两类典型能量转换系统—燃料电池和内燃机循环—的性能特性与优化理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪以来,能量转换技术发展迅速。随着能源问题的日趋突显,寻求合适的新能源及清洁能源成为世界各国关注的焦点,而不断改进热力循环方式以提高能量转换装置的性能则一直是能源技术发展的主要趋势。在这种背景下,以揭示能量转换的内在机制、优化能量系统的工作特性为主要目的各种热力学分析方法应运而生,它对于开拓新型热力循环与系统、提高能源系统的整体性能都是十分有意义的。
     燃料电池是氢能利用的主要方式之一。它既适合于作分布式电源,又可组成大容量中心发电站,因此被认为是21世纪首选的高效、节能、环保的发电方式之一。而近一百年来,汽车产业的巨大进步,首先源于内燃机工业强劲发展的推动,同时又促进了内燃机自身的发展。内燃机发展至今,已广泛应用于工业、农业、电力、国防等各个领域,是当今用量最大、用途最广的最重要的热能动力机械。因此,对这两种典型的能量转换系统进行热力学研究,不仅有重要的理论意义,而且有极大的实用价值,对开发新能源、发展新技术、高效利用能源、改善生态环境、开拓交叉学科等都具有重要意义。
     基于以上原因,本论文围绕燃料电池系统和几种典型内燃机循环的性能优化问题展开,探索受各种不可逆因素影响的热力装置和系统的各种最优性能参数以及它们之间的关系。主要研究内容如下:
     在第一章中,简单介绍了能量转换系统的研究背景及发展。
     第二章对一类工作在稳定状态的燃料电池建立不可逆的理论模型,考虑来自电化学反应、电阻及与环境之间传热等多种不可逆性所造成的影响。从能量转换的角度出发,结合电化学、非平衡态热力学和有限时间热力学理论,研究了此类燃料电池的物理及电化学性能,具体讨论了各类设计及操作参数对燃料电池性能的影响。所得结果可为实际燃料电池的优化设计和运作提供一定的理论依据。
     第三章提出了一个新的理论模型用来描述在稳定状态下工作的燃料电池-热机混合系统的性能,对一些基本的设计特性以及潜在的关键问题进行了分析。在模型中综合考虑了多种不可逆损失,如电化学反应、电阻、燃料电池与热机之间的传热以及释放到环境中的热漏等。在研究中应用能量与熵分析的方法对多种不可逆损失进行阐明,并由此对整个混合系统的输出潜能加以评定。所得结果对燃料电池混合系统的优化设计和操作具有一定的实际指导意义。文中的新方法亦有助于为同类的能量转换装置及电化学体系的研究和发展提供更好的理论支持。
     第四章对Otto、Diesel、Atkinson、Miller和Dual 5种内燃机循环进行了有限时间热力学分析,建立不可逆热机的循环模型,对来自于非等熵压缩和膨胀过程、有限速率传热过程和透过气缸壁的热漏损失等多种不可逆性对循环性能的影响进行了研究。得到了一些重要参数的优化判据,由此确定出不可逆内燃机的最优工作区间。
     第五章集中探讨了绝热过程的内部摩擦损耗对Otto热机性能的影响。文中所建立的模型不仅摈弃了一般所采用的内可逆热机的假设,也避免了对不可逆热机活塞平均速率过于简化的描述。通过数值分析给出了一些性能参数的优化判据,并详细分析了一系列重要设计参数的影响,对实际热机的性能改善及优化设计具有一定的指导意义。
     第六章以Otto和Diesel两种内燃机循环为例,讨论了工质热容量随温度变化时,循环的参数影响及性能优化问题。通过严格推导得出热容量随温度变化时理想气体的绝热方程,并分析了Otto和Diesel热机的性能,给出了一些重要参数的优化判据。所得结果新颖而又具有普适性,相关参考文献中的一些重要结论可从中直接导出。
     最后一章概括了全文的主要结论,并对未来的研究提出设想与展望。
     本文的研究不仅有利于燃料电池和内燃机循环这两类能量转换装置的性能改进,所得结果对燃料电池-热机混合热力系统的研发也具有重要的理论价值和实际指导意义,可为相关能量转换系统的优化设计提供理论参考。
Since the 20~(th) century, the energy conversion technologies have been developed quite quickly. Along with the emergence of the serious energy issue, searching for new clean proper energy sources have became the focus of attention worldwide and enhancing the performance of the energy conversion devices through the improvement of thermodynamic cycles has been the main developing trend of the energy technologies. Under this background, the various thermodynamic analytical methods emerge as the times require to reveal the inherent mechanism of energy conversion and to optimize the performance of the energy systems, which is quite significant for the development of new thermodynamic cycles and the improvement of the system performance.
     As one of the most important applications of hydrogen energy, fuel cells may be used as distributed electric resources as well as the power plants with large capacities, and consequently, are considered to be one of the best choices for power generation with highly efficient, energy-saving and eco-friendly characteristics in the 21~(th) century. On the other hand, during the past hundred years, great advancement of the vehicle industry was, first of all, due to the development of the internal combustion engine, and accelerated this technology to a certain extent at the same time. So far the internal combustion engines have been widely used in the areas of industry, agriculture, electric power, national defense, and so on. Even today the internal combustion engine is still the most popular and important power mechanism with the largest range of applications. Therefore, the thermodynamic investigations about these two typical energy conversion systems are of great importance to the practical applications of new energy technologies, the efficient utilization of energy resources, the improvement of environment, and the exploitation of interdisciplinary research.
     Based on the above reasons, this dissertation is focused on the performance analysis and optimization of the fuel cell systems and several typical internal combustion engine cycles. The performance parameters of the systems under the influence of the various irreversibilities are optimized and the relations between the parameters are searched. The main research contents are organized as follows:
     In Chapter 1, the brief introduction of the research background and development of the energy conversion systems are given.
     In Chapter 2, an irreversible model of a class of fuel cells working at steady state is established, in which the irreversibilities resulting from electrochemical reaction, electrical resistance and heat transfer to the environment are taken into account. The physical and chemical performances of the fuel cell are investigated by using the theory of electrochemistry, non-equilibrium thermodynamics, and finite-time thermodynamics from an energetic point of view, and the influence of some design and operating parameters on the performance of the fuel cell is discussed in detail. The results obtained may provide a theoretical basis for both the optimal design and operation of real fuel cells.
     In Chapter 3, a theoretically modeling approach is presented which describes the behavior of a fuel cell-heat engine hybrid system in steady-state operating condition to provide useful fundamental design characteristics as well as potential critical problems. The different sources of irreversible losses, such as the electrochemical reaction, electric resistances, finite-rate heat transfer between the fuel cell and the heat engine, and heat leak from the fuel cell to the environment are specified and investigated. Energy and entropy analyses are used to indicate the multi-irreversible losses and to assess the work potentials of the hybrid system. The results obtained may give a practical guidance on both the optimal design and operation of real fuel cell-heat engine hybrid systems. This new approach can also provide some theoretical supports for the investigation and development of similar energy conversion settings and electrochemistry systems.
     In Chapter 4, the irreversible cycle models of five kinds of internal combustion engines such as the Otto, Diesel, Atkinson, Miller, and Dual cycles are established through finite-time thermodynamic analysis. By using these models the influence of multi-irreversibilities coming from the adiabatic compression and expansion processes, finite-rate heat transfer and heat leak loss through the cylinder wall on the performances of the heat engines are investigated. The optimum criteria of some important parameters are obtained, and consequently, the optimally operating regions of the engine cycles are determined.
     In Chapter 5, the effect of the internal friction dissipation in the adiabatic processes on the performance of an irreversible Otto heat engine is discussed in detail. The cycle model established here discards not only the usual hypotheses of endoreversible cycles but also the over simple description of the piston mean velocity for the irreversible heat engines. The optimum criteria of some main parameters are determined through numerical analyses, and the influence of the major design parameters is investigated. The results obtained may provide a significant guidance for the performance improvement and optimal design of real heat engines.
     In Chapter 6, the performance optimization and parameter selection issue of the Otto and Diesel engines are investigated with considering the temperature-dependent heat capacities of the working fluid. The adiabatic equation of ideal gases with the temperature-dependent heat capacity is strictly deduced and used to analyze the performances of the Otto and Diesel heat engines. The optimum criteria of some important parameters are given. The results obtained are novel and general, from which some relevant important conclusions in literature may be directly derived.
     In the last chapter, the conclusions obtained are summed up and the status and prospects of the present research are reviewed briefly.
     This research may provide a theoretical basis for both the optimal design and operation of real fuel cells and internal combustion engines, and it is also expected that this new method be used in the investigation and optimization of similar energy conversion settings and hybrid systems.
引文
[1]Sieniuutycz S,Salamon P.Advances in thermodynamics[M].Vol.3:Non-equilibrium theory and extremum principles,New York:Taylor & Francis,1990.
    [2]Sieniuutycz S,Salamon P.Advances in thermodynamics[M].Vol.4:Finite time thermodynamics and thermoeconomics,New York:Taylor & Francis,1990.
    [3]Hoffman E J.Advances in thermodynamics[M].Vol.5:analytic thermodynamics,New York:Taylor & Francis,1991.
    [4]Sieniuutycz S,Salamon P.Advances in thermodynamics[M].Vol.6:Flow,diffusion and rate process,New York:Taylor & Francis,1992.
    [5]陈金灿,严子浚.有限时间热力学理论的特征及发展中几个重要标志[J].厦门大学学报, 2001,40:232-241.
    [6] Rubin M. Optimal configuration of a class of irreversible heat engines. I [J]. Phys. Rev. A, 1979, 19: 1272-1276.
    [7] Salamon P, Nitzan A. Finite time optimization of a Newton's law carnot cycle [J]. J Chem. Phys., 1981,74:3546-3560.
    [8] Leff H, Teeter W. EER, COP, and 2nd law efficiecy for air-conditioners [J]. Am. J. Phys., 1978,46: 19-22.
    [9] Yan Z. The optimal relation between COP and cooling load of a Carnot refrigerator [J]. Physics, 1984, 13: 768-770.
    [10] Blanchard C. Coefficient of performance for finite-speed heat pump [J]. J. Appl. Phys., 1980, 51:2471-2472.
    [11] Chen J, Yan Z. Optimal performance of an endoreversible-combined refrigeration cycle [J]. J. Appl. Phys., 1988,63: 4795-4799.
    [12] Chen J, Yan Z. The effect of thermal resistances and regenerative losses on the performance characteristics of a magnetic Ericsson refrigeration cycle [J]. J. Appl. Phys., 1998, 84: 1791-1795.
    
    [13] Barclay J A. Advanced Cryogenic engineering [M]. New York: Plenum Press, 1988.
    [14] Yan Z, Chen J. The effect of field-dependent heat capacity on the characteristics of the ferromagnetic Ericsson refrigeration cycle [J]. J. Appl. Phys., 1992, 72: 1-5.
    [15] Chen J. Thermodynamic analysis of a solar-driven thermoelectric generator [J]. J. Appl. Phys., 1996,79:2717-2721.
    [16] Chen J, Andresen B. New bounds on the performance parameters of a thermoelectric Generator [J]. I. J. Power & Energy System, 1997, 17: 23-27.
    [17] Chen J, Lin B, Wang H, Lin Guo. Optimal design of a multicouple thermoelectric generator [J]. Semicond. Sci. Technol., 2000, 15: 184-188.
    [18] Mahan G D, Sofo J O, Bartkowiak M. Multilayer thermionic refrigerator and generator [J]. J. Appl. Phys., 1998, 83:4683-4689.
    [19] Ulrich M D, Barnes P A. Comparison of solid-state thermionic refrigeration with thermoelectric refrigeration [J]. J. Appl. Phys., 2001,90: 1625-1631.
    [20] Lough B C, Lee S P, Lewis R A, Zhang C. Numerical calculation ofthermionic cooling efficiency in a double-barrier semiconductor heterostructure [J]. Physica E, 2001, 11:287-291.
    
    [21] Chen J. Optimization of a solar-driven heat engine [J]. J. Appl. Phys., 1992, 72: 3778-3780.
    [22] De Vos A. Endoreversible thermodynamics and chemical reactions [J]. J. Phys. Chem., 1991,95: 4534-4540.
    [23] Bejan A. Maximum power from fluid flow [J]. Int. J. Heat Mass Transf., 1996, 39:1175-1181.
    [24] Ahlborn B, Camire J. Thermoacoustic heat pumps with maximum power transfer [J]. Am. J. Phys.,1995,63:449-451.
    [25]Barranco-Jimenez M A,Angulo-Brown F.An endoreversible model for wind energy as a solar driver heat engine[J].J.Appl.Phys.,1996,80:4872-4876.
    [26]Conti M,Charach C H.Thermodynamics of heat storage in a PCM shell-and tube heat exchanger in parallel or in series with a heat engine[J].Sol.Energy,1996,57:59-68.
    [27]Watowich S J,Hoffamann K H,Berry R S.Optimal paths for a bimolecular light-driven engine[J].Nuovo Cimento B,1989,104:131-147.
    [28]Chen T,Yan Z.An ecological optimization criterion for a class of irreversible absorption heat transformers[J].J.Phys.D:Appl.Phys.,1998,31:1078-1082.
    [29]Geva E,Kosloff R.On the classical limit of quantum thermodynamics in finite time[J].J.Chem.Phys.,1992,97:4396-4412.
    [30]Geva E,Kosloff R.Three-level quantum amplifier as a heat engine:A study in finite-time thermodynamics[J].Phys.Rev.E,1994,49:3903-3918.
    [31]He J,Chen J,Hua B.Quantum refrigeration cycles using spin-1/2 systems as the working substance[J].Phys.Rev.E,2002,65:036145-1-8.
    [32]Bejan A.Theory of organization in nature:pulsating physiological process[J].I.J.Heat Mass Transf.,1997,40:2097-2104.
    [33]De Vos A.Reversible and endoreversible computing[J].I.J.Theor.Phys.,1995,43:2251-2266.
    [34]Gordon J M,Rubinstein A,Zarmi Y.On optimal heating and cooling strategies for melting and freezing[J].J.Appl.Phys.,1990,67:81-84.
    [35]Hernádez A C,Medina A,Roco J M M,White J A,Velasco S.Unified optimization criterion for energy converters[J].Phys.Rev.E,2001,63:037102-1-4.
    [36]Tsirlin A M,Kazakov V,Kolinko N A.Irreversibility and limiting possibilities of macrocontrolled systems:Ⅱ.Microeconomics[J].Open Syst.Inf.Dyn.,2001,8:329-347.
    [37]Amel' Kin S A,Martines K,Tsirlin A M.Optimal control for irreversible processes in thermodynamics and microeconomics[J].Autom.Remote Control,2002,63:519-539.
    [38]Curzon F L,Ahlborn B.Efficiency of a Carnot Engine at Maximum Power Output[J].Am.J.Phys.,1975,43:22-24.
    [39]衣宝廉.燃料电池--高效、环境友好的发电方式[M].北京:化学工业出版社,2000.
    [40]Acres G J K.Recent advances in fuel cell technology and its applications[J].J.Power Sources,2001,100:60 -66.
    [41]毛宗强.燃料电池[M].北京:化学工业出版社,2005.
    [42]Grove W R.On voltaic series and the combination of gases by platinum[J].London and Edinburgh Philosophical Magazine and Journal of Science,Series 3,1839,14:127-130.
    [43]Mond L,Langer C.A new form of gas battery[J].Proceedings of the Royal Society of London,1889,46:296-304.
    [44]Kordesch K,Gselimann J,Cifrain M,Voss S,Hacker V,Aronson R R,Fabjan C,Hejze T, Daniel-lvad J.Intermittent use of a low-cost alkaline fuel cell-hybrid system for electric vehicles[J].J.Power Sources,1999,80:190-197.
    [45]Strasser K.The design of alkaline fuel cells[J].J.Power Sources,1990,29:149-166.
    [46]Viclstich W,Lamm A,Gasteiger H A.Handbook of Fuel Cells-Fundamentals,Technology and Applications[M].Chichester,England:John Wiley & Sons Ltd.2003.
    [47]http://www.siemenswestinghouse.com/cn/fuelcells/fieldunit/index.cfm[Z].
    [48]http://www.daimlerchrysler.com/[Z].
    [49]GM attempts 6200 mile marathon across Europe[R].Fuel Cells Bulletin,2004,6:1.
    [50]衣宝廉.燃料电池--原理·技术·应用[M].北京:化学工业出版社,2003.
    [51]Dyer C K.Fuel cells for portable applications[J].J.Power Sources,2002,106:31-34.
    [52]訾琨.内燃机理论循环的有限时间热力学分析[C].中国工程热物理学会第六届年会,1988.10:881061.
    [53]姚寿广.内燃机有限时间内不可逆循环热力学分析[J].内燃机学报,1994,12:156-163.
    [54]Wu C,Blank D A.The effects of combustion on a work-optimised endo-reversible Otto cycle [J].J.Energy Inst.,1992,65:86-89.
    [55]Wu C,Chen L,Chen J.Recent Advance in Finite-time thermodynamics[M].Commack NY:Nova Science Publishers,1999.
    [56]Klein S A.An explanation for observed compression ratios in internal combustion engines[J].J.Eng.Gas.Turbines Power-Trans.ASME,1991,113:511-513.
    [57]Orlov V N,Berry R S.Power and efficiency limits for internal combustion engines via methods of finite-time thermodynamics[J].J.Appl.Phys.,1993,74:4317-4322.
    [58]Mozurkewich M,Berry R S.Optimal paths for thermodynamic systems:The ideal otto cycle [J].J.Appl.Phys.,1982,53:34-42.
    [59]Hoffman K H,Watowich S J,Berry R S.Optimal paths for thermodynamic systems:The ideal Diesel cycle[J].J.Appl.Phys.,1985,58:2125-2134.
    [60]Wu C,Blank D A.Optimization of the endoreversible Otto cycle with respect to both power and mean effective pressure[J].Energy Conv.Manag.,1993,34:1255-1259.
    [61]Al-Sarkhi A,Akash B A,Jaber J O,Mohsen M S,Abu-Nada E.Efficiency of Miller engine at maximum power density[J].Int.Commun.Heat Mass Transf.,2002,29:1159-1167.
    [62]Chen L,Lin J.Efficiency of an Atkinson engine at maximum power density[J].Energy Conv.Manag.,1998,39:337-341.
    [63]Parlak A,Sahin B,Yasar H.Performance optimization of an irreversible dual cycle with respect to pressure ratio and temperature ratio-experimental results of a ceramic coated IDI Diesel engine[J].Energy Conv.Manag.,2004,45:1219-1232.
    [64]Parlak A,Yasar H,Sahin B.Performance and exhaust emission characteristics of a lower compression ratio LHR Diesel engine[J].Energy Conv.Manag.,2003,44:163-175.
    [1]Williams M V,Kunz H R,Fenton J M.J.Analysis of Polarization Curves to Evaluate Polarization Sources in Hydrogen/Air PEM Fuel Cells[J].Electrochem.SOt.,2005,152:A635-A644.
    [2]Yoon K J,Zink P,Gopalan S,Pal U B.Polarization measurements on single-step co-fired solid oxide fuel cells(SOFCs)[J].J.Power Sources,2007,172:39-49.
    [3]Jiang S P.Resistance Measurement in Solid Oxide Fuel Cells[J].J.Electrochem.SOt.,2001,148:A887-A897.
    [4]Sasaki K,Hori Y,Kikuchi R,Eguchi K,Ueno A,Takeuchi H,Aizawa M,Tsojimoto K,Tajiri H,Nishikawa H,Uchida Y.Current-Voltage Characteristics and Impedance Analysis of Solid Oxide Fuel Cells for Mixed 112 and CO Gases[J].J.Electrochem.Sot.,2002,149:A227-A233.
    [5]Yoon K J,Huang W,Ye G,Gopalan S,Pal U B,Seccombe Jr.D A.Electrochemical Performance of Solid Oxide Fuel Cells Manufactured by Single Step Co-firing Process[J].J.Electrochem.Sot.,2007,154:B389-B395.
    [6]loselevich A S,Komyshev A A.Phenomenological theory of solid oxide fuel cell anode[J].Fuel Cells,2001,1:40-65.
    [7]Larminie J,Dicks A.Fuel Cell Systems Explained,second ed.[M].New York:Wiley,2003.
    [8]Chan S H,Xia Z T.Polarization effects in electrolyte/electrode-supported solid oxide fuel cells[J].J.Appl.Electrochem.,2002,32:339-347.
    [9]Chan S H,Khor K A,Xia Z T.A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness[J].J.Power Sources,2001,93:130-140.
    [10]Naterer G F,Tokarz C D,Avsec J.Fuel cell entropy production with ohmic heating and diffusive polarization[J].Int.J.Heat Mass Transf.,2006,49:2673-2683.
    [11]Noren D A,Hoffman M A.Clarifying the Butler-Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models[J].J.Power Sources,2005,152:175-181.
    [12]Ro S T,Sohn J L.Some issues on performance analysis of fuel cells in thermodynamic point of view[J].J.Power Sources,2007,167:295-301.
    [13]Janardhanan V M,Deutschmann O.CFD analysis of a solid oxide fuel cell with internal reforming:Coupled interactions of transport,heterogeneous catalysis and electrochemical processes[J].J.Power Sources,2006,162:1192-1202.
    [14] Calise F, Palombo A, Vanoli L. Design and partial load exergy analysis of hybrid SOFC-GT power plant [J]. J. Power Sources, 2006, 158: 225-244.
    [15] Ji Y, Yuan K, Chung J N, Chen Y C. Design and partial load exergy analysis of hybrid SOFC-GT power plant [J]. J. Power Sources, 2006, 161: 380-391.
    [16] Zhu H, Kee R J. A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies [J]. J. Power Sources, 2003,117: 61-74.
    [17] Aloui T, Halouani K. Analytical modeling of polarizations in a solid oxide fuel cell using biomass syngas product as fuel [J]. Appl. Therm. Eng., 2007, 27: 731-737.
    [18] Qi Y, Huang B, Chuang K T. Dynamic modeling of solid oxide fuel cell: The effect of diffusion and inherent impedance [J]. J. Power Sources, 2005, 150: 32-47.
    [19] Douvartzides S L, Coutelieris F A, Demin A K, Tsiakaras P E. Electricity from ethanol fed SOFCs: the expectations for sustainable development and technological benefits [J]. Int. J. Hydrog. Energy, 2004,29: 375-379.
    [20] Demin A, Tsiakaras P. Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor [J]. Int. J. Hydrog. Energy, 2001,26: 1103-1108.
    [21] Barbir F, Gomez T. Efficiency and economics of proton exchange membrane (PEM) fuel cells [J]. Int. J. Hydrog. Energy, 1997, 22: 1027-1037.
    [22] Dincer I. Technical, environmental and exergetic aspects of hydrogen energy systems [J]. Int. J. Hydrog. Energy, 2002, 27: 265-285.
    
    [23] Larminie J, Dicks A. Fuel Cell Systems Explained [M]. New York: Wiley, 2000.
    [24] Wang G, Yang Y, Zhang H, Xia W. 3-D model of thermo-fluid and electrochemical for planar SOFC [J]. J. Power Sources, 2007, 167: 398-405.
    [25] Watowich S J, Berry R S. Optimal Current Paths for Model Electrochemical Systems [J]. J. Phys. Chem., 1986, 90: 4624-4631.
    [26] Wang C, Nehrir M H, Shaw S R. Dynamic models and model validation for PEM fuel cells using electrical circuits [J]. IEEE Trans. Energy Convers., 2005, 20: 442-451.
    [27] Haddad A, Bouyekhf R, Moudni A E, Wack M. Non-linear dynamic modeling of proton exchange membrane fuel cell [J]. J. Power Sources, 2006, 163: 420-432.
    [28] Dalslet B, Blennow P, Hendriksen P V, Bonanos N, Lybye D, Mogensen M. Assessment of doped ceria as electrolyte [J]. J. Solid State Electrochem., 2006, 10: 547-561.
    [29] Zhang Z, Huang X, Jiang J, Wu B. An improved dynamic model considering effects of temperature and equivalent internal resistance for PEM fuel cell power modules [J]. J. Power Sources, 2006, 161: 1062-1068.
    [30] Ward C A, Garcia J A. Analytical method for determining the internal resistance and electrocatalyst utilization of fuel cells [J]. J. Power Sources, 1997, 66: 83-88.
    [31] Calise F, Dentice d'Accadia M, Palombo A, Vanoli L. Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)-Gas Turbine System [J]. Energy, 2006, 31: 3278-3299.
    [32] Zhang X, Li G, Li J, Feng Z. Numerical study on electric characteristics of solid oxide fuel cells [J]. Energy Conv. Manag., 2007, 48: 977-989.
    [33] Cordiner S, Feola M, Mulone V, Romanelli F. Analysis of a SOFC energy generation system fuelled with biomass reformate [J]. Appl. Therm. Eng., 2007,27: 738-747.
    [34] Costamagna P, Selimovic A, Del Borghi M, Agnew G Electrochemical Model of the Integrated Planar Solid Oxide Fuel Cell (IP-SOFC) [J]. Chem. Eng. J., 2004, 102: 61-69.
    [35] Costamagna P, Honegger K. Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization [J]. J. Electrochem. Soc., 1998, 145: 3995-4007.
    [36] Ni M, Leung M K H, Leung DY C. Parametric study of solid oxide fuel cell performance [J]. Energy Conv. Manag., 2007,48: 1525-1535.
    [37] Ni M, Leung M K H, Leung D Y C. An Electrochemistry Model of Solid Oxide Steam Electrolyzer for Hydrogen Production [J]. Chem. Eng. Technol., 2006, 29: 636-642.
    [38] Zhu H, Kee R J, Janardhanan V M, Deutschmann O, Goodwin D G Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells [J]. J. Electrochem. Soc., 2005, 152: A2427-A2440.
    [39] Wishart J, Dong Z, Secanell M. Optimization of a PEM fuel cell system based on empirical data and a generalized electrochemical semi-empirical model [J]. J. Power Sources, 2006, 161: 1041-1055.
    [40] Li J, Cao G Y, Zhu X J, Tu H Y. Two-dimensional dynamic simulation of a direct internal reforming solid oxide fuel cell [J]. J. Power Sources, 2007, 171: 585-600.
    [41] Chan S H, Low C F, Ding O L. Energy and exergy analysis of simple solid-oxide fuel-cell power systems [J]. J. Power Sources, 2002, 103: 188-200.
    [42] Calise F, Dentice d'Accadia M, Palombo A, Vanoli L. Proceedings of the 17th International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy and Process Systems [R], Gunajuato, Mexico, Luglio 7-9, 2004.
    [43] Barin I, Knacke O. Thermochemical Properties of Inorganic Substances [M]. Berlin: Springer, 1973; Supplement, 1997.
    [44] Vargas J V C, Bejan A. Thermodynamic optimization of internal structure in a fuel cell [J]. Int. J. Energy Res., 2004, 28: 319-339.
    [45] Andresen B, Rubin M H, Berry R S. Availiability for finite-time processes. General theory and a model [J]. J. Phys. Chem., 1983, 87: 2704-2713.
    
    [46] Gibbs J W. Collected Works, Vol. 1 [Z]. Yale University Press, New Haven, CT, 1948.
    [47] Chen J, Yan Z. Unified description of endoreversible cycles [J]. Phys. Rev. A, 1989, 39:4140-4147.
    [48] Chen J, Yan Z. Equivalent combined systems of three-heat-reservoir heat pumps [J]. J. Chem. Phys., 1989,90:4951-4955.
    [49] Lin B, Chen J. Optimal analysis on the performance of an irreversible harmonic quantum Brayton refrigeration cycle [J]. Phys. Rev. E, 2003,68: 056117-1-9.
    [50] Tolman R C, Fine P C. On the Irreversible Pro- duction of Entropy [J]. Rev. Mod. Phys., 1948,20:51-77.
    [51] Wang S, Xie C, Wang Y, Zhang L, Jie W, Hu S J. Harvesting of PEM fuel cell heat energy for a thermal engine in an underwater glider [J]. J. Power Sources, 2007,169: 338-346.
    [52] Zhang L H, Liu Y, Song H M, Wang S X, Zhou Y Y, Hu S J. Estimation of contact resistance in proton exchange membrane fuel cells [J]. J. Power Sources, 2006, 162: 1165-1171.
    [53] Appleby A J, Foulkes F R. Fuel cell handbook [M]. New York: Van Nostrand Reinhold, 1989.
    
    [54] Holman F P. Thermodynamics [M]. New York: McGraw-Hill, 1969.
    [55] Lutz A E, Larson R S, Keller J O. Thermodynamic comparison of fuel cells to the Carnot cycle [J]. Int. J. Hydrog. Energy, 2002, 27: 1103-1111.
    [56] Blomen Leo J M J, Megerwa M N. Fuel Cell System [M]. New York and London: Plenum Press, 1993.
    [57] Rao A, Maclay J, Samuelsen S. Efficiency of electrochemical systems [J]. J. Power Sources, 2004, 134: 181-184.
    [1] Singhal S C, Kendal K. High temperature solid oxide fuel cell: fundamentals, design and applications [M]. Oxford: Elsevier Ltd, 2003.
    
    [2] Williams M C. Stationary power fuel cell commercialization status worldwide, in: 1996 Fuel Cell Seminar, Fuel Cell Seminar Organizing Committee [R], Washington, DC, 1996.
    [3] Winkler W, Lorenz H. Design studies of mobile applications with SOFC-heat engine modules [J]. J. Power Sources, 2002, 106: 338-343.
    [4] Haynes C. Clarifying reversible efficiency misconceptions of high temperature fuel cells in relation to reversible heat engines [J]. J. Power Sources, 2001, 92: 199-203.
    [5] Chan S H, Ho H K, Tian Y. Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant [J]. J. Power Sources, 2002, 109: 111-120.
    [6] Chan S H, Ho H K, Tian Y. Modelling for part-load operation of solid oxide fuel cell-gas turbine hybrid power plant [J]. J. Power Sources, 2003, 114: 213-227.
    [7] Chan S H, Ho H K, Tian Y. Multi-level modeling of SOFC-gas turbine hybrid system [J]. Int. J. Hydrog. Energy, 2003,28: 889-900.
    [8] Campanari S. Thermodynamic model and parametric analysis of a tubular SOFC module [J]. J. Power Sources, 2001, 92: 26-34.
    [9] Zang W, Croiset E, Douglas P L, Fowler M W, Entchev E. Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models [J]. Energy Conv. Manag., 2005,46: 181-196.
    [10] Yang W J, Park S K, Kim T S, Kim J H, Sohn J L, Ro S T. Design performance analysis of pressurized solid oxide fuel cell/gas turbine hybrid systems considering temperature constraints [J]. J. Power Sources, 2006, 160: 462-473.
    
    [11] Palsson J, Selimovic A, Sjunnesson L. Combined solid oxide fuel cell and gas turbine systems for efficient power and heat generation [J]. J. Power Sources, 2000, 86: 442-448.
    
    [12] Pangalis M G, Martinez-Botas R F, Brandon N P. Integration of solid oxide fuel cells into gas turbine power generation cycles. Part 1: fuel cell thermodynamic modeling [J]. Proc. Inst. Mech. Eng. Part A: J. Power Energy, 2002, 216: 129-144.
    [13] Zhao Y, Ou C, Chen J. A new analytical approach to model and evaluate the performance of a class of irreversible fuel cells [J]. Int. J. Hydrog. Energy, 2008, doi:10.1016/j.ijhydene.2008.04.06 2.
    [14] Chan S H, Khor K A, Xia Z T. A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness [J]. J. Power Sources, 2001, 93: 130-140.
    [15] Naterer G F, Tokarz C D, Avsec J. Fuel cell entropy production with ohmic heating and diffusive polarization [J]. Int. J. Heat Mass Transf., 2006, 49: 2673-2683.
    [16] Noren D A, Hoffman M A. Clarifying the Butler-Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models [J]. J. Power Sources, 2005, 152: 175-181.
    [17] Ro S T, Sohn J L. Some issues on performance analysis of fuel cells in thermodynamic point of view [J]. J. Power Sources, 2007, 167: 295-301.
    [18] Qi Y, Huang B, Chuang K T. Dynamic modeling of solid oxide fuel cell: The effect of diffusion and inherent impedance [J]. J. Power Sources, 2005, 150: 32-47.
    [19] Ji Y, Yuan K, Chung J N, Chen Y C. Effects of transport scale on heat/mass transfer and performance optimization for solid oxide fuel cells [J]. J. Power Sources, 2006, 161: 380-391.
    [20] Barin I, Knacke O. Thermochemical Properties of Inorganic Substances [M]. Berlin: Springer, 1973; Supplement, 1997.
    [21] Appleby A J, Foulkes F R. Fuel cell handbook [M]. New York: Van Nostrand Reinhold, 1989.
    [22] Lutz A E, Larson R S, Keller J O. Thermodynamic comparison of fuel cells to the Carnot cycle [J]. Int. J. Hydrog. Energy, 2002,27: 1103-1111.
    
    [23] Chen J. Optimization of a solar-driven heat engine [J]. J. Appl. Phys., 1992, 72: 3778-3780.
    [24] Durmayaz A, Sogutb O S, Sahinc B, Yavuz H. Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics [J]. Prog. Energy Combust. Sci., 2004, 30:175-217.
    [25] Bavarsad P G Energy and exergy analysis of internal reforming solid oxide fuel cell-gas turbine hybrid system [J]. Int. J. Hydrog. Energy, 2007, 32: 4591-4599.
    [26] Chan S H, Ding O L. Simulation of a solid oxide fuel cell power system fed by methane [J]. Int. J. Hydrog. Energy, 2005, 30: 167-179.
    [27] Sanchez D, Chacartegui R, Munoz A, Sanchez T. Thermal and electrochemical model of internal reforming solid oxide fuel cells with tubular geometry J. Power Sources, 2006, 160: 1074-1087.
    [28] Sanchez D, Mufioz A, Sanchez T. An assessment on convective and radiative heat transfer modelling in tubular solid oxide fuel cells [J]. J. Power Sources, 2007, 169: 25-34.
    [29] Sieniutycz S. Thermodynamic limits on production or consumption of mechanical energy in practical and industrial systems [J]. Prog. Energy Combust. Sci., 2003,29: 193-246.
    [30] Blank D A, Davis G W, Wu C. Power optimization of an endoreversible Stirling cycle with regeneration [J]. Energy, 1994, 19: 125-133.
    [31] Bhattacharyya S, Blank D A. Design considerations for a power optimized regenerative endoreversible Stirling cycleInt [J]. J. Energy Res., 2000, 24: 539-547.
    [32] Blanka D A. Universal power optimized work for reciprocating internally reversible Stirling-like heat engine cycles with regeneration and linear external heat transfer [J]. J. Appl. Phys., 1998, 84: 2385-2392.
    [33] Yoon K J, Zink P, Gopalan S, Pal U B. Polarization measurements on single-step co-fired solid oxide fuel cells (SOFCs) [J]. J. Power Sources, 2007, 172: 39-49.
    [34] Zhang X, Li G, Li J, Feng Z. Numerical study on electric characteristics of solid oxide fuel cells [J]. Energy Conv. Manag., 2007, 48: 977-989.
    [35] Cordiner S, Feola M, Mulone V, Romanelli F. Analysis of a SOFC energy generation system fuelled with biomass reformate [J]. Appl. Therm. Eng., 2007, 27: 738-747.
    [36] Costamagna P, Selimovic A, Del Borghi M, Agnew G. Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC) [J]. Chem. Eng. J., 2004, 102: 61-69.
    [37] Zhu H, Kee R J, Janardhanan V M, Deutschmann O, Goodwin D G. Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells [J]. J. Electrochem. Soc., 2005, 152: A2427-A2440.
    [1]Scully M O.Quantum afterburner:Improving the efficiency of an ideal heat engine[J].Phys.Rev.Lett.,2002,88:050602-1-4.
    [2] Rostovtsev Y V, Matsko A B, Nayak N, Zubairy M S, Scully M O. Improving engine efficiency by extracting laser energy from hot exhaust gas [J]. Phys. Rev. A, 2003, 67: 053811-1-8.
    [3] Aragon-Gonzalez G, Canales-Palma A, Leon-Galicia A. Maximum irreversible work and efficiency in power cycles [J]. J. Phys. D: Appl Phys., 2000,33: 1403-1409.
    [4] Mozurkewich M, Berry R S. Optimal paths for thermodynamic systems: The ideal otto cycle [J]. J. Appl. Phys., 1982, 53: 34-42.
    [5] Wu C, Blank D A. The effects of combustion on a work-optimized endoreversible Otto cycle [J]. J. Inst. Energy, 1992, 65: 86-89.
    [6] Wu C, Blank D A. Optimization of the endoreversible Otto cycle with respect to both power and mean effective pressure [J]. Energy Conv. Manag., 1993,34: 1255-1259.
    [7] Angulo-Brown F, Fernandez-Betanzos J, Diaz-Pico C A. Compression ratio of an optimized air standard Otto cycle model [J]. Eur. J. Phys., 1994, 15: 38-42.
    [8] Angulo-Brown F, Rocha-Martinez J A, Navarrete-Gonzalez T D. A non-endoreversible Otto cycle model: improving power output and efficiency [J]. J. Phys. D: Appl. Phys., 1996, 29:80-83.
    [9] Calvo Hernandez A, Medina A, Roco J M M, Velasco S. On an irreversible air standard Otto cycle model [J]. Eur. J. Phys., 1995, 16: 73-75.
    [10] Chen L, Wu C, Sun F, Cao S. Heat transfer effects on the net work output and efficiency characteristics for an air-standard Otto cycle [J]. Energy Conv. Manag., 1998, 39: 643-648.
    [13] Wu C, Kiang R L. Power performance of a nonisentropic Brayton cycle [J]. J. Eng. Gas. Turbines Power-Trans. ASME, 1991, 113:501-504.
    [14] Klein S A. An explanation for observed compression ratios in internal combustion engines [J]. J. Eng. Gas. Turbines Power-Trans. ASME, 1991, 113: 511 -513.
    [15] Akash BA. Effect of heat transfer on the performance of an air-standard Diesel-cycle [J]. Int Comm. Heat Mass Transf., 2001, 28: 87-95.
    [16] Chen L, Zheng T, Sun F, Wu C. The power and efficiency characteristics for an rreversible Otto cycle [J]. Int. J. Ambient Energy, 2003, 24: 195-200.
    [17] Curzon F L, Ahlborn B. Efficiency of a Carnot engine at maximum power output [J]. Am. J. Phys., 1975,43:22-24.
    [18] Chen J, Yan Z. Unified description of endoreversible cycles [J]. Phys. Rev. A, 1988, 39:4140-4147.
    
    [19] Bejan A. Advanced Engineering Thermodynamics [M]. New York: Wiley, 1988.
    [20] De Vos A. Endoreversible Thermodynamics of Solar Energy Conversion [M]. Oxford: Oxford University Press, 1992.
    [21] Chen J. The maximum power output and maximu efficiency of an irreversible Carnot heat engine [J]. J. Phys. D: Appl. Phys., 1994, 27: 1144-1149.
    [22] Hoffman K H, Watowich S J, Berry R S. Optimal paths for thermodynamic systems: the ideal Diesel cycle [J]. J. Appl. Phys., 1985, 58: 2125-2134.
    [23] Klein S A. An explanation for observed compression ratios in internal combustion engines [J]. J. Eng. Gas. Turbines Power-Trans. ASME, 1991, 113: 511-513.
    [24] Akash B A. Effect of heat transfer on the performance of an air-standard Diesel cycle [J]. Int. Comm. Heat Mass Transf., 2001,28: 87-95.
    [25] Blank D A, Wu C. The effect of combustion on a power optimized endoreversible Diesel cycle [J]. Energy Conv. Manag., 1993, 34: 493-498.
    [26] Bhattacharyya S. Optimizing an irreversible Diesel cycle-fine tuning of compression ratio and cut-off ratio [J]. Energy Conv. Manag., 2000,41: 847-854.
    [27] Chen L, Lin J, Luo J, Sun F, Wu C. Friction effect on the characteristic performance of Diesel engines [J]. Int. J. Energy Res., 2002,26: 965-971.
    [28] Chen L, Zeng F, Sun F, Wu C. Heat-transfer effects on network and/or power as functions of efficiency for air-standard Diesel cycles [J]. Energy, 1996,2: 1201-1205.
    [29] Qin X, Chen L, Sun F, Wu C. The universal power and efficiency characteristics for irreversible reciprocating heat engine cycles [J]. Eur. J. Phys., 2003,24: 359-366.
    [30] Aragon-Gonzalez G, Ganales-Palma A, Leon-Galicia A. Maximum irreversible work and efficiency in power cycles [J]. J. Phys. D: Appl. Phys., 2000, 33: 1403-1409.
    [31] Wu C, Kiang R. Power performance of a nonisentropic Brayton cycle [J]. J. Eng. Gas. Turbines Power-Trans. ASME, 1991, 113: 501-504.
    [32] Curzon F L, Ahlborn B. Efficiency of a Carnot engine at maximum power output [J]. Am. J. Phys., 1975, 43: 22-24.
    
    [33] Bejan A. Advanced engineering thermodynamics. third ed [M]. New York: Wiley, 1988.
    [34] Chen J, Yan Z. Unified description of endoreversible cycles [J]. Phys. Rev. A, 1989, 39: 4140-4147.
    [35] Chen J. The maximum power output and maximum efficiency of an irreversible Carnot heat engine [J]. J. Phys. D: Appl. Phys., 1994, 27: 1144-1149.
    [36] Angulo-Brown F, Fernandez-Betanzos J, Diaz-Pico C A. Compression ratio of an optimized air standard Otto-cycle model [J]. Eur. J. Phys., 1994, 15: 38-42.
    [37] Sonntag R E, Borgnakke C, Van Wylen G J. Fundamentals of thermodynamics. sixth ed [M]. New York: Wiley, 2003.
    
    [38] http://en.wikipedia.org/wiki/Four-strokecycle (Z).
    [39] http://www.toyota.co.jp/en/tech/environment/ths2/engine.html (Z).
    [40] http://en.wikipedia.org/wiki/AtkinsonCycle (Z).
    [41] Leff H S. Thermal efficiency at maximum power output: new results for old heat engines [J]. Am. J. Phys., 1987, 55: 602-610.
    [42] Chen L, Lin J. Efficiency of an Atkinson engine at maximum power density [J]. Energy Conv. Manag., 1998,39:337-341.
    [43] Al-Sarkhi A, Akash B A. Efficiency of Miller engine at maximum power-density [J]. Int. Comm. Heat Mass Transf., 2002,29: 1159-1167.
    [44] Aragon-Gonzalez G, Ganales-Palma A, Leon-Galicia A. Maximum irreversible work and efficiency in power cycles [J]. J. Phys. D: Appl. Phys., 2000,33: 1403-1409.
    [45] Wu C, Kiang R. Power performance of a non-isentropic Brayton cycle [J]. J. Eng. Gas. Turbines Power-Trans. ASME, 1991, 113: 501-504.
    [46] Rocco J M M, Velasco S, Medina A, Calvo Hernandez A. Optimum performance of a regenerative Brayton thermal-cycle [J]. J. Appl. Phys., 1997, 82: 2735-2741.
    [47] Blank D A, Wu C. The effect of combustion on a power optimized endoreversible diesel cycle [J]. Energy Conv. Manag., 1993, 34:493-498.
    [48] Ge Y, Chen L, Sun F, Wu C. Reciprocating heat-engine cycles [J]. Appl. Energy, 2005, 81: 397-408.
    [49] Chen L, Zeng F, Sun F, Wu C. Heat-transfer effects on net work and/or power as functions of efficiency for air-standard diesel cycles [J]. Energy, 1996,21: 1201-1205.
    [50] Akash B A. Effect of heat transfer on the performance of an air-standard diesel cycle [J]. Int. Comm. Heat Mass Transf., 2001,28: 87-95.
    [51] Curzon F L, Ahlborn B. Efficiency of a Carnot engine at maximum power-output [J]. Am. J. Phys., 1975, 43: 22-24.
    
    [52] Bejan A. Advanced engineering thermodynamics [M]. New York: Wiley, 1988.
    [53] Chen J, Yan Z. Unified description of endoreversible cycles [J]. Phys. Rev. A, 1989, 39: 4140-4147.
    [54] Chen J. The maximum power output and maximum efficiency of an irreversible Carnot heat-engine [J]. J. Phys. D: Appl. Phys., 1994,27: 1144-1149.
    [55] Angulo-Brown F, Fernandez-Betanzos J, Diaz-Pico C A. Compression ratio of an optimized air standard Otto cycle model [J]. Eur. J. Phys., 1994, 15: 38-42.
    [56] Qin X, Chen L, Sun F, Wu C. The universal power and efficiency characteristics for irreversible reciprocating heat engine cycles [J]. Eur. J. Phys., 2003, 24: 359-366.
    [57] Angulo-Brown F, Rocha-Martinez J, Navarrete-Gonzalez T D. A non-endoreversible Otto-cycle model: improving power output and efficiency [J]. J. Phys. D: Appl. Phys., 1996, 29: 80-83.
    [58] Bhattacharyya S. Optimizing an irreversible diesel cycle-fine tuning of compression ratio and cut-off ratio [J]. Energy Conv. Manag., 2000,41: 847-854.
    [59] Endo H, Tanaka K, Kakuhama Y, Goda Y, Fujiwaka T, Nishigaki M. Development of the lean burn Miller cycle gas engine [R]. The Fifth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines (COMODIA 2001), July 1-4, 2001, Nagoya.
    [60] Fukuzawa Y, Shimoda H, Kakuhama Y, Endo H, Tanaka K. Development of high efficiency Miller cycle gas engine [J]. Mitsubishi Heavy Industries, Ltd., Technical Review, 2001, 38: 146-150.
    [61] http://www.mazda.com.au/articleZone.asp?articleZoneID=92 [Z].
    
    [62] Wu C, Puzinauskas P V, Tsai J S. Performance analysis and optimization of a supercharged Miller cycle Otto engine [J]. Appl. Therm. Eng., 2003,23: 511-521.
    [63] http://www.gizmohighway.com/autos/millerengine.htm [Z].
    [64] Tsukida N, Okamoto K, Abe T, Takemoto T. Development of Miller cycle gas engine for cogeneration [J]. ASME Advanced Energy Systems Division, 1999, 39: 453-457.
    [65] Masahiro C, Kouji A, Hiroshi A, Shin O, Masatoshi S. Development of V-6 Miller cycle engine [R]. JSAE Convention (No. 10), 1993.
    [66] Zhang F, Okamoto K, Shimogata S, Shoji F. Development of the Miller cycle for natural gas engines [R]. ICE-Vol.27-1, 1996 Fall Technical Conference ASME, 1996.
    [67] Al-Sarkhi A, Akash B A, Jaber J O, Mohsen M S, Abu-Nada E. Efficiency of Miller engine at maximum power density [J]. Int. Comm. Heat Mass Transf., 2002,29: 1159-1167.
    [68] Aragon-Gonzalez G, Canales-Palma A, Leon-Galicia A. Maximum irreversible work and efficiency in power cycles [J]. J. Phys. D: Appl Phys., 2000, 33: 1403-1409.
    [69] Wu C, Kiang R. Power performance of a nonisentropic Brayton cycle [J]. J. Eng. Gas. Turbines Power-Trans. ASME, 1991, 113: 501-504.
    [70] Roco J M M, Velasco S, Medina A, Hernandez A C. Optimum performance of a regenerative Brayton thermal cycle [J]. J. Appl. Phys., 1997, 82: 2735-2741.
    [71] Blank D A, Wu C. The effect of combustion on a power optimized endoreversible Diesel cycle [J]. Energy Conv. Manag., 1993, 34: 493-498.
    [72] Klein S A. An explanation for observed compression ratios in internal combustion engines [J]. J. Eng. Gas. Turbines Power-Trans. ASME, 1991, 113: 511-513.
    [73] Chen L, Zeng F, Sun F, Wu C. Heat-transfer effects on net work and/or power as functions of efficiency for air-standard Diesel cycles [J]. Energy, 1996, 21: 1201-1205.
    [74] Akash B A. Effect of heat transfer on the performance of an air-standard Diesel cycle [J]. Int. Comm. Heat Mass Transf., 2001, 28: 87-95.
    [75] Angulo-Brown F, Fernandez-Betanzos J, Diaz-Pico C A. Compression ratio of an optimized air standard Otto cycle model [J]. Eur. J. Phys., 1994, 15: 38-42.
    [76] Qin X, Chen L, Sun F. The universal power and efficiency characteristics for irreversible reciprocating heat engine cycles [J]. Eur. J. Phys., 2003,24: 359-366.
    [77] Bhattacharyya S. Optimizing an irreversible Diesel cycle-fine tuning of compression ratio and cut-off ratio [J]. Energy Conv. Manag., 2000,41: 847-854.
    [78] Ferguson C R, Kirkpatrick A T. Internal Combustion Engines: Applied Thermosciences [M]. New York: John Wiley and Sons ,2001.
    [79] Hou S S. Heat transfer effects on the performance of an air standard Dual cycle [J]. Energy Conv. Manag., 2004, 45: 3003-3015.
    [80] Lin J, Chen L, Wu C, Sun F. Finite-time thermodynamic performance of a dual cycle [J]. Int. J. Energy Res., 1999,23: 765-772.
    [81] Sahin B, Ozsoysal O A, Sogut O S. A comparative performance analysis of endoreversible dual cycle under maximum ecological function and maximum power conditions [J]. Exergy Internat. J., 2002, 2: 173-185.
    [82] Chen L, Sun F, Wu C. Optimal performance of an irreversible dual-cycle [J]. Appl. Energy, 2004,79:3-14.
    [83] Ust Y, Sahin B, Sogut O S. Performance analysis and optimization of an irreversible dual-cycle based on an ecological coefficient of performance criterion [J]. Appl. Energy, 2005, 82: 23-39.
    [84] Durmayaz A, Sogut O S, Sahin B, Yavuz H. Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics [J]. Prog. Energy Combust. Sci., 2004, 30: 175-217.
    [85] Parlak A, Sahin B, Yasar H. Performance optimization of an irreversible dual cycle with respect to pressure ratio and temperature ratio-experimental results of a ceramic coated IDI Diesel engine [J]. Energy Conv. Manag., 2004, 45: 1219-1232.
    [86] Parlak A, Yasar H, Sahin B. Performance and exhaust emission characteristics of a lower compression ratio LHR Diesel engine [J]. Energy Conv. Manag., 2003,44: 163-175.
    [87] Parlak A. Comparative performance analysis of irreversible Dual and Diesel cycles under maximum power conditions [J]. Energy Conv. Manag., 2005,46: 351-359.
    [88] Aragon-Gonzalez G, Ganales-Palma A, Leon-Galicia A. Maximum irreversible work and efficiency in power cycles [J]. J. Phys. D: Appl. Phys., 2000,33: 1403-1409.
    [89] Wu C, Kiang R. Power performance of a nonisentropic Brayton cycle [J]. J. Eng. Gas. Turbines Power-Trans. ASME, 1991, 113: 501-504.
    [90] Rocco J M M, Velasco S, Medina A, Calvo Hernandez A. Optimum performance of a regenerative Brayton thermal cycle [J]. J. Appl. Phys., 1997, 82: 2735-2741.
    [91] Blank D A, Wu C. The effect of combustion on a power optimized endoreversible Diesel cycle [J]. Energy Conv. Manag., 1993, 34: 493-498.
    [92] Klein S A. An explanation for observed compression ratios in internal-combustion engines [J]. J. Eng. Gas. Turbines Power-Trans. ASME, 1991, 113: 511-513.
    [93] Chen L, Zen F, Sun F, Wu C. Heat transfer effect on the net work and/or power versus efficiency characteristics for air standard Diesel cycles [J]. Energy, 1996,21: 1201-1205.
    [94] Bejan A. Advanced Engineering Thermodynamics [M]. New York: John Wiley & Sons, 1988.
    [95] Chen J, Yan Z. Unified description of endoreversible cycles [J]. Phys. Rev. A, 1989, 39: 4140-4147.
    [96] Angulo-Brown F, Fernandez-Betanzos J, Diaz-Pico C A. Compression ratio of an optimized Otto cycle model [J]. Eur. J. Phys., 1994, 15: 38-42.
    [97] Angulo-Brown F, Rocha-Martinez J A, Navarrete-Gonzalez T D. A non-endoreversible Otto cycle model: improving power output and efficiency [J]. J. Phys. D: Appl. Phys., 1996, 29: 80-83.
    [98] Bhattacharyya S. Optimizing an irreversible Diesel cycle-fine tuning of compression ratio and cut-off ratio [J]. Energy Conv. Manag., 2000, 41: 847-854.
    [99] Chen L, Lin J, Lou J, Sun F, Wu C. Friction effect on the characteristic performances of Diesel engines [J]. Int. J. Energy Res., 2002,26: 965-971.
    [100]Chen L, Wu C, Sun F, Wu C. Heat-transfer effects on the net work-output and efficiency characteristics for an air standard Otto cycle [J]. Energy Conv. Manag., 1998, 39: 643-648.
    [101]Akash B A. Effect of heat transfer on the performance of an air-standard Diesel cycle [J]. Int. Comm. Heat Mass Transf., 2001,28: 87-95.
    [102]Qin X, Chen L, Sun F, Wu C. The universal power and efficiency characteristics for irreversible reciprocating heat engine cycles [J]. Eur. J. Phys., 2003, 24: 359-366.
    [103]Chen J, Zhao Y, He J. Optimization criteria on the important parameters of an irreversible Otto heat engine [J]. Appl. Energy, 2005, 83: 228-238.
    [1]Mozurkewich M,Berry R S.Optimal paths for thermodynamic systems:The ideal otto cycle[J].J.Appl.Phys.,1982,53:34-42.
    [2]Angulo-Brown F,Fernádez-Betanzos J,Diaz-Pico C A.Compression ratio of an optimized air standard Otto cycle model[J].Eur.J.Phys.,1994,15:38-42.
    [3]Angulo-Brown F,Rocha-Martinez J A,Navarrete-Gonzalez T D.A non-endoreversible Otto cycle model:improving power output and efficiency[J].J.Phys.D:Appl.Phys.,1996,29:80-83.
    [4]Hernández A C,Roco J M M,Medina A,Velasco S.An irreversible and optimized four stroke cycle model for automotive engines[J].Eur.J.Phys.,1996,17:11-18.
    [5]Wu C,Blank D A.Optimization of the endoreversible Otto cycle with respect to both power and mean effective pressure[J].Energy Conv.Manag.,1993,34:1255-1259.
    [6]Chen L,Wu C,Sun F,Cao S.Heat transfer effects on the net work output and efficiency characteristics for an air-standard Otto cycle[J].Energy Conv.Manag.,1998,39:643-648.
    [7]Klein S A.An explanation for observed compression ratios in internal combustion engines [J].J.Eng.Gas.Turbines Power-Trans.ASME,1991,113:511-513.
    [8]Aragón-González G,Canales-Palma A,Le6n-Galicia A.Maximum irreversible work and efficiency in power cycles [J]. J. Phys. D: Appl. Phys., 2000,33: 1403-1409.
    [9] Chen J, Zhao Y, He J. Optimization criteria for the important parameters of an irreversible Otto heat-engine [J]. Appl. Energy, 2006, 83: 228 - 238.
    [10] Hernandez A C, Medina A, Roco J M M, Velasco S. On an irreversible air standard Otto-cycle model [J]. Eur. J. Phys., 1995, 16: 73-75.
    [11] Leff H S. Efficiency at maximum work output: New results for old heat engines [J]. Am. J. Phys., 1987,55:602-610.
    [12] Chen L, Zheng J, Sun F, Wu C. Power density analysis and optimization of a regenerated closed variable-temperature heat reservoir Brayton cycle [J]. J. Phys. D: Appl. Phys., 2001, 34: 1727-1739.
    [13] Aragon-Gonzalez G, Canales-Palma A, Leon-Galicia A, Musharrafie-Martinez M. A criterion to maximize the irreversible efficiency in heat engines [J]. J. Phys. D: Appl. Phys., 2003, 36:280-287.
    [14] Ozsoysal O A. Heat loss as a percentage of fuel's energy in air standard Otto and Diesel cycles [J]. Energy Conv. Manag., 2006, 47: 1051-1062.
    [15] Hoffman K H, Watowich S J, Berry R S. Optimal paths for thermodynamic systems: The ideal Diesel cycle [J]. J. Appl. Phys., 1985, 58: 2125-2134.
    
    [16] De Vos A. Endoreversible thermoeconomics [J]. Energy Conv. Manag., 1995, 36: 1-5.
    [17] Guzman-Vargas L, Reyes-Ramirez I, Sanchez N. The effect of heat transfer laws and thermal conductances on the local stability of an endoreversible heat engine [J]. J. Phys. D: Appl. Phys., 2005, 38: 1282-1291.
    [18] Andresen B, Rubin M H, Berry R S. Availability for finite-time processes. General theory and a model [J]. J. Phys. Chem., 1983, 87: 2704-2713.
    [19] De Vos A, Landsberg P T, Baruch P, Parrott J E. Entropy fluxes, endoreversibility, and solar energy conversion [J]. J. Appl. Phys., 1993, 74: 3631-3637.
    [20] Angulo-Brown F, Arias-Hernandez L A, Paez-Hernandez R. A general property of non-endoreversible thermal cycles [J]. J. Phys. D: Appl. Phys., 1999, 32: 1415-1420.
    [21] De Vos A. Endoreversible economics [J]. Energy Conv. Manag., 1997, 38: 311-317.
    [1]Mozurkewich M,Berry R S.Optimal paths for thermodynamic systems:The ideal otto cycle[J].J.Appl.Phys.,1982,53:34-42.
    [2]Scully M O.Quantum afterburner:Improving the efficiency of an ideal heat engine[J].Phys.Rev.Lett.,2002,88:050602-1-4.
    [3]Rostovtsev Y V,Matsko A B,Nayak N,Zubairy M S,Scully M O.Improving engine efficiency by extracting laser energy from hot exhaust gas[J].Phys.Rev.A.,2003,67:053811-1-8.
    [4]Wu C,Blank D A.The effects of combustion on a work-optimized endoreversible Otto cycle[J].J.Inst.Energy,1992,65:86-89.
    [5]Wu C,Blank D A.Optimization of the endoreversible Otto cycle with respect to both power and mean effective pressure[J].Energy Conv.Manag.,1993,34:1255-1259.
    [6] Angulo-Brown F, Fernandez-Betanzos J, Diaz-Pico C A. Compression ratio of an optimized air standard Otto cycle model [J]. Eur. J. Phys., 1994, 15: 38-42.
    
    [7] Angulo-Brown F, Rocha-Martinez J A, Navarrete-Gonzalez T D. A non-endoreversible Otto cycle model: improving power output and efficiency [J]. J. Phys. D: Appl. Phys., 1996, 29: 80-83.
    
    [8] Hernandez A C, Roco J M M, Medina A, Velasco S. An irreversible and optimized four stroke cycle model for automotive engines [J]. Eur. J. Phys., 1996, 17: 11-18.
    [9] Aragon-Gonzalez G, Canales-Palma A, Leon-Galicia A. Maximum irreversible work and efficiency in power cycles [J]. J. Phys. D: Appl. Phys., 2000, 33: 1403-1409.
    [10] Ghatak A, Chakraborty S. Effect of external irreversibilities and variable thermal properties of working fluid on thermal performance of a dual internal combustion engine cycle [J]. Heat Transfer Eng., submitted for publication.
    [11] Ge Y, Chen L, Sun F, Wu C. Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specific heats of working fluid [J]. Int. J. Therm. Sci., 2005, 44:506-511.
    [12] Al-Sarkhi A, Jaber J O, Abu-Qudais M, Probert S D. Effects of friction and temperature-dependent specific-heat of the working fluid on the performance of a Diesel-engine [J]. Appl. Energy, 2006, 83: 153-165.
    [13] Al-Sarkhi A, Jaber J O, Probert S D. Efficiency of a Miller engine [J]. Appl. Energy, 2006, 83:343-351.
    [14] Leff H S. Efficiency at maximum work output: New results for old heat engines [J]. Am. J. Phys., 1987, 55: 602-610.
    [15] Chen L, Zheng J, Sun F, Wu C. Power density analysis and optimization of a regenerated closed variable-temperature heat reservoir Brayton cycle [J]. J. Phys. D: Appl. Phys., 2001, 34: 1727-1739.
    [16] Aragon-Gonzalez G, Canales-Palma A, Leon-Galicia A, Musharrafie-Martinez M. A criterion to maximize the irreversible efficiency in heat engines [J]. J. Phys. D: Appl. Phys., 2003, 36: 280-287.
    [17] Ozsoysal O A. Heat loss as a percentage of fuel's energy in air standard Otto and Diesel cycles [J]. Energy Conv. Manag., 2006, 47: 1051-1062.
    [18] Klein S A. An explanation for observed compression ratios in internal combustion engines [J]. J. Eng. Gas Turbines & Power, 1991, 113: 511-513.
    [19] Zhao Y, Lin B, Zhang Y, Chen J. Performance analysis and parametric optimum design of an irreversible Diesel heat engine [J]. Energy Conv. Manag., 2006,47: 3383-3392.
    [20] Orlov V N, Berry R S. Power and efficiency limits for internal-combustion engines via methods of finite-time thermodynamics [J]. J. Appl. Phys., 1993, 74: 4317 - 4322.
    [21] Hoffman K H, Watowich S J, Berry R S. Optimal paths for thermodynamic systems: The ideal Diesel cycle [J]. J. Appl. Phys., 1985, 58: 2125-2134.
    [22] Angulo-Brown F, Arias-Hernandez L A, Paez-Hernandez R. A general property of non-endoreversible thermal cycles [J]. J. Phys. D: Appl. Phys., 1999, 32: 1415-1420.
    [23] Guzman-Vargas L, Reyes-Ramirez I, Sanchez N. The effect of heat transfer laws and thermal conductances on the local stability of an endoreversible heat engine [J]. J. Phys. D: Appl. Phys., 2005, 38: 1282-1291.
    [24] Chen L, Ge Y, Sun F, Wu C. Effects of heat transfer, friction and variable specific heats of working fluid on the performance of an irreversible dual cycle [J]. Energy Conv. Manag., 2006,47:3224-3234.
    [25] Hoffman K H, Watowich S J, Berry R S. Optimal paths for thermodynamic systems:The ideal Diesel cycle [J]. J. App. Phys., 1985, 58: 2125-2134.
    [26] Blank D A, Wu C. The effect of combustion on a power optimized endoreversible Diesel cycle [J]. Energy Conv. Manag., 1993, 34:493-498.
    [27] Hernandez A C, Roco J M M, Medina A, Velasco S. An irreversible and optimized four stroke cycle model for automotive engines [J]. Eur. J. Phys., 1996, 17: 11-18.
    [28] Akash B A. Effect of heat transfer on the performance of an air-standard Diesel cycle [J]. Int. Comm. Heat Mass Transf., 2001,28: 87-95.
    [29] Bhattacharyya S. Optimizing an irreversible Diesel cycle-fine tuning of compression ratio and cut-off ratio [J]. Energy Conv. Manag., 2000,41: 847-854.
    [30] Parlak A. The effect of heat transfer on performance of the Diesel cycle and exergy of the exhaust gas stream in a LHR Diesel engine at the optimum injection timing [J]. Energy Conv. Manag., 2005,46: 167-179.
    [31] Parlak A. Comparative performance analysis of irreversible Dual and Diesel cycles under maximum power conditions [J]. Energy Conv. Manag., 2005,46: 351-359.
    
    [32] Ge Y, Chen L, Sun F, Wu C. Effects of variable specific heats on the performance of an irreversible Otto cycle [J]. Int. J. Exergy, 2005,2: 274 - 283.
    [33] Chen L, Ge Y, Sun F, Wu C. Effects of heat transfer, friction and variable specific heats of working fluid on performance of an irreversible dual cycle [J]. Energy Conv. Manag., 2006, 47: 3224-3234.
    [34] Al-Sarkhi A, Jaber J O, Abu-Qudais M, Probert S D. Effects of friction and temperature-dependent specific-heat of the working fluid on the performance of a Diesel-engine [J]. Appl. Energy, 2006, 83: 153-165.
    [35] Al-Sarkhi A, Jaber J O, Probert S D. Efficiency of a Miller engine [J]. Appl. Energy, 2006, 83:343-351.
    [36] Leff H S. Efficiency at maximum work output: New results for old heat engines [J]. Am. J. Phys., 1987,55:602-610.
    [37] Mozurkewich M, Berry R S. Optimal paths for thermodynamic systems: The ideal otto cycle [J]. J. Appl. Phys., 1982, 53: 34-42.
    [38] Aragon-Gonzalez G, Canales-Palma A, Leon-Galicia A. Maximum irreversible work and efficiency in power cycles[J].J.Phys.D:Appl.Phys.,2000,33:1403-1409.
    [39]Aragón-Gonzáilez G,Canales-Palma A,Le6n-Galicia A,Musharrafie-Martinez M.A criterion to maximize the irreversible efficiency in heat engines[J].J.Phys.D:Appl.Phys.,2003,36:280-287.
    [40]Zhao Y,Lin B,Zhang Y,Chen J.Performance analysis and parametric optimum design of an irreversible Diesel heat engine[J].Energy Conv.Manag.,2006,47:3383-3392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700