     Sloshing is a typical problem of fluid and structure coupling and a very complex phenomenon of flow with a high degree of nonlinearity and randomness. The intensity of sloshing depends on many factors, such as frequency of excitation、compartment geometry、internal components、filling ratio and liquid properties. The main contents of this paper is based on numerical methods of sloshing analysis, and simulate sloshing phenomenon of a model tank by use of MSC.Dytran, and discuss the affect of sloshing due to different forms of the internal tank structure .the main jobs of this paper are as follows:
     (1)Introduce three basic methods of liquid sloshing analysis, purely theoretical analysis, numerical analysis, experimental methods. Elaborate the principal of numerical analysis from the description of fluid movement and the discrete of control equations and the tracking of free surface.
     (2)The discussion focus on the principal、steps and related characteristics based on the finite volume method. Simulate and analyze the sloshing of liquid in the tank by use of MSC.Dytran, and achieve the goal of whole liquid sloshing process of numerical simulation, and get the time history graphs of free surface motion and pressure on the ship hull due to fluid impact.
     (3)Analyze the sloshing load and free surface fluctuation of liquid in the model tank under different filling ratio and compare with relevant experimental results. Draw the conclusion that it is feasible to analyze the liquid sloshing by use of MSC.Dytran.
     (4)Analyze the energy of liquid sloshing from the energy point of view and point out the principal of suppression sloshing by use of barricade. Analyze the liquid sloshing with or without barricade under the same incentive circumstances and draw the relevant conclusion.
引文
[1]朱仁庆,吴有生,彭兴宁,沈进威.船舶液体晃荡动力学的研究方法及进展.华东船舶工业学院学报,1999.13(1):46-48
    [2]王德禹,金咸定,李龙源.液舱流体晃荡的模型试验.上海交通大学学报,1998.32(11):115-117
    [3]Jeffrey N E,Kendrick A M.Sloshing problems in the design of new tankers.Proceeding of 12th International Ship and Offshore Structure Conference(ISSC),1994:267-270
    [4]Moan T,Berge S.Sloshing loads Proceeding 13th Int.In:Ship and offshore structures congress Pergamon,1997:89-94
    [5]沈猛.基于改进VOF法的棱形液舱液体晃荡分析及应用:[硕士学位论文].上海:工程力学系,2008
    [6]刘泽民.关于船舱中液体晃荡问题.哈尔滨船舶工程学院学报,1992.13(3):242-247
    [7]朱仁庆.液体晃荡及其与结构的相互作用:[博士学位论文].中国船舶科学研究中心:船舶与海洋结构物设计制造,2001
    [8]王家楣,张志宏,马乾初.流体力学.大连:大连海事大学出版社,2002.3
    [9]Donea J,Fasoli-Stellap,et al.Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems,in:Trans.SMiRT-4,Paper B1/2,USA,1977,15-19
    [10]Belytschko T and Kennedy J M.Computer models for subassembly simulation.Nucl Engrg.Design,1978,49:17-38
    [11]Belytschko T,Kennedy J M,et al.Quasi-Eulerian finite dement formulation for fluid-structure interaction.J.Pressure Vessel Technol.ASME,1980,102:62-69
    [12]Huerta A,Liu W K.Viscous flow structure interaction.J.Pressure Vessel Technol.ASME110,1988:15-21
    [13]Nitikitpaiboon C and Bathe K J.An arbitrary Lagrangian-Eulerian velocity potential formulation for flu-id-structure interaction.Computers and Structures,1993,47(4/5):871-891
    [14]Liu W K and Ma D C.Computer implementation aspects for fluid-structure interaction problems.Com-put.Meths.Appl.Mech.Engrg.,1982,31:129-148
    [15]Hughes T J R,Liu W K and Zimmerman T K.Lagrangian-Eulerian finite element formulation for incompressible viscous flows,Comput,Meths.Appl Mech.Engrg.,1981,29:329-349
    [16]Zhu Renqing,Wu Yousheng,Incecik Atilla.Numerical simulation of liquid sloshing-a review[J].Shipbuilding of China,2004,45(2):14-27
    [17]王建军,李其汉,陆明万.自由液面流体流动问题的数值分析研究[J].计算力学学报,2003.20(1)
    [18]G.X.Wu,Q.W.Ma,R.Eatock.Numerical simulation of sloshing waves in a 3Dtank based on a finite element method[J].Applied Ocean Research,1998,20:337-355
    [19]C.W.Hirt,A.A.Amsden,J.L.Cook.An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds[J].Journal of Computational Physics,1997,135:203-216
    [20]曾江红,王照林.粘性流体大幅晃动的ALE有限元模拟.强度与环境,1996(3):22-31
    [21]王永学.任意容器液体晃动问题的数值模拟:[博士学位论文].大连:大连理工大学,1989
    [22]沈国光.矩形容器内流体晃动的数值模拟.水动力学研究与进展,1997,Ser A 12(3):281-288
    [23]易淑群,陈九锡.高速冲头有界入水初始阶段的数值模拟.水动力学研究与进展,1996,Ser A 11(2):171-180
    [24]张健,方杰,范波芹.VOF方法理论与应用综述.水利水电科技进展,2005.25(2):67-69
    [25]李谊乐,刘应中,缪国平.二阶精度的VOF自由面追踪方法及其应用.船舶力学,1999.3(1):45-52
    [26]OSHER S,SETHA N J A.Fronts propagating with curvature-dependent speed:algorithms based on Hamilton-Jacobi formulation[J].Journal of computation Physics,1988,79(1)12-49
    [27]SUSSMAN M,SMEREKA D,OSHER S.A level set approach for computing solutions to incompressible two-phase flow[J].Comp.Phys.,1994,114(1):146-159
    [28]王德禹,·李龙源,施其.三自由度晃荡模拟装置及其模态分析.海洋工程,2000.18(4):95-96
    [29]马飞翔.基于晃荡动载荷的薄膜型LNG船泵塔结构分析:[硕士学位论文].大连:大连理工大学,2008
    [30]丁沛然,钱纯.非线性瞬态动力学分析—MSC.Dytran理论及应用.北京:科学出版社,2006.6
    [31]万力,吴莘馨,卞文杰.瞬态动力学CAE解决方案—MSC.Dytran实例教程.北京:北京大学出版社,2004.3
    [32]卞文杰,万力,吴莘馨.瞬态动力学CAE解决方案—MSC.Dytran基础教程.北京:北京大学出版社,2004.3
    [33]娜日萨.VLCC液舱晃荡仿真及结构强度评估方法研究:[博士学位论文].哈尔滨:哈尔滨工程大学,2006
    [34]戴遗山.舰船在波浪中运动的频域与时域势流理论.北京:国防工业出版社,1998
    [35]刘应中,缪国平.船舶在波浪上的运动理论.上海:上海交通大学出版社,1987
    [36]Mikelis N E,Robinsen D W.Sloshing in arbitrary shaped tanks.J.of the Society of Naval Architects of Japan,1985,158:241-255
    [37]娜日萨,高志龙,金咸定.VLCC液舱晃荡仿真模型.计算机辅助工程.2006.15(supp1):114-116
    [38]中国船级社.油船结构直接计算分析指南.北京:人民交通出版社,2003
    [39]Ham lin N A,Lou Y K,Maclean W M,et al.Liquid sloshing in slack tanks—theory,observation and experiments.Trans SNAME,1986,94:159-195
    [40]Bass R L,Bow les E B,Cox P A.Liquid dynamic loads in LNG cargo tanks Trans SNAME,1980,88:103-126
    [41]徐兴平,黄东升,方华灿.充液结构内液体晃动及阻晃机理实验研究.石油大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700