氧化铝生产蒸发工序用能分析及节能工程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是现代社会的血液,金属材料是现代社会的骨骼。由于铝及其合金具有许多优良性能而成为现代社会大量使用的金属材料,铝的强烈需求刺激了氧化铝生产工业的迅猛发展。氧化铝生产工业是冶金工业的重要组成部分,是国民经济的重要基础。其中,蒸发工序是氧化铝生产过程中的重要工序之一,其能耗的高低直接制约了氧化铝生产工业的发展。因此,对氧化铝生产蒸发工序进行用能分析及节能研究具有重要的意义。
     论文通过对蒸发工序进行热平衡测试,根据测试数据对该工序进行了物料平衡计算与分析,指出蒸发工序存在蒸水能力(139.304t'h-1)不足和吨水汽耗(0.426t-汽/t-H20)高两个问题。为此,论文选用从整体到局部的经济实用且具较强针对性的节能技术路线:
     首先,对蒸发工序进行系统热分析和系统(?)分析,结果表明:整个工序的热力学完善度仅为0.4682,热效率仅为30.67%,(?)效率仅为15.09%,能量损失严重,用能水平很低,节能潜力巨大。热分析确定出的高耗能环节为冷凝水自蒸发器和Ⅳ效蒸发器,(?)分析不仅确定出冷凝水自蒸发器和Ⅳ效蒸发器为高耗能环节,而且发现了热分析所没能发现的隐性高耗能环节—蒸发器,表明(?)分析是热分析的补充和发展,(?)分析能够比热分析更充分地确定出关键耗能环节和节能潜力,更准确地指出节能方向。
     其次,分别对冷凝水自蒸发器和蒸发器进行能量分析和(?)分析。冷凝水自蒸发器能量分析结果表明:四个冷凝水自蒸发器的热效率和(?)效率都很低,其能量利用程度低,能量损失较大,能量损失是因饱和冷凝水外排而引起余热资源浪费;利用本文所建立的能量分析模型计算发现:适当提高Ⅳ效蒸发器入口料液的温度,可以有效地降低新蒸汽的消耗和吨水汽耗,为此,本文提出应通过余热利用将冷凝水外排余热用于预热原液。蒸发器火(?)分析结果表明:四效蒸发器的热效率高但(?)效率相对较低,蒸发器表面看似能量损失较小,但其用能极不合理,(?)损失表现为传热过程(?)损失和流动过程(?)损失;利用本文所建立的不可避免传热过程(?)损失优化模型进行分析计算,可获得最优的有效传热温差,通过及时除垢或清除结疤等方法,可有效降低传热过程(?)损失和流动过程(?)损失。
Energy is the blood of modern society, and metallic material is the skeleton of modern society. Owing to their plenty of excellent performances, aluminum and its alloys have become the widely-used metallic material in modern society. The intensively demand of aluminum has stimulated the rapid development of alumina production industry. Alumina production industry is an important part of the metallurgical industry, and also is an important foundation of the national economy. The evaporation process is one of the key processes of alumina production, whose energy consumption directly restricts the development of the alumina production industry. Therefore, it is important and significant to carry through the energy utilization analysis and research of energy saving for alumina production evaporation.
     Based on the thermal balance test, the material balance calculation and analysis for evaporation process were carried out in this paper. Two problems of evaporation process were found out, firstly the vaporize ability was not enough relatively and secondly steam consumption per tons of water was high. To this end, this paper selected an economic, practical and strong pertinent route of energy saving from the whole to the local:
     Firstly, a systematic energy analysis for whole evaporation process was carried out, and the results showed that:the thermodynamic sophistication of the whole evaporation process was about 0.4682, the thermal efficiency was about 30.67%, and the exergy efficiency was about 15.09%, which indicated that energy losses were serious, the energy utilization was very low, and the energy saving potential was great. The key areas of high energy consuming identified by thermal analysis were the condensed water and the 4th effect evaporator. The key areas of energy consumption identified by exergy analysis were not only the condensed water and the 4th effect evaporator, but also the four evaporators, which were indistinct areas of high energy consumption could not be identified by thermal analysis. This clearly reflects that exergy analysis is the supplement and evolution of thermal analysis. Exergy analysis can be more richly in identifying the key areas of energy consuming and the potential of energy saving and more accurate in pointing out the direction of energy saving.
     Secondly, an energy analysis for condensate water evaporator and an energy analysis for evaporators were carried out respectively. The results of energy analysis for condensate water evaporator showed that:the thermal efficiency and exergy efficiency of four condensed water evaporators were very low, thus energy losses were serious and the level of energy utilization was very low. Energy losses were due to the waste of waste heat by condensed water discharged. The model was established and calculated in this paper as follows:properly increasing the liquid temperature into the 4th effect evaporator can effectively reduce the steam consumption. Therefore, the method of using the recover waste heat to preheat the liquor was proposed. The results of energy analysis for evaporators showed that:the thermal efficiencies of evaporators were high but the exergy efficiencies were low relatively, thus energy losses were low seemingly while the level of energy utilization was very illogical. Energy losses were the exergy losses due to heat transfer and the exergy losses due to flow in the evaporators. After research and analysis, a method of obtaining the optimal temperature difference of heat transferring by establishing inevitable optimization model of the exergy losses due to heat transfer for evaporators was proposed. Also, by cleaning up or cleaning away the scales in time can effectively reduce the exergy losses due to heat transfer and exergy losses due to flow.
引文
[1]王绍文,杨景玲,赵锐锐,等.冶金工业节能减排技术指南.北京:化学工业出版社,2009
    [2]毕诗文,于海燕,杨毅宏,等.拜耳法生产氧化铝.北京:冶金工业出版社,2007
    [3]符岩,张阳春.氧化铝厂设计.北京:冶金工业出版社,2008
    [4]阿拉丁发布2010年中国氧化铝产量数据http://market.cnal.com/statistics, 2011
    [5]尚福山.有色金属工业“十二五”发展展望http://www.aladdiny.com/news, 2010
    [6]国内外氧化铝经营成本比较及综合能耗比较http://www.mining120.com/html, 2008
    [7]孙克萍,先晋聪,宋强,等.我国氧化铝业中蒸发装置技术进步及效能分析.有色冶金.2004,(3):43~45
    [8]毕诗文,于海燕.氧化铝生产工艺.北京:化学工业出版社,2006
    [9]陈勤霞.降低氧化铝生产汽耗的途径探讨.有色金属节能.2006,2(1):27~29
    [10]李红梅.我国氧化铝蒸发技术现状及展望.有色冶炼.2002,6:3~5
    [11]张雪霞,杜启忠.氧化铝蒸发工序的节能技术改造.有色冶金节能.2003,20(4):40~43
    [12]李续平,周在毅.氧化铝蒸发节能降耗途径的探讨.轻金属.2006,(12):37~39
    [13]程涛,史玉娟.氧化铝蒸发系统综合提产节能途径.有色矿冶.2005,21(2):24~26
    [14]刘晶洁.蒸发循环水工艺改造与运行管理.世界有色金属.2006,(6):34~36
    [15]桂学斌,姜凌.过热蒸汽对氧化铝蒸发传热效率的影响及解决方案.无机盐工业.2008,40(2):42~44
    [16]傅秦生.能量系统的热力学分析方法.西安:西安交通大学出版社,2005
    [17]吴复忠,蔡九菊,张琦,等.炼铁系统的物质流和能量流的(?)分析.工业加热,2007,36(1):15~19
    [18]周乃君.能源与环境.长沙:中南大学出版社,2008
    [19]杨东华.论(?)分析和焓分析.华东化工学院院报,1982,(4):12~14
    [20]Hsuan Chang, Jr-wei Li. A new exergy method for process analysis and optimization. Chemical Engineering Science,2005,60:2771~2784
    [21]Zafer Utlu, Arif Hepbasli. A review on analyzing and evaluating the energy utilization efficiency of countries. Renewable and Sustainable Energy Reviews, 2007,11:1~29
    [22]Zafer Utlu, Arif Hepbasli. Energetic and exergetic assessment of the industrial sector at varying dead state temperatures:Areview with an illustrative example. Renewable and Sustainable Energy Reviews,2008,12:1277~1301
    [23]George Tsatsaronis. Definitions and nomenclature in exergy analysis and exergoeconomics. Energy,2007,32:249~253
    [24]M A Rosen, I Dincer. Exergy-cost-energy-mass analysis of thermal systems and processes. Energy Conversion and Management,2003,44:1633~1651
    [25]Geoffrey P.Hammond. Industrial energy analysis, thermodynamics and sustainability. Applied Energy,2007,84:675~700
    [26]Noam Lior, Na Zhang. Energy, exergy, and Second Law performance criteria. Energy,2007,32:281~296
    [27]杨洛鹏,沈胜强,KLAUS Genthner低温多效海水淡化系统热力分析.化学学报,2006,34(11):20~24
    [28]曹建华,王捷,杨小勇,等.高温气冷堆氦气透平直接循环的Exergy分析.原子能科学技术,2007,41(2):211~214
    [29]吴国芳,陆雷,武相萍,等.预分解窑系统的(?)分析.建筑材料学报,2008,11(6):752~756
    [30]冯俊小,张宇,谢知音,等.回转窑内铁矿氧化球团焙烧过程的能量和(?)分析.华北电力大学学报,2009,36(3):33~37
    [31]蒋爱华,杨双欢,梅炽,等.SKS炼铅氧气低吹炉的(?)分析.中南大学学报(自然科学版),2010,41(3):1190~1195
    [32]郑平军,安刚.某氦制冷氢液化主体设备的热力学分析.低温工程,2010,(1):28~32
    [33]Nafeya A S, Fathb H E S, Mabrouka A A. Thermo-economic investigation of multi effect evaporation (MEE) and hybrid multi effect evaporation-multi stage flash (MEE-MSF) systems. Desalination,2006,201(1-3):241~254
    [34]Araujo A B, Brito R P, Vasconcelos L S. Exergetic analysis of distillation processes--A case study. Energy,2007,32(7):1185~1193
    [35]郑艳梅,韩郁林,李鑫钢,等.氯化铵回收的三效降膜蒸发系统的(?)分析.天津大学学报,2007,40(3):377~380
    [36]郭沈.间接加热脱硅系统的有效能分析.轻金属,2005,(8):11~14
    [37]李正东.管式降膜蒸发技术在氧化铝生产中的应用:[硕士学位论文].长沙:中南大学,2005
    [38]路超,陈中原,詹海荣.蒸发预热器振动原因分析.第十届全国氧化铝学术会议论文集.2004,337~340
    [39]Reynolds J G, Carter R. Density model for sodium hydroxide-sodium aluminate solutions. Hydrometallurgy,2007, (89):233~241
    [40]杨重愚.氧化铝生产工艺学.北京:冶金工业出版社,1993.
    [41]刘振国.基于(?)分析的氧化铝双流法溶出过程的智能优化算法:[硕士学位论文].长沙:中南大学,2009
    [42]宋国辉.基于(?)分析的氧化铝蒸发工序节能研究:[硕士学位论文].长沙:中南大学,2010
    [43]Hikmet Esen. Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Building and Environment, 2008,43:1046~1054
    [44]I. Dincer, A.Z. Sahin. A new model for thermodynamic analysis of a drying process. International Journal of Heat and Mass Transfer,2004,47:645~652
    [45]S.K. Som, A. Datta. Thermodynamic irreversibilities and exergy balance in combustion processes. Progress in Energy and Combustion Science,2008,34: 351~376
    [46]朱明善.能量系统的(?)分析.北京:清华大学出版社,1988.105-109
    [47]郑丹星,武向红,郑大山.(?)函数的一致性基础.化工学报,2002,53(7):673~679
    [48]Zafer Utlu, Arif Hepbasli. A review and assessment of the energy utilization efficiency in the Terkish industrial sector using energy and exergy analysis method, Renewable and Sustainable Energy Reviews,2007:1438~1459
    [49]王连启.火电厂热力系统(?)分析计算数学模型研究与应用[学位论文].保定:华北电力大学,2008,6-9
    [50]F. Chejne, J.A. Restrepo. New rules for the exergo-economic optimization methodology, Energy,2003,28:993~1003
    [51]Gleich A, Ayres R U. Sustainable Metals Management. Netherlands:Springer, 2006
    [52]Hyun-Sung Choi Tae-Jin Lee Yang-Gyn Kim Seok-Lyong Song. Performance improvement of multiple-effect distiller with thermal vapor compression system by exergy analysis. Desalination,2005,182:239-249
    [53]M.A.Waheed, S.O.Jekayinfa. Exergetic analysis of fruit juice processing operations in Nigeria. Energy,2008,33:35-45
    [54]彭小奇,宋国辉,宋彦坡,等.氧化铝生产蒸发工序的(?)分析.中南大学学报(自然科学版),2011,42(3):829~834
    [55]彭小奇,宋国辉,宋彦坡,等NaOH-NaAl(OH)4-Na2CO3-H2O体系活度因子的计算模型.中国有色金属学报,2009,19(7):1332~1337
    [56]B.Suphanit, A.Bischert, P.Narataruksa. Exergy loss analysis of heat transfer across the wall of the dividing-wall distillation column. Energy,2007,32: 2121~2134
    [57]Ali M El-Nashar, Atef A Al-Baghdadi. Exergy losses in a multiple-effect stack seawater desalination plant. Desalination,1998,116:11~24
    [58]Wu Shuang-ying, Yuan Xiao-feng, Li You-rong. Exergy transfer efficiency of heat exchanger considering pressure exergy loss. Journal of North China Electric Power University,2007,34(2):111~121
    [59]Herwig.H, Wenterodt.T. Second law analysis of momentum and heat transfer in unit operations. International Journal of Heat and Mass Transfer,2011,54(8): 1323~1330
    [60]夏学鹰,张旭,王子介,等.差流膜除湿器空气处理过程的(?)分析.Fluid Machinery,2010,38(10):74~78
    [61]葛斌,张俊礼,殷戈.火电机组热力系统与设备(?)损分布通用矩阵模型.东南大学学报(自然科学版),2009,39(5):1043~1048
    [62]朱玉峰.竖管降膜蒸发器液体分布器的实验研究:[硕士学位论文].天津:河北工业大学,1992
    [63]张少峰,董伟志.伞板型液体布膜装置结构及布膜性能研究.化工机械.1998,(1):25~28
    [64]史晓平.竖管降膜蒸发器的多层喷淋板式分布器的实验研究:[硕士学位论文].天津:河北工业大学,1998
    [65]李珊.多效蒸发系统热力学优化研究.西安交通大学学报.1994,28(8):30~36
    [66]曾全生.(?)损费用最小的换热器管程流速.石油化工.1998,27(10):735~738
    [67]郑艳梅,杨春光,赵斌,等.碳酸钾三效蒸发系统有效传热温差的(?)优化.无机盐工业.2003,35(2):55~57
    [68]傅秦生,肖跃雷,冯霄.换热器中的不可避免(?)损失.华北电力大学学报.2003,30(5):79~83
    [69]张晓晖,杨茉,章立新,等.热力循环温差传热不可避免(?)损失研究.节能技术.2004,22(3):14~17
    [70]彭志宏,陈科云,李小斌,等.铝酸钠蒸发过程中的结垢与防垢.中南大学学报(自然科学版).2008,39(1):69~74
    [71]李卫东.氧化铝生产设备结垢的防治方法概述.中国科技信息.2008,(22):135~137
    [72]王引龙.高效液态阻垢剂在母液蒸发过程中的工业试验.轻金属.2009,(6):17~20
    [73]田兴凯.提高管式降膜蒸发器蒸发效率的技术措施.有色冶金节能.2010,(4):20~23
    [74]赵钦新,王宇峰,王学斌,等.我国余热利用现状与技术进展.工业锅炉,2009,(5):8~16
    [75]蔡九菊,王建军,陈春霞,等.钢铁企业余热资源的回收与利用.钢铁,2007,42(6):1~7
    [76]杨东华.(?)分析和能级分析.北京:科学出版社,1986
    [77]田荣海,陈国礼,吴俊生,等.五效蒸发装置软测量模型的建立.化工自动化及仪表,2000,27(6):8~10
    [78]梁新,刘亚莉,戚俊清,等.单效蒸发动态模拟及过程控制的实现.化工装备,2008,29(3):32~35
    [79]Durmus Kaya, H.Ibrahim Sarac. Mathematical modeling of multiple-effect evaporators and energy economy, Energy,2007, (32):1536~1542

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700