基于120kW固体氧化物燃料电池与微型燃机复合系统性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池(Fuel Cell)是将化学反应的化学能直接转化为电能的能量转换装置,其发电效率可达40%—60%,它的整体热电联产效率可达80%以上,有很好的发展前景。目前世界上许多发达国家和地区如美国、欧洲、日本等都很重视对燃料电池的研究开发和商业化。固体氧化物燃料电池(SOFC)是燃料电池的一种,由于它的排气温度很高,大约在900℃左右,有很大的余热利用价值。微型燃气轮机是在高温高压条件下工作。若将SOFC和微型燃气轮机(MGT)组成联合循环装置,不仅可以大大提高热效率,使能源得到充分利用,还可降低排放,减少污染。因此由燃料电池和微型燃气轮机组成的联合循环装置具有广阔的应用前景,特别在小户供电、分布式发电和热能装置上具有很大的吸引力,对其进行性能分析具有重要的现实意义。
     本文研究内容是本专业承担研发的大连理工大学—中国科学院大连化学物理研究所共同资助的联合探索基金项目:管型中温固体氧化物燃料电池加压操作及其与燃气轮机复合的理论模拟研究的一部分。本文中建立了氢氧固体氧化物燃料电池的数学模型,利用c语言所编制的计算机程序,分析出SOFC电池电压、输出功率、电流密度、燃料利用率、温度等对电池性能的影响;利用大型化工流程模拟软件Aspen Plus建立了以天然气为燃料的固体氧化物燃料电池和微型燃气轮机的联合循环模型,提出了燃料电池在加压和常压情况下不同联合循环结构,并对比分析了它们的性能特点。
     经济问题的增长和能源的短缺使得能源的高效利用、新能源的开发等成为目前能源发展的焦点问题。本文以此为出发点,分别探讨了SOFC在加压和常压下,其联合循环的不同发电循环结构,并进行了系统的数值分析研究。为SOFC+MGT未来的联合循环提供了有益的尝试。
Fuel cell is a device that converts chemical energy into electricity directly from the reaction of fuel and oxidant. It can achieve electrical efficiency during 40%-60%. The overall combined heat and power efficiency is above 80%. So it has a better development prospect. At present, the developed countries and areas such as America, Europe, Japan and so on, they have focused on the fuel cell research and commercial. Solid oxide fuel cell (SOFC) is one kind of fuel cells. The exhaust gas temperature of SOFC is about 900℃, therefore it has the advantage of high temperature waste heat to recovery. Micro gas turbine (MGT) works at high temperature and pressure conditions. If the hybrid system which is combined SOFC and MGT is achieved, the hybrid system not only can improve the overall heat but also improve electrical efficiency. It also can reduce the emission and pollutants, and then be full use of energy. Therefore, combined SOFC and MGT will have great application prospect in distributed energy market. It is helpful to solve the energy question in researching combined system.
     The content of this paper is based on the funds of DLUT-DICP's project which is combined intermediate temperature pressurized SOFC and MGT. In this paper, the H_2-O_2 SOFC model is built by c programming language. Then the parameters such as voltage, output power, current density, fuel utilization, operation temperature and so on are presented. The effects of them on SOFC are also presented. Combined SOFC and MGT System is built by the software Aspen Plus. In this hybrid system, the fuel is natural gas. The different hybrid systems have been built and analyzed. Then the performance and advantages of them are given.
     Highly effective energy utilization and new energy production become the focus of energy development with increasing in economy and lacking for energy sources in the world. The practical examples with SOFC-MGT are investigated in the fields of the different hybrid power systems and simulate with numerical ways. The results show a promising direction for SOFC+MGT application in the future.
引文
[1] 詹华,姚士洪.对我国能源现状及未来发展的几点思考.能源工程,2003,vol(3):1-8.
    [2] 高飞,秦炜.我国能源现状及政策解析.资源与发展,2006,vol(1):31-35
    [3] 华素梅,我国能源中长期战略构想.中国石油石化,2007,vol(19):69-70
    [4] 王永杰,21世纪能源走势浅析.精细石油化工进展,2000,vol(1):1-7
    [5] F.Calise, A.Palombo, L.Vanoli, Design and partial load exergy analysis of hybrid SOFC-GT power plant, Journal of Power Sources, 2006, 158:225-244
    [6] L.Magistri, P.Costamagna,A.F.Massardo,C.Rodgers,C.F.Mcdonald, A hybrid system based on a personal Turbine(5kW) and a solid oxide Fuel Cell Stack: A Flexible and high efficiency Energy concept for the Distributed Power Market, Journal of Engineering for gas turbines and power, 2002, 124:850-857
    [7] S.K.Park, T.S.Kim, Comparison between pressurized design and ambient design of hybrid solid oxide fuel cell-gas turbine systems, Journal of Power Sources, 2006
    [8] Stefano Campanari, Full load and part load performance prediction for integrated SOFC and microturbine systems, Journal of Engineering for gas turbines and power, 2000, 122:239-246
    [9] S.C.Singhal. Advances in solid oxide fuel cell technology. Journal of Power Sources, 1998, 71:131-137.
    [10] P.Costamagna, L.Magistri, A.F.Massardo, Design and part-load performance of hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine, J.Power Sources 96(2001) 352-368.
    [11] 王健,王志伟,微型燃气轮机在我国能源工业中的发展前景,发电设备,2006,NO6:394-397.
    [12] F.Calise, A.Palombo, L.Vanoli, Design and partial exergy analysis of hybrid SOFC-GT power plant, Power Sources, 158(2006) 225-244.
    [13] 刘凤君,高效环保的燃料电池发电系统及其应用,北京:机械工业出版社[M],2005.
    [14] 郝洪亮,张会生,翁史烈,MCFC/MGT联合发电系统的exergy分析,计算机仿真,2006,vol(23)11:221-227
    [15] Thameur Aloui, Kamel Halouani, Analytical modeling of polarizations in a solid oxide fuel cell using biomass syngas product as fuel, Applied thermal Engineering, 2007, vol(27):731-737
    [16] 张士军,魏亦军.固体氧化物燃料电池的研究进展,淮南师范学报,NO 3,2006:52-56.
    [17] 韩敏芳,彭苏萍.固体氧化物燃料电池发展及展望,Advanced Materials Industry,No7,2005:39-41.
    [18] George.A.R, Status of Tubular SOFC field unit demonstrations, J.Power Sources, 2001,vol(86): 134-139.
    [19] P.Costamagna, L.Magistri, A.F.Massardo, Design and part-load performance of a hybrid system based on a solid oxide fuel reactor and a micro gas turbine, J.Power Sources, 2001,vol(86):134-139.
    [20] Hideyuki Uechi,Shinji Kimijima, Nobuhide Kasagi, Cycle analysis of gas turbine-fuel cell cycle hybrid micro generation system, Journal of Engineering for gas turbines and power,2004,vol(126):755-762.
    [21] W.L.Lundberg, S.E.Veyo,M.D.Moeckel, A high efficiency solid oxide fuel cell hybrid power system using the mercury 50 advanced turbine, Journal of Engineering for gas turbines and power,2003,vol(125): 51-58.
    [22] 张会生,刘永文,苏明,翁史烈,高温燃料电池-燃气轮机混合发电系统性能分析,热能动力工程,2002,17:118-121
    [23] 王巍,黄钟岳,王晓放,微型燃气轮机与燃料电池复合装置的应用,燃气轮机技术,2006,19(1):26-28.
    [24] S.K.Park, T.S.Kim, Comparison between pressurized design and ambient pressure design of hybrid solid oxide fuel cell-gas turbine systems, J. Power Sources 2006.
    [25] 谢扬,沈庆扬.ASPEN PLUS化工模拟系统在精馏过程中的应用.化工生产与技术,1999,第6卷,第3期,17-22.
    [26] AspenPlusTM 12.1 Users Guide, Aspen Tech Ltd, Cambridge MA, USA. 2004.
    [27] 袁永根,Aspen流程模拟系统概况,兰化科技,1999,vol(4):307-313
    [28] 王洪元,Aspen软件在教学与科研中的应用,化工高等教育,2000,vol(2):49-51
    [29] 赵琛琛,工业系统模拟利器——ASPEN PLUS,电站系统工程,2003,vol(19)2:56-58
    [30] Stefano Campanari, Full Load and Part-Load Performance Prediction for Integrated SOFC and Micro turbine Systems, Journal of Engineering for gas turbines and power, 2000, 122:239-246
    [31] Pullen, K. R, Baines, N. C, Hill, S.H, The design and evaluation of a high pressure ratio radial turbine, 1992, ASME Paper 2-GT-93.
    [32] S.C.Singhal, Advanced in solid oxide fuel cell technology, Journal of Power Sources, 1998,71:131-137.
    [33] Ali Volkan Akkaya, Electrochemical model for performance analysis of a tubular SOFC, International Journal of energy research, 2007,31:79-98.
    [34] 贾俊曦,固体氧化物燃料电池数值模拟及发电系统研究,硕士论文,大连:大连理工大学,2005.
    [35] Raymond A. George, Norman F.Bessette. Reducing the manufacturing cost of tubular SOFC technology. Journal of power source, 1998,71:131-137.
    [36] Fuel Cell Handbook, 7th EG&G Technical Services, Inc, U.S Department of Energy office of Fossil Energy National Energy Technology Laboratory.
    [37] W.Zhang, E.Croiset, P.L.Douglas, M.W.Fowler, E.Entchev, Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models, Energy Conversion & Management 46(2005)181-196.
    [38] Wei Zhang, Simulation of Solid Oxide Fuel Cell-Based Power generation processes with CO_2 Capture, A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in Chemical Engineering, Waterloo, Ontario, Canada, 2006
    [39] Veyo SE,Forbes CA. Demonstrations based on Westinghouse's prototype commercial AES design. In: Proceedings of the Third European Solid Oxide Fuel Cell Forum, 1998:79-86
    [40] Veyo SE, The Westinghouse solid oxide fuel cell program-a status report. In: Proceedings of the 31st IECEC,No.96570, 1996:1138-1143
    [41] Singhal SC. Recent progress in tubular solid oxide fuel cell technology. Electrochemical Proceedings, 1997,vol 97-18
    [42] 王巍,环境压力下吸热燃气轮机循环的基础研究,硕士论文.大连:大连理工大学,2006.
    [43] 陈启梅,翁一武,翁史烈,朱新坚,高温燃料电池与燃气轮机相结合的混合发电系统,热能动力工程,(2005)vol.20 No.2
    [44] S. Fujii, K. Kaneko, K. Otani, Y. Tsujikawa, Mirror gas turbine: a newly proposed method of exhaust heat recovery, Trans. ASME J.Eng. Gas Turbine Power 123 (2001) 481-486.
    [45] G.Vermes, L.E.Barta, J.M.Beer, Low Nox Emission from an Ambient Pressure Diffusion Flame Fired Gas Turbine Cycle (APGC), Trans. ASME J.Eng. Gas Turbine Power 125 (2003) 46-50.
    [46] M.Bianchi,G.Negri di Montenegro, A. Peretto, Inverted Brayton cycle employment for low temperature cogeneration applications, Trans. ASME J. Eng. Gas Turbine Power 124 (2002) 561-565.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700