长江河口大型底栖动物生态学研究中Exergy理论的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能量是所有开放系统生存和演化的必要条件,是生态系统代谢的通用“货币”。从能量入手,容易在生态系统复杂性研究上获得突破。能量学的方法运用于复杂的生态系统研究已成为当前和未来生态学研究的一个重要方向。本文在国内首次在长江河口湿地生态系统研究中应用“埃三极”(Exergy)理论,主要目的在于对生态系统的状态和变化进行量化探索,使得复杂的生态系统研究更加有效准确。本文主要研究成果如下:(1)基于生物量和生物复杂性信息的Exergy分析非常直观地反映出长江河口大型底栖动物群落的复杂性状况。Exergy计算比生物量、丰度分析更具系统性和综合性。(2)综合分析受干扰后大型底栖动物群落演替得出干扰的空间尺度决定了群落的恢复特征,如果干扰区域明显小于周边未受干扰的区域,那么群落的复杂性(信息量和网络结构)将先于生物量得到恢复。(3)而Exergy作为一种生态监测指标的研究表明该指标不但适用于干扰后底栖动物群落恢复过程的监测,而且适合更广泛的生物系统研究。用周边对照区作为计算受干扰群落的局域Exergy值的动态参考比用历史资料更合适。
     (1)Exergy指标用于长江口潮下带大型底栖动物群落结构分析
     2005年4月对长江口全区域潮下带共10个采样站位的大型底栖动物进行了调查。分析了其种类组成、丰度、生物量现状及相关环境因子的作用,阐明了其空间分布格局,并应用Exergy理论分析了不同空间格局下的底栖动物群落所处的状态。本次调查采获大型底栖动物38种,分属5个生态类型,种类数以河口外缘的顾圆沙附近的10号站位和九段沙下沙附近的1号站位较多,分别为23种和12种,口内站位均未超过10种。各站位大型底栖动物的平均丰度为32.9个/m~2、平均生物量为5.035g/m~2(湿重);各站位的平均生物量仅为5.035g/m~2(湿重),大大低于1988年同期(5月)的平均生物量24.2 g/m~2;口外缘站位的总丰度和总生物量均高于口内站位,表现为九段沙下沙附近的1号站位和中沙附近的2号站位的大型底栖动物丰度较大,分别为80 ind./m~2和70ind./m~2。其余8个站位的的丰度则均小于50ind./m~2,其中尤其以白茆沙附近的8号站位和新村沙附近的9号站位最小,仅为4ind./m~2。生物量分布则以九段沙附近1、2号,东风西沙附近的7号和新村沙附近的9号站位较高,其他站位相对较低,其中尤其以白茆沙附近的8号站位最低,仅为0.048 g/m~2(干重)。环境因子相关分析(R=0.924,P<0.05)表明盐度是决定长江口大型底栖动物种类分布最重要的环境因子。群落聚类、标序分析显示,春季长江口潮下带大型底栖动物群落结构空间分异明显,完全符合目前长江口支、港、槽“三级分汊”的空间格局。Exergy分析可以得出长江河口底栖动物群落的复杂性状况为北支(EX_A=4582.25 J m~(-2))优于南支(EX_B=1071.228 J m~(-2)、Ex_c=11.58 J m~(-2)、EX_D=1751.81 J m~(-2)),口外(EX_D=1751.81 J m~(-2))优于口内(EX_B=1071.228 J m~(-2)、Ex_c=11.58 J m~(-2)),这与生物量和丰度分析结果一致,也就是说基于生物量和生物复杂性信息的Exergy可以非常直观的反映出长江河口大型底栖动物群落的复杂性状况。同时可以看到Exergy计算比生物量、丰度分析更加简洁,而且Exergy分析更具系统性和综合性。(2)用于河口潮滩湿地大型底栖动物群落演替分析
     2006年1月在崇明岛西端的潮间带湿地进行了一项生态工程,经过土方工程的区域被选为大型底栖动物群落的演替区,因为其中的大型底栖动物群落受到了较大的破坏,在其周边未受干扰区设立对照样点。本研究试图通过群落重建群的研究分析三个问题:(1)在群落恢复过程中不同的生态学指标是如何变化的?(2)群落演替过程中什么先增长,生物量还是复杂性?(3)是否可以选择生态学指标以利于演替过程中三类不同的增长模式(生物量、网络结构和信息量)的识别?多变量分析用于检验被干扰区群落是否已经得到恢复。Shannon-Wiener指数、Margalef指数、Pielou均匀度指数、生态“埃三极”(Eco-Exergy)和结构“埃三极”(Specific Eco-Exergy)用于分析演替过程中群落状态的变化。结果显示物种随时间的更替与群落结构的变化密切相关。物种丰富度增长迅速,而且对照区和演替区的物种组成非常相似。演替进行1个月左右之后,演替区的生物多样性已经超过了对照区。生态“埃三极”和结构“埃三极”提供了群落结构发展的有用信息,但仍然缺乏鉴别系统所处信息状态的能力。多样性分析结果可以从中度干扰假说(Imermediate Disturbance Hypothesis)得到很好的解释。总体而言,干扰的空间尺度决定了群落的恢复特征,如果干扰区域明显小于周边未受干扰的区域,那么群落的复杂性(信息量和网络结构)将先于生物量得到恢复。(3)用于河口潮滩湿地生态建设过程监测分析
     Exergy作为热力学指标是指系统从给定状态到与其周围介质达到热力学平衡所需做的最大功,Exergy概念被生态学家借鉴应用于生态系统的研究,使它有了生物学的含义。应用Exergy作为生态指标,用于指示崇西潮滩湿地生态工程中受到干扰的大型底栖动物群落结构的复杂的恢复过程。用BACI(beforeversus after.control versus impact)方法进行底栖动物采样,根据(a)不同食性类群的代码基因数;(b)储存在有机体基因内的信息;(c)种水平上的基因组尺度(C值)作为参数估算局域Exergy。结果显示工程区的Exergy值在工程干扰后9d时降到最低,接着工程区大型底栖动物群落的Exergy值逐渐与周围对照区趋向平衡。270d后,工程区的大型底栖动物群落得到恢复。3种不同方法估算的区域Exergy值表现出极为相似的动态趋势,进一步证实了用基因组尺度数据估算Exergy的可行性和优越性。研究表明Exergy指标不但适用于干扰后底栖动物群落恢复过程的监测,而且适合更广泛的生物系统研究。用周边对照区作为计算受干扰群落的局域Exergy值的动态参考比用历史资料更合适。
Application of the energy methods as an indicator in the complexity of the ecosystem is a significant trend. Because energy is the essential term of the ecosystem, further more it is an universal "money". From the enery launching on, it's easy to obtaining breakthrough at the complexity study of the ecosystem. In this paper, Exergy indicator applicated in three aspects of the esturine wetland ecology study. The main conclusions as following: First, State about the health of the macrobenthic ecosystem: North branch was better than south branch, outside was better than inside. The conclusions showed that exergy analyzing was better than analyzing of biomass or abundance. Second, the characteristics of a systems' recovery after disturbance appeared to be dependent on the spatial scale of the disturbance. If a disturbed area was small when compared to a contiguous non-disturbed one, complexity (information and network) would recover prior to biomass. Third, we discussed the feasibility of using the more available genome size data set for estimating exergy and the broader implications of using this indicator in other biological systems. Exergy was demonstrated to be a useful indicator that integrated the processes underlying the recovery of the benthic community after disturbance.
     (1) Exergy was used to analyze macrobenthic fauna community in the Yangzi estuary
     Samples of subtidal macrobenthic fauna were collected and environmental factors were measured in the Yangtze Estuary in April, 2005. The community structure of macrobenthic fauna and its correlation with environmental factors were analyzed. Exergy as an indicator used to analyze the state of the macrobenthic ecosystem. Thirty-eight species were identified, belonging to five ecological assemblages. The total number of species was low, but was higher in the outer sampling sites of the estuary. The average abundance was 32.9 ind·m~(-2) and the average biomass was 5.035 g·m~(-2)(fresh weight) at all sampling stations. Compared with historic data from the 1970s and 1980s, the community structure of macrobenthic fauna has changed obviously and the biomass has decreased rapidly. Total abundance and biomass of the species were obviously higher in the outer sampling sites of the estuary. Salinity was the main factor affecting the distribution of the macrobenthic fauna. The Bray-Curtis Cluster analysis showed that the macrobenthic fauna at all sampling station had four assemblages, which accorded with three spatial structural grads of the Yangtze River Estuary.State about the health of the macrobenthic ecosystem: North branch is better than south branch, outside was better than inside.
     (2) Ecological indicators performance during a re-colonisation field experiment and its compliance with ecosystem theories
     The study was carried out in an intertidal flat after ecological engineering at the west of the Chongming Island in January, 2006. Succession plots were disturbed by ecological engineering and macrobenthos community were damaged severely. Through a re-colonisation field study three main questions were approached: (1) How do different ecological indicators react during the process of recovery? (2) What does grow first during a community succession, biomass or complexity? (3) Can the chosen ecological indicators help in recognising the three proposed forms of growth: biomass, network and information, throughout re-colonisation? Multivariate analysis was performed to examine the convergence of the disturbed plots with the surrounding community during recovery. Shannon-Wiener Index, Margalef Index, Pielou evenness, Eco-Exergy and Specific Eco-Exergy were applied to characterise the state of the community during the process. Results showed that the replacement of species over time happened associated macrobenthos community. Species richness increased rather rapidly and species composition was similar in disturbed and undisturbed areas. After 1 month, diversity was consistently higher in the community undertaking recovery. Eco-Exergy and Specific Eco-Exergy provided useful information about the structural development of the community but lacked discriminating power with regard to the informational status of the system. The observations appear to illustrate a case explainable by the Intermediate Disturbance Hypothesis (IDH). Overall, the characteristics of a systems' recovery after disturbance appear to be dependent on the spatial scale of the disturbance. If a disturbed area is small when compared to a contiguous non-disturbed one, complexity (information and network) will recover prior to biomass.
     (3) Application of exergy as an indicator in the restoration of ecosystem
     Thermodynamic function exergy, which represents the distance of an open system from equilibrium, is proposed as an ecological indicator for summarizing the complex dynamics occurring in a disturbed community during the recovery processes. This quantity has been difficult to capture using classical indices. Exergy storage is estimated for benthic communities in response to experimental disturbance, as induced by ecological engineering, at the Chongxi tidal wetland of Chongming Island. exergy storage was sampled using the BACI scheme (before versus after, control versus impact). The control area is proposed as a dynamic reference for estimating the local exergy storage of the benthic community. Three different methods were used for estimating exergy on the basis of coefficients: (a) taken from trophic groups, (b) estimated from coding genes for broad taxonomical groups and (c) estimated from genome size and taken as close as possible to the taxonomical level of the species, providing a basis for inferring upon their similarities. The results show a decrease of local exergy content in the disturbed area, with a minimum in the area exposed to the engineering 1 month after the experimental disturbance. Subsequently, the exergy of the benthic community increased to the reference level, i.e., the surrounding control area, in accordance with the proposed hypothesis on the dynamics of exergy storage during a system's development. Moreover, the adjacent control samples represented an appropriate dynamic reference for estimating the local exergy of the experimentally disturbed community. The three methods for estimating the local exergy values provided comparable results. Therefore, we discuss the feasibility of using the more available genome size data set for estimating exergy and the broader implications of using this indicator in other biological systems. Exergy was demonstrated to be a useful indicator that integrates the processes underlying the recovery of the benthic community after disturbance.
引文
《全国海岸带和海涂资源综合调查简明规程》编写组.1986.全国海岸带和海涂资源综合调查简明规程.北京:海洋出版社.
    R.祖见1980.英德法俄汉物理学词典(A.M).《物理学词典》翻译组译.原子能出版社.474.
    奥德姆,H.T.,1993.系统生态学.蒋有绪,徐德应等译.北京:科学出版社,772.
    陈吉余.1988.上海市海岸带和海涂资源综合调查报告.上海:上海科学技术出版社.
    陈吉余主编.1996.上海市海岛资源综合调查报告.上海:上海科学技术出版社.
    戴国梁.1989.长江河口南岸污染对底栖动物的影响.海洋环境科学,8(3):32-35.
    戴国梁.1991.长江口及其邻近水域底栖动物生态特点.水产学报,15(2):104-116.
    董全,1996.西方生态学近况.生态学报,16(3):3 14-324.
    国家教委社会科学研究与艺术教育司.1991.自然辨证法概论(修订版).北京:高等教育出版社.
    国家林业局等.2001.中国湿地保护行动计划.中国林业出版社.
    贺松林,2000.长江河口下段分汊口的组构模式.海洋学报,22(1):84-92.
    江锦祥.1984.东海大陆架及其邻近海区底栖动物数量分布的初步研究.海洋学报,7(2):246-255.
    卢敬让,赖伟,堵南山.1990.应用底栖动物监测长江口南岸污染的研究.青岛海洋大学学报,20(2):32-43.
    陆健健,何文珊.1998.上海地区湿地的研究.见:郎惠卿、林鹏、陆健健.中国湿地研究何保护.上海:华东师范大学出版社,pp.297-310.
    陆健健.1990.中国湿地.上海:华东师范大学出版社.
    陆健健.2003.河口生态学[M].北京:海洋出版社.
    孟翊,程江.2005.长江口北支入海河段的衰退机制.海洋地质动态,21(1):1-10.
    尼科里斯普里高津,1991.非平衡系统的自组织.徐锡申等译.北京:科学出版社,592.
    上海气象志编纂委员会,1997.上海气象志.上海:上海社会科学院出版社.P54-92.
    上海市海岛资源综合调查报告编写组.1988.上海市海岸带和海涂资源综合调查.上海:上海科学技术出版社.
    上海市海岛资源综合调查报告编写组.1995.上海市海岛资源综合调查报告.上海:上海科学技术出版社,pp.246-249.
    沈焕庭,潘定安.2001.长江河口最大浑浊带.北京:海洋出版社.15-38.
    孙平跃,陆健健.1997.埃三极(Exergy)理论—生态系统研究的一种新方法.生态学杂志,16(5):32-37.
    汤奇成.1998.中国河流水文.北京:科学出版社,pp.133.
    吴华林,沈焕庭,胡辉等,2002.GIS支持下的长江口拦门沙泥沙冲淤定量计算.海洋学报,24(2):84-93.
    徐兆礼,蒋玫,白雪梅,等.1999.长江口底栖动物生态学.中国水产科学,6(5):59-62.
    扬戈逊,S.E.(陆健健等译),1990.生态模型原理.上海翻译出版公司.
    杨泽华,童春富,陆健健.2006.长江口湿地三个演替阶段大型底栖动物群落特征.动物学研究,27(4):411-418.
    叶属峰,纪焕红,曹恋,等.2004.河口大型工程对长江河口底栖动物种类组成及生物量的影响研究.海洋通报,23(4):32-37.
    叶属峰,陆健健.2001a.长江口泥螺(Bullacta exaram)的种群特征及其生态学意义.长江流域资源与环境,10(3):216-222.
    叶属峰,陆健健.2001b.长江口泥螺(Bullacta exarata)种群夏季的空间格局分析.动物学研究,22(2):131-136.
    袁兴中,陆健健,刘红.2002a.长江口底栖动物功能群分布格局及其变化.生态学报,22(12):2054-2062.
    袁兴中,陆健健,刘红.2002b.长江口新生沙洲底栖动物群落组成及多样性特征.海洋学报,24(2):133-139.
    袁兴中,陆健健,刘红.2002c.河口盐沼植物对大型底栖动物群落的影响.生态学报,22(3):326-333.
    袁兴中,陆健健.2001a.长江口潮沟大型底栖动物群落的初步研究.动物学研究,22(3):211-215.
    袁兴中,陆健健.2001b.长江口岛屿湿地的底栖动物资源.自然资源学报,16(1):37-41.
    袁兴中,陆健健.2001c.围垦对长江口南岸底栖动物群落结构及多样性的影响.生态学报,21(10):1 642-1 647.
    袁兴中,陆健健.2002d.长江口潮滩湿地大型底栖动物群落的生态学特征.长江流域资源与环境,11(5):4 144-4 120.
    袁兴中,陆健健.2003.潮滩微地貌元素“生物结构”与小型底栖动物的空间分布.生态学杂志,22(6):124-126.
    湛垦华,沈小峰,1982.普里高津与耗散结构.西安:陕西科学技术出版社,407.
    张知彬,1991.序能与生命结构.《能量生态学.王祖望主编.长春:吉林科学技术出版社,308.
    郑重和等,1985.物理化学(上).上海科学技术出版社.
    周红,张志南.2003.大型多元统计软件PRIMER的方法原理及其在底栖群落生态学中的应用.青岛海洋大学学报,33(1):58-64.
    朱晓君,陆健健.2003.长江口九段沙潮间带底栖动物的功能群.动物学研究,24(5):355-361.
    Aoki, I., 1992 . Exergy analysis of network systems at steady state. Ecological Modelling, 62:183-193.
    Bastianoni, S., 1998. A definition of 'pollution' based on thermodynamic goal functions. Ecological Modelling, 113:163-166.
    Bastianoni, S., Marchettini, N., 1997. Emergy/Exergy ratio as a measure of the level of organization of systems. Ecological Modelling, 99: 33-40.
    Bayne, B. L. 1985. The effects of Stress and Pollution on Marine Animals. New York: Praeger Publishers, pp.315.
    Beardwood, J., Halton, J. H., & Hammersley, J.M., 1955. The shortest pathth rough many points. Mathematical Proceeding of the Cambrige Philosophical Society, 55: 299-327.
    Bendoricchio, G., Jorgensen, S.E., 1997. Exergy as goal function of ecosystem dynamics. Ecological Modelling, 102: 5-15.
    Benedetti-Cecchi L, Cinelli F. 1996. Patterns of disturbance andrecovery in littoral rock pools: non-hierarchical competition and spatial variability in secondary succession. Marine Ecology Progress Series, 135: 145-161.
    Blackstock, J. 1984. Biochemical metabolic regulatory responses of marine invertebrates to natural environmental change and marine pollution. Oceanography and Marine Biology, Annual view, 22:263-313.
    Boero, F., Belmonte, G., Bussotti, S., et al. From biodiversity and ecosystem functioning to the roots of ecological complexity. Ecological Complexity, 2004, 1: 101-109.
    Brett, M.T., Goldman, C.R., 1996. A meta-analysis of the freshwater trophic cascade. Proceeding of the National Academy of Sciences of the USA, 93:7 723-7 726.
    Chapman M G, Underwood A J. 1998. Inconsistency and variation in the development of rocky intertidal algal assemblages. Journal of Experimental Marine Biology and Ecology, 224: 265-289.
    Chapman, K.E., Higgins, S.J., 2001. Essays in Biochemistry. Regulation of Gene Expression. Portland Press, 130 pp.
    Christensen V. 1995. Ecosystem maturity, towards quantification. Ecological Modelling, 77: 3-32.
    Clarke K R, Warwick R (Eds.). 1994. Change in Marine Communities: an Approach to Statistical Analysis and Interpretation. Natural Environmental Research Council, Plymouth, UK, pp. 144.
    Clarke K R. 1993. Non-parametric multivariate analysis of changes in community structures. Australia Journal of Ecology, 18:117-143.
    Connell J H, Hughes T P, Wallace C C. 1997. A 30-year study of coral abundance, recruitment, and disturbance at several scales and time. Ecological Monographs, 67: 461-488.
    Connell J H, Slatyer R E. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist, 111: 1119-1144.
    Connell J H. 1978. Diversity in tropical rain forests and coral reefs. Science, 199: 1302-1310.
    Coveney, P. & Highfild, R. 1995. Frontiers of Complexity: the Search for Order in a Chaotic World. New York: Fawcett Collumbia, 462.
    Craft C, Sacco J. 2003. Long-term succession of benthic infauna communities on constructed Spartina alterniflora marshes. Marine Ecology Progress Series, 257: 45-58.
    
    Crick, F.C., 1970. Central dogma of molecular biology. Nature 227, 561-563.
    Dade, W. D. & A. R. M. Nowell, 1991. Moving muds in the marine environment. In: Coastal Sediments' 91 Proceeding Specialty Conference/WR Division. American Society of Civil Engineers, Washington: Seattle, pp 54-71.
    Debeljak, M., 2002. Applicability of genome size in Exergy calculation. Ecological Modelling, 152: 103-107.
    Desrosiers, G., Bellan-Santini, D., Brethes, J.C., 1986. Organisation trophique de quatre peuplements de substrats rocheux selon un gradient de polution industrielle (Golfe de Fos, France). Marine Biology, 91: 107-120.
    Desrosiers, G., Savenkoff, C, Olivier, M., et al., 2000. Trophic structure of macrobenthos in the Gulf of St. Lawrence and on the Scotian Shelf. Deep-Sea Research, 47: 663-697.
    Diaz-Pulido G, McCook L J. 2002. The fate of bleached corals: patterns and dynamics of algal recruitment. Marine Ecology Progress Series, 232: 115-128.
    Durr, H.P., Popp, F.A., Schommers, W., 2002. What is Life? World Scientific, New Jersey, 372 pp.
    Dye A H. 1998. Community-level analysis of long-term changes in rocky littoral fauna from South Africa. Marine Ecology Progress Series, 164: 47-57.
    Fabiano, M., Vassallo, P., Vezzulli, L., et al., 2004. Temporal and spatial change of Exergy and ascendency in different benthic marine ecosystems. Energy, 29: 1697-1712.
    Fath, B.D., Cabezas, H., 2004. Exergy and fisher information as ecological indices. Ecological Modelling, 174: 25-35.
    Fath, B.D., Patten, B.C., Choi, J.S., 2001. Complementarity of ecological goal functions. Journal of Theoretical Biology, 208: 493-506.
    Fauchauld, K., Jumars, P.A., 1979. The diet of worms: a study of polychaete feeding guilds. Oceanography and Marine Biology, 17:193-284.
    Fell, D.E., Wagner, A., 2000. The small-world of metabolism. Nature Biotechnology, 18,1121-1122.
    Fonseca J C, Marques J C, Paiva A A, et al. 2000. Nuclear DNA in the determination of weighting factors to estimate Exergy from organism biomass. Ecological Modelling, 126:179-189.
    
    Gregory, T.R., 2005. Animal genome size database. http://www. genomesize.com.
    Grime J P. 1973. Competitive exclusion in herbaceous vegetation. Journal of Environment Management., 1: 151-167.
    Holland, J. H., 1975. A daption in Natural and Artificial System Ann. Arbor: University of Michigan Press, 173.
    Holland, J. H., Holyoak, K. J., Nisbett, R. E., et al., 1986. Induction: Processes of Inference, Learning, and Discovery. Cambrige, MA: MIT Press, 286.
    Hutchinson N, Williams G A. 2003. Disturbance and subsequent recovery of mid-shore assemblages on seasonal tropical, rocky shores. Marine Ecology Progress Series, 249: 25-38.
    Jorgensen S E, Ladegaard N, Debeljak M, Marques JC. 2005. Calculations of Exergy for organisms. Ecological Modelling, 185: 165-175.
    Jorgensen S E, Mejer H. 1979. A holistic approach to ecological modelling. Ecological Modelling, 7: 169-189.
    Jorgensen S E, Nielsen S N, Mejer H. 1995. Emergy, environ, Exergy and ecological modelling. Ecological Modelling, 77: 99-109.
    Jorgensen S E, Patten B, Straskraba M. 2000. Ecosystems emerging, 4. Growth. Ecological Modelling, 126: 249-284.
    Jorgensen S E, Verdonschot P, Lek S. 2002. Explanation of the observed structure of functional feeding groups of aquatic macroinvertebrates by an ecological model and the maximum Exergy principle. Ecological Modelling, 158: 223-231.
    Jorgensen S E. 2000. Application of Exergy and specific Exergy as ecological indicators of coastal areas. Aquatic Ecosystem Health and Management, 3: 419-430.
    Jorgensen S E. 2002. Integration of Ecosystem Theories: a Pattern, third ed. Kluwer Academic Publ. Co., Dordrecht, The Netherlands, pp. 432.
    Jorgensen, S. E. et al., 1992. Ecosystems emerging : toward an ecology of complex system in a complex future. Ecological Modelling, 62:1-27.
    Jorgensen, S. E., 1992a. Development of models able to account for changes in species composition. Ecological Modelling, 62:195-208.
    Jorgensen, S. E., 1992b. Parameters, ecological constraints & Exergy. Ecological Modelling, 62: 163-170.
    Jorgensen, S.E., 1981. Exergy as a key function in ecological models. In: Mitsch,W., Bosserman, R.W., Klopatek, J.M. (Eds.), Energy and ecological modelling. Developments in Environmental Modelling. Elsevier, Amsterdam, pp. 587-590.
    Jorgensen, S.E., 1998. Exergy as orientor for the development of ecosystems. In: Ulgiati, S. (Ed. in chief), Brown, M.T., Giampietro, M., Herendeen, R.A., Mayumi, K. (associate Eds.), Proceedings of the InternationalWorkshop on Advances in Energy Studies and Energy Flows in Ecology and Economy. Porto Venere, Italy, May 26/30, MUSIS, ROMA, pp. 371-402.
    Jorgensen, S.E., 2001. Recent developments in system ecology. In: Matthies, M., Malchow, H., Kriz, J. (Eds.), Integrative System Approaches to Natural and Social Dynamics. Springer-Verlag, pp. 155-170.
    Jorgensen, S.E., Marques, J.C., 2001. Thermodynamics and ecosystem theory, case studies from hydrobiology. Hydrobiologia 445,1-10.
    Jorgensen, S.E., Nielsen, S.N., 1998. Thermodynamic orientors: Exergy as goal function in ecological modelling and as an ecological indicator for the description of ecosystem development. In: Muller, F., Leupelt, M. (Eds.), Eco Targets, Goal Function and Orientors. Springer-Verlag, Berlin, 64-86.
    Kay, J. J. & Schneider, E. D., 1992. Thermodynamics and Measures of Ecosystem Intergrity. 159-182. In: Ecological Indicators, Vol. 1 (eds. Mckenzie D H, Hyatt D E, McDonald V J). Proc. of the International Symposium on Ecological Indicators, Fort Lauderdale, Florida, Elsevier. 502.
    Kay, J. J., 1984. Self-organization in Living System, PH. D. thesis, Systems Design Engineering, University of Waterloo,Waterloo, Ontario, Canada, 458.
    Kim J H, DeWreede R E. 1996. Effects of size and season of disturbance on algal patch recovery in a rocky intertidal community. Marine Ecology Progress Series, 133:217-228.
    Ladegaard, N., Debeljak, M., Jorgensen, S.E., 2006.Complexity measurements of ecosystems. Ecological Modelling, 187: 13-27.
    Levin L A, DiBacco C. 1995. Influence of sediment transport on short-term re-colonisation by seamounts infauna. Marine Ecology Progress Series, 123: 163-175.
    Levin L A, Talley D, Thayer G. 1996. Succession of macrobenthos in a created salt marsh. Marine Ecology Progress Series, 141: 67-82.
    Levinton, J. 1995. Bioturbators as ecosystem engineers: control of the sediment fabric, inter-individual interactions and material fluxes. In: Linking Species and Ecosystems. (Jones, C. G. & J. H. Lawton. Eds.). New York: Chapman and Hall, pp, 29-36.
    Li, H.-W. & Grauer, D. 1991. Fundamentals of Molecular Evolution. Sinauer, Sunderland, MA.
    Lotka, A. J., 1992. Contribution to the energetics of evolution. Proceeding of the National Academy of Sciences, 8: 151-154.
    Marques J C, Nielsen N S, Pardal M A, et al. 2003. Impact of eutrophication and river management within a framework of ecosystem theories. Ecological Modelling, 166: 147-168.
    Marques, J.C., Jorgensen, S.E., 2002. Three selected ecological observations interpreted in terms of a thermodynamic hypothesis. Contribution to a general theoretical framework. Ecological Modelling, 158: 213-221.
    Marques, J.C., Pardal, M.A., Nielsen, S.N., et al., 1997. Analysis of the properties of Exergy and biodiversity along an estuarine gradient of eutrophication. Ecological Modelling, 102: 155-167.
    Marques, J.C., Pardal, M.A., Nielsen, S.N., Jorgensen, S.E., 1998. Thermodynamic orientors: Exergy as a holistic ecosystem indicator: a case study. In:Muller, F., Leupelt, M. (Eds.), Ecotargets, Goal Functions and Orientors. Theoretical Concepts and Interdisciplinary Fundamentals for an Integrated, System-based Environmental Management. Springer-Verlag, Berlim, pp. 87-101 (Chapter 2.5).
    Mattick, J.S., 2003. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioassays 25, 930-939.
    
    May, R. M., 1972. Will a large complex system be stable? Nature, 238: 413-417.
    May, R. M., 1973. Stability and comp lexity in Model Ecosystem. Princeton: Princeton University Publication, 447.
    
    McShea, D.W., 1996. Metazoan Complexity and Evolution: Is there a Trend?
    Mejer, H. & Jorgensen, S. E., 1979. Exergy & ecological buffer capacity. In: S. E. Jorgensen (Editor), State of Art in Ecological Modelling. ISEM, Copenhagen/ Pergamon, Oxford, 829-846.
    Morowitz, H.J., 1992. Beginnings of Cellular Life. Yale University Press, New Haven, CT.
    Muller, F. Leupelt, M. 1998. Eco-Targets, Goal Function and Orientors. Springer-Verlag. Berlin., pp. 623.
    
    Nicolis, G. & Prigogine, 1986.I. Exploring Complexity. New York: Freeman. 316.
    Nogueira E, Ibanez F, Figueiras F G. 2000. Effect of meteorological and hydrographic disturbances on the microplankton community structure in the Ri'a de Vigo (NW Spain). Marine Ecology Progress Series, 203: 23—45.
    
    Odum E P., 1969. The strategy of ecosystem development. Science, 164: 267-270.
    Odum, H. T., 1983. System Ecology. Wiley, New York, NY, 644 PP.
    Pace, M.L., Cole, J.J., Carpenter, S.R., et al., 1999. Trophic cascades revealed in diverse ecosystems. Trends in Ecology & Evolution, 14: 483- 488.
    Paine R T, Levin S A. 1981. Intertidal landscapes: disturbance and the dynamics of pattern. Ecological Monographs, 51: 145-178.
    Paine, R.T., 1994. Marine Rocky Shores and Community Ecology: An Experimentalist's Perspective. Ecology Institute, Oldendorf, Germany, 152.
    Patricio J, Ulanowicz R, Pardal M A, et al. 2004. Ascendency as an ecological indicator: a case study of estuarine pulse eutrophication. Estuarine, Coastal and Shelf Science, 60: 23-35.
    Patten, B.C., 1992. Exergy, emergy and environs. Ecological Modelling, 62: 29-71.
    Pranovi, F., Raicevich, S., Franceschini, G., et al., 2000. 'Rapido' trawling in the Northern Adriatic Sea: effects on benthic communities in an experimental area. ICES J. Marine Science, 57: 517-524.
    Pranovi, F., Raicevich, S., Libralato, S., et al., 2005. Trawl fishing disturbance and medium-term macroinfaunal recolonization dynamics: a functional approach to the comparison between sand and mud habitats in the Adriatic Sea (Northern Mediterranean Sea). In: Barnes, P.W., Thomas, J.P. (Eds.), Benthic Habitats and the Effects of Fishing. American Fisheries Society.
    Prigogine, I. & Wiaume, J. M., 1946. Biology et thermodynamique des phenomeuse irreversibles. Experimentia, 2: 451-453.
    Rice J C. 2000. Evaluating fishery impacts using metrics of community structure. ICES Journal of Marine Science, 57: 682-688.
    Richard, J., 2001. Binding energy and the information content of some elementary biological processes. Science de la vie/Life Science, 324: 297-304.
    Richard, J., 2003. What do we mean by biological complexity? Science de la vie/Life Science 326,133-140.
    Rosenberg R, Agrenius S, Hellman B, et al. 2002. Recovery of marine benthic habitats and fauna in a Swedish fjord following improved oxygen conditions. Marine Ecology Progress Series, 234: 43-53.
    Salomonsen, J. 1992. Examination of properties of Exergy, power & ascendency along a eutrophication gradient. Ecological Modelling, 62: 171 -181.
    Shannon, C.E., 1948.Amathematical theory of communication. Bell Systematic Technology. J. 27 (379-423), 623-656.
    Shieh, J. H. & Fan, L. T., 1982. Estimation of energy & energy content in structurally complicated materials. Energy Resourse, 6: 1-46.
    Silow, E.A., In-Hye, O., 2004. Aquatic ecosystem assessment using Exergy. Ecological Indicators, 4:189-198.
    Sousa WP. 1979. Experimental investigations of disturbance and ecological succession in a rocky intertidal algal community. Ecological Monographs, 49: 227-254.
    Strogas, S.H., 2001. Exploring complex networks. Nature 410: 268-276.
    Svirezhev, Y., 1992. Exergy as a measure of the energy needed to decompose an ecosystem. Presented at ISEM's International Conference on the State-of-the-Art of Ecological Modelling, 28 September-2 October 1992, Kiel.
    Svirezhev,Yu.M., 2000. Thermodynamics and ecology. Ecological Modelling, 132: 11-22.
    Tansley, A.G., 1935. The use and abuse of vegetational concepts and terms. Ecology, 16: 284-307.
    Tilman D, Knops J, Wedin D. 1997. The influence of functional diversity and composition on ecosystem processes. Science, 277: 1300-1302.
    Ulanowicz, R.E., 1986. Growth and Development: Ecosystems Phenomenology. Springer-Verlag, New York, 203.
    Underwood, A.J., 1994. On beyond BACI: sampling designs that might reliably detect environmental disturbances. Ecological Applications, 4: 3-15.
    Valiela I. 1995. Development of structure in marine communities: colonization and succession. In: Valiela, I. (Ed.), Marine Ecological Processes, second ed. Springer-Verlag, New York, pp. 355-381.
    Van Tamelen P G. 1996. Algal zonation in tidepools: experimental evaluation of the roles of physical disturbance, herbivory and competition. Journal of Experimental Marine Biology and Ecology, 201:197-231.
    Volterra,V.,1926. Fluctuations in the abundance of species considered mathematically. Nature, 118:558-560.
    Wall, G., 1977. Exergy-a useful concept within resource accounting. Report No. 77-42. Institute of Theoretical Physics, Chalmers University of Technology and University of Goteborg, Goteborg, Sweden, 58.
    Williams G A, Davies M S, Nagarkar S. 2000. Primary succession on a seasonal tropical rocky shore: the relative roles of spatial heterogeneity and herbivory. Marine Ecology Progress Series, 203: 81-94.
    Wootton, J.T., 1994. Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology, 75: 151-165.
    Xu F L, Lam K C, Zhao Z Y. 2004. Marine coastal ecosystem health assessment: a case study of the Tolo Harbour, Hong Kong, China. Ecological Modelling, 173: 355-370.
    Xu, F-L., Jorgensen, S.E., Tao, S., Li, B-G., 2000. Modelling the effects of ecological engineering on ecosystem health of a shallow eutrophic Chinese lake (Lake Chao). Ecological Modelling, 117,239-260.
    Zhou, J. Z. et al., 1995. Ecological Exergy analysis: a new method for ecological energetics research. Ecological Modelling, 84: 291-303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700