MHCⅠ类链相关基因A与肝癌关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的
     MICA/B是固有免疫系统的组成部分,在包括肝癌在内的多种肿瘤中高表达,通过与其受体NKG2D相互作用,发挥肿瘤免疫作用。脱氧氮杂胞苷5-aza-dC是一种甲基化酶抑制剂,我们以往的实验发现5-aza-dC可诱导肿瘤细胞MICB的表达,并增强NK细胞对肿瘤细胞的杀伤作用。最新研究表明RNAi机制也与固有免疫系统相关,Dicer是RNAi系统中的关键酶,在秀丽隐杆线虫中Dicer的缺失,可引起固有免疫基因表达的改变。为了研究MICA与肝癌的关系,本课题将首先以HepG2细胞为研究对象,观察MICA在L02细胞和HepG2细胞中的表达差异,并进一步研究Dcier缺失及5-aza-dC对HepG2细胞MICA的诱导作用及可能机制。最后我们还将从临床角度出发,观察MICA、Dicer在HCC患者中的表达是否异常并初步探讨其意义和机制。
     方法
     1.为了沉默Dicer,使用Dicer siRNA转染HepG2细胞;为了阻断ATM,使用ATM特异性抑制剂咖啡因处理HepG2细胞或ATM siRNA转染HepG2细胞。
     2. Realtime RT-PCR检测Dicer、ATM、MICA mRNA表达水平,流式细胞术检测细胞膜MICA蛋白水平。
     3.免疫荧光染色法检测γ-H2AX水平。
     4.收集经病理证实的36例HCC患者的肝癌、邻近非癌组织标本及患者临床资料(年龄、性别、肿瘤大小、肿瘤转移、肿瘤个数、肿瘤分期),Realtime RT-PCR检测肝癌及癌旁组织MICA、Dicer mRNA表达水平。
     结果
     1.流式细胞术结果显示HepG2细胞高水平表达MICA,而正常肝细胞L02几乎不表达MICA。
     2. 5-aza-dC处理或选择性沉默Dicer可上调HepG2细胞MICA的表达(P <0.05),并引起DNA损伤特异性指标γ-H2AX增高。
     3. 5-aza-dC或选择性沉默Dicer上调HepG2细胞MICA作用可被ATM特异性阻滞剂咖啡因或ATM特异的siRNA所阻断(P <0.05)。
     4.Realtime PCR结果显示MICA mRNA在肝癌标本及邻近非癌标本中表达水平无显著差异(P >0.05)。而Dicer mRNA在肝癌标本中的表达低于邻近非癌标本,差异有显著性(P<0.05)。
     5. Spearman’s rank-order coefficients统计分析表明肝癌标本中MICA、Dicer mRNA水平与患者年龄、性别、肿瘤大小、肿瘤转移、肿瘤个数、肿瘤分期等临床参数无显著相关性(P >0.05)。
     结论
     1. 5-aza-dC可诱导HepG2细胞MICA的表达,其机制可能与5-aza-dC引起的ATM依赖的DNA损伤途径有关。
     2.Dicer在肝癌中低表达,提示RNAi系统可能与肝癌的发生发展相关。Dicer的缺失可能继发性启动ATM依赖的DNA损伤途径并激活内源性免疫系统。
OBJECTIVE
     MICA and MICB, as components of innate immune system, play a role in tumor immune surveillance via interation with NKG2D.Our previous study indicated that 5-aza-dC ,a kind of methylase inhibitor ,induced MICB expression in a DNA damage-dependent manner, which in turn sensitized tumor cells to NKL-cell-mediated lysis. RNAi acts constitutively to silence the innate immune response, and innate immunity genes are misregulated in Dicer-deficient Caenorhabditis elegans. Here we will determine the expression level of MICA in HepG2 cells (an HCC cell line) and L02 cells ( a normal liver cell) , and investigate the effect of 5-aza-dC or Dicer knockdown on MICA expression in HepG2 cells. Furthermore, we will detect the expressions of MICA and Dicer in HCC.
     METHODS
     1. HepG2 cells were treated with 5-aza-dC, caffeine , ATM-specific siRNA or Dicer-specific siRNA. The cell surface MICA protein on HepG2 and L02 cells were determined using flow cytometry. The mRNA levels were detected using real time RT-PCR. Theγ-H2AX levels were examined by Immuno?uorescence microscopy.
     2. The mRNA levels of MICA and Dicer in 36 paired cancerous and corresponding adjacent non-neoplastic tissues from 36 HCC patients undergoing surgery were detected using real time RT-PCR. Furthermore, the mRNA levels of MICA and Dicer in cancerous tissues were analyzed respectively to clinical features including age, sex, tumor size, tumor metastasis status, tumor number and stage.
     RESULTS
     1.MICA was undetectable on the surface of L02 cells, but was highly expressed on HepG2 cells. MICA expression in HepG2 cell was upregulated in response to 5-aza-dC treatment or Dicer siRNA , and the upregulation of MICA was partially prevented by pharmacological or genetic inhibition of ataxia telangiectasia mutated (ATM) kinase.
     2.Dicer mRNA level was significantly lower in malignant tissues than in the corresponding non-neoplastic tissues in 36 HCC patients. There was no significance on MICA mRNA levels between malignant tissues and the corresponding non-neoplastic tissues in 36 HCC patients. Neither the Dicer nor MICA level was associated with clinical characteristics including age, sex, tumor number, tumor size, tumor stage, or distant metastasis in HCC cases.
     CONCLUSIONS
     Our data suggest that 5-aza-dC or Dicer loss induces the expression of MICA by a ATM-dependent DNA damage pathway, and RNAi mechanism may contribute to innate immune system on tumor immune surveillance.
引文
[1] Collins RW. Human MHC class I chain related (MIC) genes: their biological function and relevance to disease and transplantation[J]. Eur J Immunogenet. 2004 31(3): 105-114.
    [2] Natarajan K,Dimasi N,Wang J,et al . Structure and function of natural killer cell receptors:multiple molecular solutions to self,nonself discrimination[J].Annu Rev Immunol.2002,20:853-885.
    [3] Holmes MA,Li PW,Petersdorf EW,et al.Structural studies of allelic diversity of the MHC class I homolog MIC-B,a stress-inducible ligand for the activating immunoreceptor NKG2D[J]. J Immunol. 2002,169(3):1395-1400.
    [4] Raulet DH. Roles of the NKG2D immunoreceptor and its ligands[J]. Nat Rev Immunol. 2003,3(10):781-790.
    [5] Bahram S. MIC genes: from genetics to biology[J]. Adv Immunol.2000,76: 1–60.
    [6] Cosman D, Mullberg J, Sutherland CL, et al.ULBPs, novel MHC class I-related molecules,bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor[J]. Immunity.2001,14(2):123–133.
    [7] Yabe T, McSherry C, Bach FH, et al. A multigene family on human chromosome 12 encodes natural killer-cell lectins[J]. Immunogenetics.1993,37(6):455–460 .
    [8] W?gs?ter D, Dimberg J, Hugander A,et al. Analysis of MICA gene transcripts in human rectal cancers[J]. Anticancer Res. 200323(3B):2525-2529.
    [9] Murphy D, Dancis B, Brown JR,et al. The evolution of core proteins involved in microRNA biogenesis[J].BMC Evol Biol. 2008, 25;8:92.
    [10]Zhang C. Novel functions for small RNA molecules[J]. Curr Opin Mol Ther. 2009,11(6):641-651.
    [11]Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor[J]? Cancer Metastasis Rev. 2009,28(3-4):369-378.
    [12]Chiosea S, Jelezcova E, Chandran U, et al.Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma[J]. Am J Pathol. 2006; 169(5):1812-20.
    [13]Flavin RJ, Smyth PC, Finn SP,et al. Altered eIF6 and Dicer expression is associated with clinicopathological features in ovarian serous carcinoma patients[J]. Mod Pathol. 2008;21(6):676-684.
    [14]Zhang X, Cairns M, Rose B, et al.Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland[J]. Int J Cancer. 2009;124(12):2855-2863.
    [15]Martin MG, Payton JE, Link DC. Dicer and outcomes in patients with acute myeloid leukemia (AML) [J]. Leuk Res. 2009;33(8):e127.
    [16]Merritt WM, Lin YG, Han LY,et al.Dicer, Drosha, and outcomes in patients with ovarian cancer[J]. N Engl J Med. 2008;359(25):2641-2650.
    [17]Karube Y, Tanaka H, Osada H, et al.Reduced expression of Dicer associated with poor prognosis in lung cancer patients[J]. Cancer Sci. 2005;96(2):111-115.
    [18]Welker NC, Habig JW,et al. Genes misregulated in C. elegans deficient in Dicer, RDE-4, or RDE-1 are enriched for innate immunity genes[J].RNA.2007, 13(7):1090-1102.
    [19]Tang KF, Ren H, Cao J,et al. Decreased Dicer expression elicits DNA damage and up-regulation of MICA and MICB[J]. J Cell Biol. 2008 Jul 28;182(2):233-239.
    [20]V. Groh, R. Rhinehart, J. Randolph-Habecker, et al. Costimulation of CD8 alphabeta cells by NKG2D via engagement by MIC induced on virus-infected cells[J].Nat Immunol,2001,2 : 255–260.
    [21]Christman JK. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy[J]. Oncogene ,2002,21(35):5483– 5495
    [22]Robertson KD. DNA methylation and human disease[J]. Nat Rev Genet. 2005, 6(8):597-610
    [23]Armeanu S, Bitzer M, Lauer UM,et al. Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate[J]. Cancer Res,2005 ,65(14):6321-6329.
    [24]Jinushi M, Takehara T, Tatsumi T,et al. Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid[J]. Int JCancer.2003,104(3):354-361.
    [25]V. Groh, R. Rhinehart, J. Randolph-Habecker, et al. Costimulation of CD8 alphabeta cells by NKG2D via engagement by MIC induced on virus-infected cells[J].Nat Immunol,2001,2(3) : 255–260.
    [26]Christman JK. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy[J]. Oncogene ,2002,21(35):5483– 5495
    [27]Robertson KD. DNA methylation and human disease[J]. Nat Genet Rev. 2005,6(8): 597-610
    [28]Armeanu S, Bitzer M, Lauer UM,et al. Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate[J].Cancer Res,2005 ,65(14):6321-6329.
    [29]Tang KF,He CX,Zeng GL,et al. Induction of MHC class I-related chain B (MICB) by 5-aza-2'-deoxycytidine[J]. Biochem Biophys Res Commun.,2008,370(4):578-583.
    [30]Stela S. Palii, Beth O. Van Emburgh, Umesh T. Sankpal,et al.DNA ,methylation inhibitor 5-aza-2-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B[J]. Mol. Cell Biol, 2008,28(2): 752–771.
    [31]Bird, A.. DNA methylation patterns and epigenetic memory[J]. Genes Dev, 2002; 16(1):6–21.
    [32]Fumihiko Takeshita,Ken J Ishii,et al. Intracellular DNA sensors in immunity[J]. Current Opinion in Immunology ,2008, 20(4):383–388.
    [33]Yang Xu. DNA damage: a trigger of innate immunity but a requirement for adaptive immune homeostasis[J].Natrue reviews ,2006,6(4):261-270.
    [34]Gasser S, Orsulic S, Brown EJ,et al. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor[J]. Nature 436, 1186-1190.
    [35]Lee JH, Paull TT. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks[J]. Oncogene.,2007 ,26(56):7741-7748.
    [36]Lavin MF, Kozlov S.ATM activation and DNA damage response[J]. Cell Cycle.2007,6(8): 931-942.
    [37]Kitagawa R, Kastan MB. The ATM-dependent DNA damage signaling pathway[J]. Cold Spring Harb Symp Quant Biol,2005,70:99-109.
    [38]Bühler ,M., D. Moazed . 2007 . Transcription and RNAi in heterochromatic gene silencing[J].Nat Struct Mol Biol. 2007, 14(11):1041-1048.
    [39]Peng JC, Karpen GH. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability[J]. Nat Cell Biol.2007,9(1):25-35.
    [40]Locke SM, Martienssen RA. Slicing and spreading of heterochromatic silencing by RNA interference[J].Cold Spring Harb Symp Quant Biol. 2006,71:497-503
    [41]J?rgensen HF, Azuara V, Amoils S,et al. The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells[J]. Genome Biol. 2007;8(8):R169.
    [42]Gasior SL, Wakeman TP, Xu B,et al. The human LINE-1 retrotransposon creates DNA double-strand breaks[J]. J Mol Biol. 2006,357(5):1383-1393.
    [43]Murakami Y, Yasuda T, Saigo K, et al.Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues[J].Oncogene. 2006,20;25(17):2537-2545.
    [44]Gramantieri L, Ferracin M, Fornari F, Veronese A, et al.Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma[J]. Cancer Res. 2007;67(13):6092-6099.
    [45]Meng F, Henson R, Wehbe-Janek H,et al.: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer[J]. Gastroenterology. 2007;133(2):647-658.
    [46]Varnholt H, Drebber U, Schulze F, et al.MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma[J]. Hepatology. 2008; 47(4): 1223-1232.
    [47]Ladeiro Y, Couchy G, Balabaud C, et al. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations[J]. Hepatology. 2008;47(6):1955-1963.
    [48]Fornari F, Gramantieri L, Ferracin M,et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma[J]. Oncogene. 2008; 27(43): 5651-5661.
    [49]Wong QW, Lung RW, Law PT, Lai PB,et al.MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1[J]. Gastroenterology. 2008;135(1):257-269.
    [50]Datta J, Kutay H, Nasser MW, et al. Methylation mediated silencing of microRNA-1 gene and its role in hepatocellular carcinogenesis[J]. Cancer Res. 2008; 68(13): 5049-5058.
    [51]Li W, Xie L, He X, et al. Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma[J]. Int J Cancer. 2008;123(7):1616-1622.
    [52]Li S, Fu H, Wang Y, et al.microRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma[J]. Hepatology. 2009 ;49(4):1194-1202.
    [53]Sekine S, Ogawa R, Ito R, et al.Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis[J]. Gastroenterology. 2009; 136(7): 2304-23 15.
    [54]Romanski A, Bug G, Becker S,et al. Mechanisms of resistance to natural killer cell-mediated cytotoxicity in acute lymphoblastic leukemia[J]. Exp Hematol. 2005 ,33(3):344-352.
    [55]Calyton A,Tabi Z,Exosomes and the MICA-NKG2D system in cancer,Blood Cells[J]. Mol Dis.2005,34(3):206-213.
    [56]Kohga K, Takehara T, Tatsumi T, et al. Serum levels of soluble major histocompatibility complex (MHC) class I-related chain A in patients with chronic liver diseases and changes during transcatheter arterial embolization for hepatocellular carcinoma[J]. Cancer Sci .2008; 99(8): 1643-1649
    [57]王山川.胃癌患者NK细胞活化性受体NKG2D及其可溶性配体MICA表达的初步研究[J].山西医学杂志.2008,37(5):427-428.
    [58] M?rten A, von Lilienfeld-Toal M, Büchler MW, et al. Soluble MIC is elevated in the serum of patients with pancreatic carcinoma diminishing gammadelta T cell cytotoxicity[J]. Int J Cancer .2006,119(10): 2359-2365
    [1] González S, Groh V, Spies T. Immunobiology of human NKG2D and its ligands[J]. Curr Top Microbiol Immunol. 2006,298:121-138
    [2] Jinushi M, Takehara T, Tatsumi T,et al. Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid[J]. Int J Cancer.2003,104(3):354-361.
    [3] González S, López-Soto A, Suarez-Alvarez B,et al. NKG2D ligands: key targets of the immune response[J].Trends Immunol. 2008,29(8):397-403.
    [4] Bahram S. MIC genes: from genetics to biology[J]. Adv Immunol.2000,76: 1–60.
    [5] Cosman D, Mullberg J, Sutherland CL, et al.ULBPs, novel MHC class I-related molecules,bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor[J]. Immunity.2001,14(2):123–133.
    [6] Yabe T, McSherry C, Bach FH, et al. A multigene family on human chromosome 12 encodes natural killer-cell lectins[J]. Immunogenetics.1993,37(6):455–460 .
    [7] S. Bauer, V. Groh, J. Wu, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA[J], Science.1999, 285(5428) : 727–729.
    [8] V. Groh, R. Rhinehart, J. Randolph-Habecker, et al. Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells[J].Nat Immunol.2001,2(3) : 255–260.
    [9] Collins RW. Human MHC class I chain related (MIC) genes: their biological function and relevance to disease and transplantation[J]. Eur J Immunogenet. 2004 31(3):105-114.
    [10]Natarajan K,Dimasi N,Wang J,et al . Structure and function of natural killer cell receptors:multiple molecular solutions to self,nonself discrimination[J].Annu Rev Immunol.2002,20:853-885.
    [11]Holmes MA, Li PW, Petersdorf EW, et al . Structural studies of allelic diversity of the MHC class I homolog MIC-B, a stress-inducible ligand for the activating immunoreceptor NKG2D[J]. J Immunol. 2002, 169(3): 1395-1400.
    [12]Ahmad T,Marshell SE,Mulcahy-Hawes K,et al . High resolution MICgenotyping: design and application to the investigation of inflammatory bowel disease susceptibility[J]. Tissue Antigens. 2002,60(2):164-179.
    [13]González S, López-Soto A, Suarez-Alvarez B,et al. NKG2D ligands: key targets of the immune response[J]. Trends Immunol. 2008,29(8):397-403.
    [14]W?gs?ter D, Dimberg J, Hugander A,et al. Analysis of MICA gene transcripts in human rectal cancers[J]. Anticancer Res. 2003 ,23(3B):2525-2529.
    [15]Romanski A, Bug G, Becker S,et al. Mechanisms of resistance to natural killer cell-mediated cytotoxicity in acute lymphoblastic leukemia[J]. Exp Hematol. 2005 ,33(3):344-352.
    [16]Calyton A,Tabi Z,Exosomes and the MICA-NKG2D system in cancer,Blood Cells[J]. Mol Dis.2005,34(3):206-213.
    [17]Kohga K, Takehara T, Tatsumi T, et al. Serum levels of soluble major histocompatibility complex (MHC) class I-related chain A in patients with chronic liver diseases and changes during transcatheter arterial embolization for hepatocellular carcinoma[J]. Cancer Sci .2008; 99(8): 1643-1649
    [18]王山川.胃癌患者NK细胞活化性受体NKG2D及其可溶性配体MICA表达的初步研究[J].山西医学杂志.2008,37(5):427-428。
    [19] M?rten A, von Lilienfeld-Toal M, Büchler MW, et al. Soluble MIC is elevated in the serum of patients with pancreatic carcinoma diminishing gammadelta T cell cytotoxicity[J]. Int J Cancer .2006,119(10): 2359-2365
    [20]Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability-an evolving hallmark of cancer[J]. Nat Rev Mol Cell Biol. 2010,11(3):220-228.
    [21]Gerlitz G. HMGNs, DNA repair and cancer[J]. Biochim Biophys Acta. 2010 ,1799(1-2):80-85.
    [22]Barcellos-Hoff MH, Nguyen DH. Radiation carcinogenesis in context: how do irradiated tissues become tumors[J]? Health Phys. 2009 ,97(5):446-457.
    [23]Hoeijmakers JH. DNA damage, aging, and cancer[J]. N Engl J Med. 2009,361(15):1475-1485.
    [24]Erol A. Systemic DNA damage response and metabolic syndrome as a premalignantstate[J]. Curr Mol Med. 2010,10(3):321-334.
    [25]Cann KL, Hicks GG. Regulation of the cellular DNA double-strand break response[J]. Biochem Cell Biol. 2007,85(6):663-674.
    [26]Xu Y. DNA damage: a trigger of innate immunity but a requirement for adaptive immune homeostasis[J]. Nat Rev Immunol. 2006 ,6(4):261-270.
    [27]Fumihiko Takeshita,Ken J Ishii,et al. Intracellular DNA sensors in immunity[J]. Current Opinion in Immunology ,2008, 20(4):383–388.
    [28]Gasser S, Orsulic S, Brown EJ,et al. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor[J].Nature.2005, 25;436(7054): 1186-1190.
    [29]Tang KF,He CX,Zeng GL,et al. Induction of MHC class I-related chain B (MICB) by 5-aza-2'-deoxycytidine[J]. Biochem Biophys Res Commun., 2008,370(4): 578-583.
    [30]Tang KF, Ren H, Cao J,et al. Decreased Dicer expression elicits DNA damage and up-regulation of MICA and MICB[J]. J Cell Biol. 2008 Jul 28;182(2):233-239.
    [31]Lee JH, Paull TT. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks[J]. Oncogene.,2007 ,26(56):7741-7748.
    [32]Lavin MF, Kozlov S.ATM activation and DNA damage response[J]. Cell Cycle.2007,6(8):931-942.
    [33]Kitagawa R, Kastan MB. The ATM-dependent DNA damage signaling pathway[J]. Cold Spring Harb Symp Quant Biol,2005,70:99-109.
    [34]吴进峰,曾贵利,沈薇,等。脱氧氮杂胞苷诱导HepG2细胞表达主要组织相容性复合Ⅰ类分子A[J].中华肝脏病杂志,2009(17):675-678。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700