煤气化甲醇联产电系统的工业示范研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是国民经济和社会发展的重要物资基础,我国能源发展面临着资源与环境的双重压力。在一次能源以煤为主而且煤炭消费比例长期不可能大幅下降的国情下,快速研发、示范和应用高效、洁净的煤炭综合利用核心关键技术,构建资源、能源、环境一体化的可持续发展能源系统,对我国具有特别重要的意义。
     以煤为原料的电、燃料及其它化学品的联产技术是以煤气化为基础,将合成气净化、液化、燃气轮机发电、化学转化等多种技术优化组合,内部进行热流的梯级利用与集成以及C、H物流的综合经济最大化利用,从而实现煤炭的洁净、高效率、高经济性利用的技术。煤炭联产系统对于煤炭化工及煤炭洁净发电的发展和生态环境的改善都有极其重要的战略意义,世界各国正在大力推进其研究、发展和示范。
     本文以新型煤气化技术、煤气化甲醇联产电系统关键技术在在充矿的研发与示范为依托,进行如下几个方面的研究:
     1.兖矿高效洁净煤基甲醇联产电系统的创建及工艺技术的选择在公用相同的气化系统及公用工程系统条件下,对不同生产单元组合及技术选择而形成的联产系统进行了热力学第一定律和第二定律计算与对比分析,计算验证了串并联系统是目前商业化示范的优选方案。为使电能、热的生产过程与化工过程有机结合,分析评价了目前已经工业化的化工单元技术在联产系统中的应用适用性,并对各单元技术进行了匹配选择,最后根据技术发展和经济的权衡选择了兖矿联产系统中能量梯级利用的工程化方案。
     2.联产系统的模拟与仿真研究采用模块化的建模方式,研究并开发了国内第一个完整的煤气化发电与甲醇联产系统的仿真平台。利用本仿真系统,模拟了煤气化发电与甲醇联产系统部分单元间的关联关系,特别是动力锅炉与空分空气压缩机系统的启动特性,气化与燃气轮机之间的燃气供应关联特性等,为煤气化发电与甲醇联产系统的联合调试与运行提供了理论依据和实践指导。
     3.联产核心关键技术的工业化与示范
     煤炭气化和燃气轮机是煤气化联产中的两大核心关键技术。在本示范工程中,新型四喷嘴对置式(OMB)煤气化技术和中低热值合成气燃气轮机改造技术都是第一次进行工业化示范。对两大核心关键技术的工业化设计和运行调试,并针对调试过程中的重大工程问题进行了研究与解决,验证了两大关键技术的工业化技术可行性,为联产系统的工业设计和调试积累了经验。
     4.兖矿联产系统调试及运行情况分析
     对兖矿联产系统调试与运行以来的运行故障、运行数据进行了统计与分析,揭示了联产系统工业化过程的技术问题的分布规律。研究表明,通过联产系统内局部技术问题的解决和系统中可靠性薄弱环节的改造,联产系统的工业化示范装置的运行可用率和可靠性分别达到了90.15%和98.22%,完全达到并超过了一般化工或电力商业化生产系统的运行可用率和可靠性。联产系统不同运行模式下的供电效率和总能利用效率的计算与分析表明,在满负荷串并联条件下的效率最高,验证了与联产系统的优化设计目标的一致性。
     5.联产系统的环境影响分析
     通过对联产系统中废气、污水、固体废物和噪音等污染物的来源、强度、特性进行了分析,设计了对各污染物的治理措施,对联产系统正常运行状态下的环境污染情况进行了环境监测验证,研究结果表明,联产系统的污染物治理措施与系统的生产系统结合紧密,在系统内部将大部分污染进行了治理,环境治理的额外投资得以降低,实现了联产系统的洁净生产。
Energy is the base of the national economy and society development. Lack of resource and environment pollution are two issues in our national energy management. At the prolonged condition that the coal will be the main energy resource. It is meaningful for China to research and develop high efficient, clean coal utilization key technology, and build a sustainable integrative energy system of resource, energy and environment.
     The coal based co-production system uses coal syngas as the main feedstock for power, fuel and other chemicals production. In this coproduction system, many technologies, such as acid gas removal, gas to liquid, gasturbine and chemical reaction, are integrated for heat efficiently utilization, carbon and hydrogen streams economical utilization. So coal can be utilized cleanly, efficiently, and economically. The coal based co-production system is of strategic importance of coal chemistry and power generation development, and environment improvement. So the research, development and demonstration of coal coproction system are being promoted worldwide.
     This paper depends on the research and development, industrial demonstration of the new typical coal gasification technology, and the coal based methanol-power co-production system and its key technologies. The study on the coal based co-production system focus on the following contents:
     1. High efficient, clean coal based methanol-power co-production system creation and technologies screening of Yankuang pilot plant
     Energy and exergy evaluation, contrast and analysis of different typical system which identified by combination of different unit technology with a same syngas resource and utility are performed in this section. It can conclude that the series-parallel system is the optimum option for commercial demonstration presently. In order to integrate power and heat generation with chemical process, some available chemical unit technologies are evaluated and matched by its advantage and economics.
     2. The simulation and emulation research of the coal based co-production system
     A simulation platform of the IGCC (Integrated Gasification Combined Cycle) and methanol combined generation system based on module modeling is first researched and developed in China. On the platform, comprehensive correlations between the IGCC subsystem and the methanol generation subsystem are emulated, especially for the startup correlation between the power boiler and the air compressor of the air separation unit, and the gas feed correlation between the gasifier and the gas turbine. This provides valuable theoretical support and practical guidance for the commissioning and operation of the coal based co-production system.
     3. Industrialization and demonstration of the key technologies in Yankuang coal based co-production system
     Coal gasification and gasturbine are two key techniques of the coal based co-production system. In the pilot plant, the opposed mult-burner(OMB) gasifier and the modified gasturbine suitable for medium-low HLV fuel are first introduced. By research of industrial design and commissioning of the two techniques, and troubleshooting of big issues in commissioning, the industrial feasibility of the two techniques can be verified.
     4. Operation status analysis of the Yankuang coal based co-production system
     Statistics analysis of failure and operation data of the pilot plant indicates that most operation issues are general failure of normal equipments and instruments, after modification of these weak points the rate of availability and reliability can reach 90.15 percent and 98.22 percent. The estimation and analysis of power supply efficiency and total energy using efficiency on different operation conditions denote that the highest efficient condition is full capacity and series-parallel style, and the optimization goal of the coal based co-production system is verified.
     5. Environment impact analysis of the coal based co-production system
     Waste gas, solid wastes, waste water and noise were handled separately according to its original source, density and characteristics. Environment detection of pollutant in normal operation condition indicates that the emmitions of pollutant are below the standard. The pollutant was handled in process, and the additional cost of pollutant treatment is limited. So the coal based co-production system is clean in operation.
引文
[1].王之洵,苏桂芝,我国的能源结构,有利于煤化工的发展[J],内蒙古石油化工,1997,23(3):3-4
    [2].徐继林,中国能源政策与能源安全,中美煤炭气化液化研讨会,2006年6月
    [3].郁向民,李文鹏,徐显明等,我国煤化工技术现状及其发展趋势[J],云南化工,2005,32(2)
    [4].谢克昌,煤利用技术研发现状及发展趋势,中国煤炭资源现状与勘探开发利用技术进展及环境保护学术年会,2004
    [5].唐宏青,煤化工工艺技术评述与展望[J],燃料化学学报,2001,29(1)
    [6].杜铭华,发展煤炭加工转化促进产业产品结构调整[J],煤,2001,10(3)
    [7].吴春来,陈怀珍,中国煤炭转化的发展趋势浅析,中国煤炭学会四届三次理事会议暨98学术年会,1998
    [8].《煤化工产业中长期发展规划》(征求意见稿),2006
    [9].中国科学院工程热物理研究所,美国杜兰大学.中美专家关于整体煤气化联合循环(IGCC)技术报告[R].DOE/FE-0357.1996
    [10].麻林魏,倪维斗,李政,任挺进,以煤气化为核心的甲醇、电的多联产系统分析(上)[J],动力工程,124(3):451-456
    [11].麻林魏,倪维斗,李政,任挺进,以煤气化为核心的甲醇、电的多联产系统分析(下)[J],动力工程,124(3):603-608
    [12].Vision 21 Program Plan-Clean Energy Plants for the 21st Century.U.S.Department of Energy,April 1999
    [13].http://fossil.energy.gov/programs/powersystems/vision21/
    [14].D.Gary G.Tomlinson.Coproduction of Ultra Clean Transportation Fuels,Hydrogen and Electric from Coal.MTR 2001-43.July,2001
    [15].Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH~(TM)) Process,A DOE Assessment,October 2003
    [16].William R.Brown et.al.Fuel and Power Coproduction-the Integrated Gasification/Liquid Phase Methanol (LPMEOH~(TM)) Demonstration Project,first annual clean coal technology conference,September 22-24,1992
    [17].E.C.Heydom et.al.Liquid Phase Methanol (LPMEOH~(TM)) Project Operational Experience,Gasification Technology Council Meeting in San Francisco on October,4-7,1998.
    [18].Commercial-Scale Demonstration of Liquid Phase Methanol (LPMEOH~(TM)) Process-Public Design Report.Air Products & Chemical Inc.and Eastman Chemical Company.2000
    [19].Early Entrance Coproduction Plant,Phase Ⅱ-Quarterly Report No.17,DOE Cooperative Agreement,No.DE-FC26-99FT40658
    [20].倪维斗,李政,江华,煤基多联产系统(化工过程—动力装置)的分析[J],煤炭转化,2003,26(4):1-4
    [21].The Wabash River Coal Gasification Repowering Project.A Report of DOE and Wabash River Coal Gasification Venture.1996
    [22].高晋生,张德样,王锦平,21世纪煤化工技术发展展望[J],煤化工,2002,102(5):3-8
    [23].王云波,倪维斗,李政,王灵梅,多联产能源系统的热经济学分析[J],煤炭转化,128(4):57-61
    [24].中国科学院工程热物理研究所,煤气化发电与甲醇联产中系统集成与关键技术研发结题报告,2006
    [25].兖矿集团有限公司,煤气化发电与甲醇联产系统关键技术研发与示范863合同书,2002
    [26].兖矿集团有限公司,新型水煤浆气化技术863合同书,2003
    [27].兖矿集团有限公司,鲁港合资日处理1000吨煤新型气化炉及配套工程初步设计
    [28].兖矿集团有限公司,煤气化发电与甲醇联产系统关键技术研发与示范2004年验收报告
    [29].Allentown,Pennsylvania,Economic Analysis LPMEOH~(TM) Process as an Add-On to Integrated Gasification Combined Cycle (IGCC) for Coproduction,Prepared for the United States Department of EnergyFederal Energy Technology CenterUnder Cooperative Agreement No.DE-FC22-92PC90543,Prepared by Air Products and Chemicals,Inc.
    [30].曹征彦中国洁净煤技术[M]。中国物资出版社,1998,343-414。
    [31].陈文敏,李文华,徐振刚,洁净煤技术基础[M]。煤炭工业出版社,1997,235-281
    [32].朱明善,能量系统的Exergy分析,清华大学出版社,1986
    [33].郑振安,Shell煤气化技术(SCGP)的特点[J],煤化工,No.2,P7-11,2003
    [34].Worldwide Gasification Survey,presented at the Eighteenth Annual International Pittsburgh Coal Conference December 4,2001
    [35].李志远,张大晶,宋甜甜,壳牌煤粉加压气化技术[J],化工进展,Vol.22,No.9,P998-1000,2003
    [36].张华新,肖光升,朱疆,SHEIL煤气化炉的工艺计算及结果分析[J],煤化工,2001(2):43-45
    [37].陈广智,SHEEL煤气化技术在我国应用的思考[J],煤炭加工与综合利用No.6,P42-44,1999
    [38].戢绪国,Shell干粉气化技术综述[J],全国煤气化技术通讯,2007
    [39].侯国良,Shell煤气化技术的发展与应用前景[J],化肥设计,1998,36(5):P16-19
    [40].Zuideveld P.L.Overview of Shell Gasification Project[A],Presented at the Gasification Technologies Conference[C],San Francisco,CA,Oct.10,2001
    [41].唐宏青,煤化工工艺技术评述与展望-煤气化技术[J],燃料化学学报,2001,29(1):P1-5
    [42].谭可荣,韩文,新型水煤浆气化技术的开发及其应用[J],煤炭转化,Vol.24,No.1,2001
    [43].唐宏青,袁自伟等,水煤浆化工技术的开发与工程现状[J],石油化工设计,1997,14(1),P51-58
    [44].黎军,德士古水煤浆气化工艺概况[J],安徽化工,Vol.1,P46-49,2001
    [45].于遵宏孙建辉,德士古气化炉气化过程剖析(Ⅰ):问题与思考[J],大氮肥,Vol.16,No.5,P364-368.1993
    [46].孙成功,李保庆,水煤浆技术研究开发现状及面临的问题[J],煤炭转化,1995,18(3):1-6
    [47].蒋威德,韩伯琦,德士古煤浆气化技术及装置运行分析[J],煤化工,No.2,P18-26,1997
    [48].许波,德士古煤气化装置运行问题探讨[J]。煤化工,1999,4:19-24
    [49].雍永祜,李国琨,杨先忠,优化甲醇合成气组成以获取装置潜力[J],煤化工,第3期(总第96期),P3-8
    [50].寇公主编,煤炭气化工程[M],北京:机械工业出版社,1992,121
    [51].Use of SELEXOL Process in Coke Gasification to Ammonia Project,Presented at the Laurance Reid Gas Conditioning Conference,February 27-March 1,2000
    [52].林民鸿,NHD气体净化技术理论与实践(上)[J],化肥工业,Vol.27,No.4,P17-21
    [53].林民鸿,NHD气体净化技术理论与实践(下)[J],化肥工业,Vol.27,No.5,P33-35
    [54].林民鸿,郭淑翠,NHD技术用于合成气脱琉脱碳工程及设计方案[J],化学工程,Vol.28,No.3.P58-61
    [55].朱敏,孙西英,孙永奎,甲醇一热电联合生产装置净化工艺的选择[J],中氮肥,No.2,2006,P27-28
    [56].李琼玖,水煤桨气化两段低温甲酵洗净化合成气[J],氮肥设计,Vol.32,P3-7
    [57].亢万忠,唐宏青,低温甲醇洗工艺技术现状及发展[J],大氮肥,Vol.22,No.4,1999
    [58].汪家铭,酸性气体低温甲醇洗净化技术及其应用[J],甘肃石油和化工,Vol.21,No.4,2007
    [59].张翊人,低温甲醇洗工艺的发展和改进[J],氮肥设计,Vol.31,No.1,1993
    [60].薛天祥,鲁晓峰,低温甲醇净化合成气体的设计介绍,第十六届全国化肥甲醇技术年会论文集,2007年
    [61].童武元,NHD与低温甲醇洗净化工艺的比较与选择[J],化肥工业,Vol.32,No.3,P38-40
    [62].宋维端,肖任坚,房鼎业,甲醇工学[M],北京:化工工业出版社,1991
    [63].邹劲松,甲醇供需现状及预测[J],石油化工技术经济,2000,3:39-43
    [64].赵家乐,李好管,甲醇工业进展评述[J],上海化工,2001,2:32-35
    [65].李文天,曹永生,甲醇合成工艺进展[J],现代化工,1999,19(9):8-11
    [66].房德仁,李海洋,李士芹等,近十年甲醇合成技术进展(上)[J],上海化工,2000,12:32-35
    [67].房德仁,李海洋,李士芹等,近十年甲醇合成技术进展(下)[J],上海化工,2000,12:33-35
    [68].王贵荣,新型甲醇合成塔的开发[J],化肥设计,2000,38:62
    [69].吴思东,C302型催化剂在甲醇生产装置中的应用[J],天然气化工,2000,25(4):34-36
    [70].王熙庭,甲醇工业催化剂进展[J],中国化工信息,1999,9:7
    [71].吴爱中,杨其国,我国发展燃气轮机的问题及途径[J],汽轮机技术,Vol.43,No.1,P1-8,2001
    [72].陆勇,IGCC系统中燃气轮机选型原则分析研究[J],电力设备,Vol.3,No.4,P70-74,2002
    [73].娄马宝,我国燃气轮机工业的现状与展望[J],燃气轮机技术,Vol.14,No.2,P2-7,2001
    [74].胡明德,化工用大型空分设备新流程介绍[J],深冷技,1995,No.6,P12-15
    [75].阎振贵,内压缩空分流程的技术分析[J],深冷技,2000,No.1,P1-5
    [76].顾福民,国内外空分发展现状与展望(上)[J],低温与特气,2005:23(3):P11-171
    [77].气体分离设备行业现状及发展趋势[J],通用机械,2005(1):151
    [78].林刚,陈晓惠,金石,气体膜分离原理、动态与展望[J],低温与特气,Vol.21,No.2,P13-18, 2003
    [79].谯中惠,富氧技术的现状及进展[J],四川化工与腐蚀控制,Vol.1,No.1,P52-56,1998
    [80].田津津,张玉文,王锐,变压吸附制氧技术的发展和应用[J],深冷技术,No.6,P7-10,2005
    [81].张缠保,石勇,武瀚,循环流化床锅炉发展概况及前景[J],山西电力,No.2,P66-68,2005
    [82].周一工,循环流化床在中国的发展与问题(上)[J],节能与环保,No.10,P5-7,2005
    [83].周一工,循环流化床在中国的发展与问题(下)[J],节能与环保,No.11,P10-12,2005
    [84].顾兆林,压缩式制冷技术的新进展(1)-制冷工质的环境效应及其特点,Vol.29,No.10,P53-40,2001
    [85].王英,制冷原理及其过程[J],家电科技,P52-54,2005
    [86].Hyne,J.B.,and B.G.Goar,“The Claus Revisited”,Proceedings of the Laurance Reid Gas Conditioning Conference,Mar.3-6,1996.
    [87].Sardesai,U.,M.Perters,and D.Aldridge,“Using Conventional Claus Technology on Lean Acid Gas Feeds”,Proceedings of the Laurance Reid Gas Conditioning Conference,1988.
    [88].Stevens,D.K.,L.H.Stern,and W.Nehb,“OxyClaus Technology for Sulfur Recovery”,Proceedings of the Laurance Reid Gas Conditioning Conference,Mar.3-6,1996.
    [89].师彦俊,Claus+SCOT工艺总硫回收率主要影响因素探讨[J],硫酸工业,2005(6):P48-5
    [90].步维智,宋先林,Clins ulf硫回收工艺技术及应用总结[J],中氮肥,No.3,P23-25,2004
    [91].宋安太,郝天臻,硫回收装置采用富氧技术的研究与应用[J],石油炼制与化工,Vol.35,No.2,P22-25,2004
    [92].韦思亮,倪维斗,刘尚明,IGCC电站中气化炉控制系统研究[J],热能动力工程,Vol.17,No.06,2002
    [93].杨晟刚,张彦,赵冬斌等,水煤浆气化炉参数优化,中国自动化学会第20届青年学术会议,2004
    [94].赵冬斌,杨晟刚,易建强,张彦,煤气化炉的仿真系统开发[J],系统仿真学报,Vol.17,No.5,2005
    [95].新型水煤浆气化关键技术研究,国家高技术研究发展计划(863计划)课题任务合同书,2003AA521020
    [96].陈永献,韩飞,水煤浆的粒度分布对气化装置进料和气化过程的影响,全国煤气化技术通讯,Vol.0,No.6,2008
    [97].周寿祖,朱凤梅,张继臻,水煤浆加压气化装置的优化配煤[J],化肥设计,Vol.0, No.1.2003
    [98].张继臻,种学峰,煤质对Texaco气化装置运行的影响及其选择[J],中氮肥Vol.0,No.2,2002
    [99].段清兵,张贵等,神府煤制备高质量水煤浆技术研究[J],煤炭加工与综合利用,No.5,P28-31,2007
    [100].叶向荣,刘定平,林俊滨,水煤浆浓度与粘度的敏感性分析[J],煤炭工程Vol.0,No.5,2008
    [101].叶向荣,刘定平等,粒度级配对混煤水煤浆浓度与黏度的影响[J],煤炭转化,Vol.31,No.2,2008
    [102].Atesok G,Boylu F,S irkeci A A et al.The Effect of Coal Properties on the Viscosity of Coal-water Slurries[J].Fuel,2002,81 (14):1856-1857.
    [103].李珊珊,程军,李艳昌等,水煤浆黏度的几种影响因素分析[J],煤炭转化,2006,29(1):23-25.
    [104].岑可法,姚强等,煤浆燃烧、流动、传热和气化的理论与应用技术[M],浙江大学出版社,1997
    [105].王共远,吴国光,李启辉等,水煤浆制备技术的最新进展[J],能源技术与管理,2006,(2):57-58.
    [106].王金玲,高惠民,水煤浆技术研究现状[J],煤炭加工与综合利用,2005,(3):28-31.
    [107].Atesok G,Boylu F,Sirkeci AA,et al.The Effect of Coal Properties on the Viscosity of Coal-water Slurries[J].Fuel,2002,81:1 855-1 858.
    [108].张彦,孙永奎。煤气化发电与甲醇联产工程项目建设与运行总结[J],煤化工,2007 Vol.35,P9-12。
    [109].Aspen Plus User Guide 10.2
    [110].张彦,徐纲。煤气化多联产中燃气轮机的改造与运行[J],燃气轮机技术,2008 Vol.21,No.1,P54-59
    [111].焦树建,整体煤气化燃气-蒸汽联合循环(IGCC)[M],北京:中国电力出版社,1996
    [112].郭永基,可靠性工程原理[M],施普林格出版社,2002
    [113].孙琦明,火电厂湿法石灰石/石膏烟气脱硫工程综合经济分析[J],中国环保产业专题,2004
    [114].陈兵,张学学,烟气脱硫技术研究与进展[J],工业锅炉,2002,74(4):6-10
    [115].林永明,韦志高.湿法石灰石/石灰—石膏脱硫技术应用综述[J],广西电力工程, 2000.4:92-98.
    [116].孙胜奇,陈荣永等,我国二氧化硫烟气脱硫技术现状及进展[J],2005,29(1):44-4
    [117].冯志兵,崔平,联合循环中的余热锅炉[J].燃气轮机技术,2003,16(3):26~33
    [118].黄文波,林汝谋,肖云汉等,联合循环中余热锅炉及其热力性能,分析[J].发电设备行业科技情报网,2000,(2)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700