光载无线系统中的射频光传输及调控技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线接入凭借其无处不在、灵活快捷的接入方式已经在人们工作和娱乐生活中扮演越来越重要的角色。随着iPhone/iPad等个人终端设备的流行,以及三网融合、物联网等国家新兴战略产业的兴起,无线通信容量需求将会骤增并对现有无线接入技术提出严峻挑战。另外,随着电信运营商部署建设的通信基站数目不断增加,且基站所占的功耗通常高达70%以上,这将导致蜂窝移动通信面临难以解决的能耗危机。目前中国移动正在大力研发的C-RAN就是要构建基于集中化处理、协作式无线电和实时云计算的绿色无线接入网构架,其中集中化是很重要的一个特点,需要实现中心局(CO)和远端天线单元(RAU)的分离。光载无线(ROF)系统是微波光子学在发展历程中的重要应用形式和价值体现,在未来宽带光纤接入和无线接入融合演进的潮流中发挥着重要作用。ROF系统利用光纤低损耗和高带宽的传输特点,通过模拟光纤链路实现CO和低成本RAU的分离,并构建广覆盖、低能耗和高带宽的动态可控的分布式天线系统,是解决当前无线接入技术中存在的带宽危机和能耗危机等问题的有效途径。
     论文瞄准动态可控ROF系统在宽带泛在接入中的应用需求,针对在模拟光纤链路性能和射频资源动态可控两方面所遇到的技术挑战,重点进行射频光传输和射频光调控技术的研究。论文以模型为基础,以关键技术为支撑,以应用为目标,紧密围绕ROF系统模型、射频光传输与调控关键技术、ROF系统应用三个层面开展研究工作,其具体研究内容和贡献如下:
     (1)ROF系统模型
     高性能模拟光纤链路是ROF系统在宽带接入和泛在感知应用中的重要保障,要分析和提高链路性能,则建模是首要工作。论文从微波放大器模型出发,建立了直调和外调ROF系统中主要性能指标的数学模型,并分别仿真分析了探测器接收光功率、直调激光器(DML)相对强度噪声(RIN)、外调制器的半波电压和注入光功率对链路性能指标的影响。该工作为高性能ROF系统设计和优化提供了理论基础。
     无论是利用受激布里渊散射(SBS)效应实现射频移相,还是抑制其对ROF链路性能造成的不利影响,均需要熟悉SBS效应的产生机理并精确测量其增益谱和损耗谱。论文提出了一种基于菲涅尔反射和抑制载波调制的高精度SBS增益谱/损耗谱的测量方法,优点有:单端测量,避免光源频率抖动引入误差的同时,也能应用于低成本的光纤传感中;精确测量,通过微波源的扫频来获取SBS谱线,因而具有1MHz以下的测量精度;器件带宽低,仅需要SBS频移一半带宽的器件即可。
     (2)射频光传输关键技术
     针对复杂拓扑结构下的组网需求,论文提出了一种基于粗波分复用(CWDM)方式的分布式射频光传输系统并对链路性能进行了实验研究,搭建了五路波长复用的ROF分布式WiFi系统,支持5个RAU,在光纤传输距离为4.5kin和22km条件下分别获得约为1.5%和2.5%的误差矢量幅度(EVM),无线环境下在4m传输距离时得到最佳传输性能。对激光器RIN参数的研究发现,当大于-125dBc/Hz时对EVM影响较大。
     针对毫米波频段ROF系统的应用需求,论文提出了一种基于直调和外调抑制载波(OCS)方式的吉比特光载毫米波技术,采用直调激光器完成基带数据的调制并产生光载波,极大程度降低了系统成本,实验完成了2.4GHz直调信号到32GHz毫米波信号的上变频,并利用VPI8.7平台仿真了DML的RIN参数对链路性能的影响。
     为满足宽带射频信号调制需求,论文首次提出了一种基于相位调制-强度调制(PM-IM)转换的全光射频BPSK调制与传输技术,该技术以光学单边带的方式在光纤中传送信号,不仅抑制了光纤色散的影响,也通过多波长单边带的产生使其满足在波分复用(WDM)ROF系统中的应用需求。针对其在实验中的稳定性问题,利用同样原理引入调频光源和带通滤波器并通过Optisystem7.0对链路性能进行仿真,获得眼图较好的波形,且误码率达到6×10-9。
     抑制SBS效应是实现高性能ROF系统的重要环节,论文实验研究了激光器线宽对SBS阈值以及链路性能的影响,测试了WiFi信号在直调和外调链路中的传输性能以及光功率监测情况,发现光源线宽为10MHz的直调模式对应的SBS阈值比光源线宽为50KHz外调模式的阈值增加了4dB,证实了激光器线宽展宽在抑制SBS效应中起到的积极作用。
     (3)射频光调控关键技术
     针对动态可控ROF系统在射频带宽资源管控方面的应用需求,论文利用基于MEMS光开关矩阵的射频切换技术来实现射频带宽的动态分配。为分析光开关矩阵给链路性能带来的影响,测试了4×4光开关的切换速率,以频谱方式测出光开关切换的效果,并给出EDFA增益和光开关矩阵损耗对链路EVM的影响。基于光开关矩阵的射频切换技术不仅能够实现无线覆盖小区的资源交换,而且可以实现组播业务,为ROF系统的智能化奠定基础。
     针对智能天线或光控相控阵雷达应用中实现波束成型的移相技术,论文提出了一种基于SBS效应和矢量和原理的射频移相技术,该技术利用矢量和原理,通过SBS效应作用于相位调制的光学边带上,实现PM-IM转换,这样相位调制信号的上下边带功率可控,经过混频后产生的两个正弦波信号就能够以矢量和的方式叠加,从而产生相移可控的射频信号。
     (4)ROF系统在宽带接入和泛在感知中的应用
     在WiFi大规模应用的形势下,以无线局域网(WLAN)作为宽带中继网络,无线传感网(WSN)与WLAN结合的异构网络架构成为未来物联网中极具潜力的接入技术之一。论文在该背景下提出了一种基于CWDM-ROF系统的异构WLAN和WSN网络,在实验室环境下搭建了面向宽带接入和泛在感知应用的光载VViFi分布式天线系统,并演示了包括宽带接入、温度传感、视频监控和RFID定位等业务。
     针对未来智能家庭和楼宇对于2.4GHz频段和60GHz频段的无线接入需求,结合光载WiFi系统在宽带无线接入和泛在感知中应用的研究,论文提出一种面向楼内多业务融合接入的多频段(2.4GHz和60GHz)动态可控的ROF网络架构。利用WiFi无处不在的无线覆盖通道,解决了60GHz上行设计困难的问题。通过利用基于光开关矩阵的射频切换技术能够实现动态可控的ROF系统布局,从而实现带宽资源可管控的分布式天线系统,既能提供无压缩HDTV等Gb/s高速接入业务,又能满足智能家庭Mb/s接入、安全监控、健康监控和环境监测等应用需求。
The wireless access technology has played a more and more important role in the human lives due to its advantages of ubiquitous and flexibility. With the popularity of the personal terminals such as iPhone/iPad, and the rise of the national high-tech industry, the increasing requirement for wireless capacity brings forward grave challenge to the existing wireless access technologies. Furthermore, with the increasing of base stations (BS) implemented by the telecommunication operators, more than70%of the total energy is consumed by the BS and leads to an energy crisis in the cellular mobile communications. At present, C-RAN is intensively developed by China Mobile and aims to construct a clean system based on the centralized processing, collaborative radio and real-time cloud infrastructure, among which the centralized processing requires the separation of remote antenna units (RAUs) from the central office (CO). As one of the most important applications of the Microwave Photonics (MWP), radio-over-fiber (ROF) systems play an important role in the evolution of the convergence between broadband fiber access and wireless access. ROF systems make full use of the advantages of fiber transmission such as low loss and broad bandwidth to realize the separation of RAUs from CO, and build dynamic controllable distributed RAUs systems with wide coverage, low energy and broad bandwidth, thus it becomes an effective solution to the bandwidth crisis and energy crisis existed in the present wireless technologies.
     In order to meet the application requirement of dynamic controllable ROF systems in the broadband ubiquitous wireless access, and resolve the technical challenge in analog-optic fiber link performance and RF resources controlling, this thesis mainly studies the RF-optic transmission (RFOT) and operation (RFOO) technologies, and most of the work is concentrated on the modeling, RFOT&RFOO technologies and the applications of the ROF systems. The detailed content and contributions are presented as follows:
     (1) Modeling of the ROF Systems
     The analog-optic fiber link with high performance is necessary for the application of ROF systems in the broadband access and ubiquitous sensing, and the modeling is the priority to analyze and improve the link performance. This thesis builds a mathematic model of the main performance indexes in the direct and external modulated ROF systems based on the microwave amplifier model, and analyzes the impact of the parameters, such as the received optical power of photodetector (PD), relative intensity noise (RIN) of direct modulated laser (DML), half-wave voltage and injected optical power of the external modulator, on the link perfonnance indexes by simulation.
     Characterization of stimulated Brillouin scattering (SBS) gain and loss spectra is necessary not only in the application but also suppression of the SBS effect in ROF systems. This thesis proposes a simple and precise method to characterize the SBS gain and loss spectra based on the Fresnel reflections and optical carrier suppressed (OCS) modulation, which owns the advantages such as single-ended structure to prevent the error due to laser frequency fluctuation, precise measurement with1MHz or higher resolution due to the small-step sweeping of microwave sources, and low-cost components with bandwidth being half of the Brillouin shifted frequency.
     (2) RFOT Technologies
     In order to meet the requirement of networking with complex topology, the thesis proposes a distributed RFOT system based on the coarse wavelength division multiplexing (CWDM) ROF technique and builds a CWDM-ROF based distributed WiFi system with five wavelength channels, which supports5RAUs, and achieves approximate1.5%and2.5%of the error vector magnitude (EVM) for4.5km and22km single mode fiber (SMF) transmission, respectively. The best transmission performance is obtained when the wireless distance is4m. The impact of the laser RIN is also studied and EVM is degraded obviously when RIN>-125dBc/Hz.
     For application requirement of millimeter (mm) wave band ROF systems, the thesis proposes a gigabit-level mm-wave over fiber technique based on direct modulation and external OCS modulation. The DML is used to generate optical carrier and modulate the baseband data which greatly reduces the system cost. Up-con version of2.4GHz to the32GHz mm-band is demonstrated experimentally and the impact of DML RIN on link performance is studied on the VPI8.7platform.
     In order to realize broadband RF modulation, the thesis firstly proposes an all-optical RF BPSK modulation and transmission technique based on phase modulation to intensity modulation (PM-IM) conversion. The multi-wavelength single sideband (SSB) signals are generated which can tolerate fiber dispersion and meet the requirement of WDM-ROF applications. Considering the stable issue in the experiment, the frequency modulated (FM) laser and band pass filter (BPF) is employed to accomplish the performance simulation on the Optisystem7.0, which achieves good waveform with wide eye diagram and bit error rates of6×10-9.
     The impact of laser linewidth on the SBS threshold and link performance is also studied in the thesis. EVM of WiFi signals is measured in the direct and external modulated ROF links, and the optical power is monitored accordingly. The SBS threshold is improved by4dB when the50KHz-linewidth external modulated link is replaced by the lOMHz-linewidth direct modulated link, which confirms the laser linewidth broadening for the suppression of SBS effect in ROF systems.
     (3) RFOO Technologies
     Dynamic controllable ROF systems can improve the efficiency of the RF bandwidth resources, thus the thesis proposes an RF switching technique based on the MEMS optical switch matrix (OSM) in order to realize the dynamic allocation of the RF bandwidth. Switch speed of the4×4MEMS OSM is measured, and the RF switching is observed by monitoring the optical spectra. The impact of the loss of the OSM on the system EVM is studied experimentally with the help of the Erbium doped fiber amplifier (EDFA). This OSM-based RF switching technique can not only realize the RF resources allocation but also provide multicast services which make the ROF system intelligent.
     RF phase shifter is the key component in the beamfonning of both smart antennas and optical controlled phase-arrayed radars. The thesis firstly proposes a photonic RF phase shifter based on SBS effect and vector-sum theory. PM-IM conversion is completed with the help of SBS functioned on the PM-generated two sidebands. At PD, the two sidebands are mixed with the optical carrier and generate the RF signals with controllable phase shift.
     (4) Applications of the ROF Systems
     With popularity of the WiFi techniques, a hierarchical architecture of wireless sensor network (WSN) and wireless local area network (WLAN) provides a promising solution to the Internet of Things (IOT). In this thesis, a new hierarchical architecture is proposed for ubiquitous wireless sensing and access with improved coverage using CWDM-ROF links. The demonstration platform is built to provide multi-services, such as broadband access, temperature sensing, video monitoring and RFID location, etc.
     In order to meet gigabit-level wireless access requirement, the thesis proposes a multi-band (2.4GHz WiFi and60GHz mm-wave band) dynamic controllable ROF system architecture for in-building multi-services integrated access. The ubiquitous WiFi channel is used for the uplink of60GHz-band ROF link which greatly reduces the cost. The dynamic controllable ROF system is used to realize the bandwidth allocation based on the OSM RF switching techniques. Finally, the distribute antenna system with bandwidth dynamic allocation is implemented, which can not only provide gigabit-level un-compressed high definition television (HDTV) services, but also meet the intelligent house services, such as ubiquitous Mb/s-level access, security surveillance, environment monitoring, etc.
引文
[1]韦乐平,接入网,北京:人民邮电出版社,1997,pp.3-4.
    [2]陈雪,无源光网络技术,北京:北京邮电大学出版社,2006,pp.2-3.
    [3]张鹏,阎阔,FTTx PON技术与应用,北京:人民邮电出版社,2010,pp.20-21.
    [4]徐坤,李建强,面向宽带无线接入的光载无线系统,北京:电子工业出版社,2009,pp.12-14.
    [5]Gee-Kung Chang, Architecture and enabling technologies for optical-wireless access networks, seminar at BUPT, Nov.6,2007, pp.5.
    [6]Bill Huang, C-RAN-Road towards green radio access network, report, China Mobile Research Institute,2010, pp.2-4.
    [7]徐坤,林金桐,大都市网络的解决方案——ROF技术,现代电信科技,2006年9月,pp.2-5.
    [8]Chi H. Lee, Microwave photonics, CRC Press,2007, PP.1-2.
    [9]Fabian Diehm, Jorg Holfeld, Gerhard Fettweis, etal., The FUTON prototype: broadband communication through coordinated multi-point using a novel integrated optical/wireless architecture, IEEE Globecom 2010 Workshop on Broadband Wireless Access,2010, pp.757-762.
    [10]Charles H. Cox Ⅲ, Analog optical links theory and practice, Cambridge University Press,2004, pp.3-5.
    [11]Pappert S.A., Esman R., Krantz B., Photonics for RF systems, IEEE 2008 Conference on Avionics, Fiber-Optics and Photonics Technology,2008, pp.5-6.
    [12]Clark T.R., Dennis, M.L., Linear microwave downconverting RF-to-bits link, Microwave Photonics Conference (MWP'2008),2008, pp.12-14.
    [13]Yun Chiu, Bahram Jalali, Broad-band electronic linearizer for externally modulated analog fiber-optic links, IEEE Photonics Technology Letters, vol.11, no.1,1999, pp. 48-50.
    [14]Edward I. Ackerman, Broad-band linearization of a Mach-Zehnder electro-optic modulator, IEEE Transactions on Microwave Theory and Techniques, vol.47, no.12, 1999,2271-2279.
    [15]L.M.Johnson, H.V.Roussell, Reduction of inter-modulation distortion in interfere metric optical modulators. Optics letters,1988, vol.13, no.10, pp.928-930.
    [16]Delfin Jay M.Sabido, IX, Masafumi Tabara, Improving the dynamic range of a coherent AM analog optical link using a cascaded linearized modulator, IEEE Photoncs Technology Letters, vol.7, no.7,1995, pp.813-815.
    [17]W.B.Bridges, J.H.Schaffner, Distortion in linearized electrooptic modulators, IEEE Trans. Microw, Theory Tech., vol.43, no.9,1995, pp.2184-2197.
    [18]X. Xie, J. Khurgin, J. Kang, et al., Linearized Mach-Zehnder intensity modulator, IEEE Photon. Technol. Lett., vol.15, no.4,2003, pp.531-533.
    [19]G. H. Smith, D. Novak and Z. Ahmed, Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems, Electron. Lett., vol.33, no.1, 1997, pp.74-75.
    [20]Jianxin Ma, Yu, J., Chongxiu Yu, et al., Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation, J. Lightw. Techn., vol.25, no.11,2007, pp.3244-3256.
    [21]V. J. Urick, and F. Bucholtz, Compensation of arbitrary chromatic dispersion in analog links using a modulation-diversity receiver, IEEE Photon. Technol. Lett., vol.17, no.4, 2005, pp.893-895.
    [22]M. Sauer, A. Kobyakov, and A. B. Ruffin, Radio-over-fiber transmission with mitigated stimulated Brillouin scattering, IEEE Photon. Technol. Lett., vol.19,2007, pp.1487-1489.
    [23]H. Le Bras, M. Moignard, B. Charbonnier, Brillouin scattering in radio over fiber transmission, OFC 2006, USA, paper. JWA86.
    [24]M. Morant, T. Quinlan, S. Walker, and R. Llorente, Complete mitigation of Brillouin scattering effects in reflective passive optical networks using triple-format OFDM radio signals, OFC 2011, USA, paper. JWA72.
    [25]Y. Horiuchi, S. Yamamoto, and S. Akiba, Stimulated Brillouin scattering suppression effects induced by cross-phase modulation in high power WDM repeaterless transmission, Electron. Lett., vol.34,1998, pp.390-391.
    [26]T. Nguyen, T. Chartier, L. Bramerie, et al., Utilisation of a self-phase-modulation-based compressor to overcome Brillouin backscattering and intrachannel four-wave mixing in a 2R regenerator at 42.6 Gbit/s, ECOC 2008, Belgium, P.3.08.
    [27]L. Griiner-Nielsen, S. Dasgupta, M. D. Mermelstein et al, A silica based highly nonlinear fibre with improved threshold for stimulated Brillouin scattering, ECOC 2010, Italy, Tu.4.D.3.
    [28]Alayn Loayssa, and David Benito, Dispersion-tolerant all-optical subcarrier modulator for broad-band BPSK transmissions, IEEE Photon. Technol. Lett., vol.16, no.4, Apr. 2004, pp.1161-1163.
    [29]Loayssa, A., Benito, D., All-optical implementation of broadband QPSK subcarrier modulator, Electronics Letters, vol.40, no.21,2004, pp.1362-1364.
    [30]Chul Soo Park, Choong Keun Oh, Chung Ghiu Lee, et al., A photonic up-converter for a WDM radio-over-fiber system using cross-absorption modulation in an EAM, IEEE Photon. Technol. Lett., vol.17, no.9, Sept.2005, pp.1950-1952.
    [31]Y.-K. Seo, C.-S. Choi, and W.-Y. Choi, All-optical signal up-conversion for rdio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers, IEEE Photon. Technol. Lett., vol.14, no.10,2002, pp.1448-1450.
    [32]J. Yu, J. Gu, X. Liu, Z. Jia, and G. K. Chang, Seamless integration of an 8×2.5 Gb/s WDM-PON and radio-over-fiber using all-optical up-conversion based on Raman-assisted FWM," IEEE Photon. Technol. Lett., vol.17, no.9, Sep.2005, pp. 1986-1988.
    [33]B. Leesti, A. J. Zilkie, J. S. Aitchison, et al., Broad-band wavelength up-conversion of picosecond pulses via four-wave mixing in a quantum-dash waveguide, Photon. Technol. Lett., vol.17, no.5, May 2005, pp.1046-1048.
    [34]X. J. Meng and J. Menders, Optical generation of microwave signals using SSB-based frequency-doubling scheme, Electron. Lett., vol.39,2003, pp.103-105.
    [35]J. Yu, Z. Jia, L. Yi, Y. Su, and G.-K. Chang, Optical millimetre-wave generation or up conversion using external modulators, IEEE Photon. Technol. Lett., vol.18, no.1, Jan. 2006, pp.265-267.
    [36]M. Ogusu, Multiplexing of millimeter-wave signals for fiber-radio links by direct modulation of a two-mode locked Fabry-Perot laser, IEEE Trans. on Microw. Theory and Techn., vol.54, no.2,2006, pp.959-966.
    [37]J. Sun, Y. Dai, X. Chen, et al., Dual-wavelength fiber laser with a novel distributed feedback structure and its applications in microwave generation, Proceedings of ECOC2006, tH2.3.3, France, Sept.24-26,2006.
    [38]H. F. Taylor, An electrooptic analog to digital converter, Proc. IEEE, vol.63, no.10, 1975, pp.1524-1525.
    [39]Mjeku M., Gomes N.J., Analysis of the request to send/clear to send exchange in WLAN over fiber networks, J. Lightw. Techn., vol.26, no.15,2008, pp.2531-2539.
    [40]Sklikas P., Mjeku M., Gomes N.J., MAC layer performance evaluation of IEEE 802.16e Radio-over-Fiber networks,2010 IEEE Topical Meeting on Microwave Photonics (MWP),2010, pp.350-353.
    [41]Kalantari-Sabet B., Mjeku M., Gomes N.J., Mitchell J.E., Performance impairments in single-mode radio-over-fiber systems due to MAC constraints, J. Lightw. Techn., vol. 26, no.15,2008, pp.2540-2548.
    [42]A.M.J. Koonen, H.P.A. van den Boom, E. Tangdiongga, et al., Designing in-building optical fiber networks, OFC 2010, paper. JThA46.
    [43]J. C. Attard et al., Optical network architectures for dynamic reconfiguration of full duplex, multi-wavelength, radio-over-fibre, Journal of Optical Networking, vol.5, no. 6,2006, pp.435-444.
    [44]H. Yang et al., Dynamic capacity allocation in radio-over-fiber links, IEEE Topical Meeting on Microwave Photonics (MWP 2010),5-9 Oct.2010, Montreal, QC, pp.181-184.
    [45]Hyun-Do Jung et al., Flexible radio-over-fibre signal distribution in in-building networks based on modulated ASE noise, European Conference on Optical Communication (ECOC 2010),19-23 September,2010, Torino, Italy, P6.16.
    [46]C. Santiago, B. Gangopadhyay B., A. Arsenio, et al., Network management system for (FUTON-like) radio-over-fiber infrastructure, Special Issue of IJCCT vol.1, no.2, Aug. 2010, pp.354-359.
    [1]David M. Pozar, Microwave Engineering, Third Edition, New York:John Wiley& Sons, Inc.,2005, pp.419-493.
    [2]顾婉仪,李国瑞,光纤通信系统,北京:北京邮电大学,2003,pp.145-146.
    [3]徐坤,李建强,面向宽带无线接入的光载无线系统,北京:电子工业出版社,2009,pp.62-63.
    [4]李建强,基于铌酸锂调制器的微波光子信号处理技术与毫米波频段ROF系统设计,北京邮电大学博士论文,2009年6月,pp.12-16.
    [5]C. H. Cox III, G. E. Betts, and L. M. Johnson, An analytic and experimental comparison of direct and external modulation in analog fiber-optic links, IEEE Trans. Microwave Theory Tech., vol.38, no.5,1990, pp.501-509.
    [6]C. Cox, Analog Optical Links. Cambridge, U.K.:Cambridge Univ. Press,2004.
    [7]Charles H. Cox Ⅲ, Edward Ⅰ. Ackerman, Gary E. Betts, et al., Limits on the performance of RF-over-fiber links and their impact on device design, IEEE Trans, on Microw. Theory and Techn., vol.54, no.2,2006, pp.906-920.
    [8]Chi H. Lee, Microwave Photonics, New York:CRC Press,2007, pp.195-201.
    [9]A. Loayssa, D. Benito, and M. Garde, Optical carrier Brillouin processing of microwave photonic signals, Opt. Lett., vol.25, no.17,2000, pp.1234-1236.
    [10]T. Horiguchi, K. Shimizu, T. Kurashima, et al, Development of a distributed sensing technique using Brillouin scattering, IEEE J. Lightw. Technol., vol.13, no.7, Jul.1995, pp.1296-1301.
    [11]S. Tonda-Goldstein, G. Charlet, D. Dolfi, J. P. Huignard, J. Chazelas, SBS in fiber for modulation depth enhancement of optically carried microwave signals,2000 Conference on Lasers and Electro-Optics Europe,2000, paper. CTu17.
    [12]Chul Soo Park, Chung Ghiu Lee, Chang-Soo Park, Photonic frequency upconversion by SBS-based frequency tripling, J. Lightw. Techn., vol.25, no.7,2007, pp. 1711-1718.
    [13]Haoshuo Chen, Rujian Lin, Jiajun Ye, A scheme of yielding tunable millimeter-wave based on stimulated Brillouin scattering,2008 China-Japan Joint Microwave Conference,2008, pp.591-594.
    [14]Yichun Shen, Xianmin Zhang, Kangsheng Chen, Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering, Photonics Technology Letters, vol.17, no.6,2005, pp.1277-1279.
    [15]Xiaoqiang Sun, Songnian Fu, Kun Xu, et al., Photonic RF phase shifter based on a vector-sum technique using stimulated Brillouin scattering in dispersion shifted fiber, IEEE Transactions on Microwave Theory and Techniques, vol.58, no.11, Nov.2010, pp.3206-3212.
    [16]Ippen E. P., Stolen R. H., Stimulated Brillouin scattering in optical fibers, Applied Physics Letters, vol.21, no.11,1972, pp.539-541.
    [17]Andrey Kobyakov, Michael Sauer, and Dipak Chowdhury, Stimulated Brillouin scattering in optical fibers, Advances in Optics and Photonics, vol.2, no.1,2010, pp. 1-59.
    [18]Govind P. Agrawal, Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optics, Third Edition, US:Academic Press,2001, pp.355-380.
    [19]R. Waarts, A. Friesem, Y. Hefetz, Frequency-modulated to amplitude-modulated signal conversion by a Brillouin-induced phase change in single-mode fibers, Opt. Lett., vol. 13, no.2, Feb.1988, pp.152-154.
    [20]N. Shibata, Y. Azuma, T. Horiguchi, and M. Tateda, Identification of longitudinal acoustic modes guided in the core region of a single-mode optical fiber by Brillouin gain spectra measurements, Opt. Lett. vol.13,1988, pp.595-597.
    [21]M. Nikles, Luc Th'evenaz, and Philippe A. Robertet, Brillouin gain spectra characterization in single-mode optical fibers, J. Lightwave Technol., vol.15, no.10, 1997, pp.1842-1851.
    [22]A. Loayssa, D. Benito and M.J. Gardeet, Narrow-bandwidth technique for stimulated Brillouin scattering spectral characterisation, Electron. Lett. vol.37, no.6,2001, pp. 367-368.
    [23]A. Loayssa, R. Hernandez, D. Benito, and S. Galechet, Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation, Opt. Lett., vol.29, no.6,2004, pp.638-640.
    [24]Xiaoqiang Sun, Kun Xu, Yinqing Pei, Jian Wu, Jintong Lin, "Characterization of SBS gain and loss spectra using Fresnel reflections and interaction of two sidebands," Conference on Optical Fiber Communication (OFC2010) in San Diego, California, USA, Mar.2010.
    [25]Alexander L. Gaeta and Robert W. Boyd, Stochastic dynamics of stimulated Brillouin scattering in an optical fiber, Phys. Rev. A, vo.44, no.5,1991, pp.3205-3209.
    [1]Davide Visani, Giovanni Tartarini, Luigi Tarlazzi, et al., Transmission of UMTS and WIMAX signals over cost-effective Radio over Fiber systems, IEEE Microwave and Wireless Components Letters, vol.19, no.12,2009, pp.831-833.
    [2]Lona D. G, Hernandez-Figueroa H. E., Cerqueira S. Arismar, Investigation of noise sources in Radio-over-Fiber systems for Wi-Fi applications, Microwave & Optoelectronics Conference (IMOC),2011, pp.97-101.
    [3]Lei Deng, Jensen, J.B., Xianbin Yu, In-building unlicensed WiFi band OFDM signal distribution over MMF&BIF using VCSEL,2011 IEEE Photonics Conference (PHO), 2011, pp.200-201.
    [4]Khashjori N., Al-Raweshidy H. S., Bajwa A., Macrodiversity performance in the uplink of WCDMA with radio over fibre access network, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol.3,2002, pp. 1367-1371.
    [5]Michael J. Crisp, Sheng Li, Andy Watts, Richard V. Penty, and Ian H. White, Uplink and downlink coverage improvements of 802.11g signals using a distributed antenna network,3388 J. Lightw. Technol., vol.25, no.11, Nov.2007, pp.3388-3395.
    [6]M. Crisp, R. V. Penty, and I. H. White, Dual function sensing and multiservice communications radio over fiber network using second harmonic suppression, OFC/NFOEC 2009, San Diego, CA, USA, Mar.22-26,2009, paper OWF5.
    [7]Zine Bouhamri, Vincent Dobremez, Yannis Le Guennec, Multistandard RoF bus for in-building networks, Microwave Photonics Conference 2011,2011, pp.258-261.
    [8]Zhensheng Jia, Jianjun Yu, Georgios Ellinas, and Gee-Kung Chang, Key enabling technologies for optical-wireless networks:optical millimeter-wave generation, wavelength reuse, and architecture, J. Lightw. Technol., vol.25, no.11, Nov.2007, pp. 3452-3471.
    [9]Ming-Fang Huang, Jianjun Yu, Zhensheng Jia, Gee-Kung Chang, Simultaneous generation of centralized lightwaves and double/single sideband optical millimeter-wave requiring only low-frequency local oscillator signals for radio-over-fiber systems, J. Lightw. Technol., vol.26, no.15,2008, pp.2653-2662.
    [10]Lin Chen, Yu J. G, Shuangchun Wen, Lu J., Dong Z., Huang M.; Chang G. K., A novel scheme for seamless integration of ROF with centralized lightwave OFDM-WDM-PON system, J. Lightw. Technol., vol.27, no.14,2009, pp.2786-2791.
    [11]Chowdhury A., Hung-Chang Chien, Yu-Ting Hsueh, Gee-Kung Chang, Advanced system technologies and field demonstration for in-building optical-wireless network with integrated broadband services, J. Lightw. Technol., vol.27, no.12,2009, pp.1920-1927.
    [12]Fukushima S., Doi Y.; Ohno T., Matsuoka Y, Takeuchi H., New phase-shift keying technique based on optical delay switching for microwave optical link, IEEE Photonics Technol. Lett., vol.11, no.8,1999, pp.1036-1038.
    [13]Doi Y., Fukushima S., Ohno T., Matsuoka Y, Takeuchi H., Phase shift keying using optical delay modulation for millimeter-wave fiber-optic radio links, J. Lightw. Technol., vol.18, no.3,2000, pp.301-307.
    [14]A. Loayssa, D. Benito, Dispersion-tolerant all-optical subcarrier modulator for broad-band BPSK transmissions, IEEE Photonics Technol. Lett., vol.16, no.4,2004, pp.1161-1167.
    [15]Y. Song, X. Zheng, W. Wang, H. Zhang, and B. Zhou, All-optical broadband phase modulation of a subcarrier in a radio over fiber system, Optics Letters, vol.31,2006, pp.3234-3236.
    [16]A. Loayssa, D. Benito, M. J. Garde, High-bit rate all-optical BPSK modulator for fiber-optic microwave/millimeter-wave links, The 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2001), vol.1,2001, pp.316-317.
    [17]L. Xu, C. W. Chow, and H. K. Tsang, Long-reach multicast high split-ratio wired and wireless WDM-PON using SOA for remote upconversion, IEEE Trans. Microw. Theory Tech., vol.58, no.11,2010, pp.3136-3143.
    [18]M. Sauer, A. Kobyakov, and A. B. Ruffin, Radio-over-fiber transmission with mitigated stimulated Brillouin scattering, IEEE Photon. Technol. Lett. vol.19,2007, pp.1487-1489.
    [19]H. Le Bras, M. Moignard, B. Charbonnier, Brillouin scattering in radio over fiber transmission, OFC 2006, JWA86, USA.
    [20]M. Morant, T. Quinlan, S. Walker, and R. Llorente, Complete mitigation of Brillouin scattering effects in reflective passive optical networks using triple-format OFDM radio signals, OFC 2011, JWA72, USA.
    [21]Y. Horiuchi, S. Yamamoto, and S. Akiba, Stimulated Brillouin scattering suppression effects induced by cross-phase modulation in high power WDM repeaterless transmission, Electron. Lett., vol.34,1998, pp.390-391.
    [22]T. Nguyen, T. Chartier, L. Bramerie, M. Gay, Q. Le, S. Lobo, M. Joindot, J. Simon, Utilisation of a self-phase-modulation-based compressor to overcome Brillouin backscattering and intrachannel four-wave mixing in a 2R regenerator at 42.6 Gbit/s, ECOC 2008, P.3.08, Belgium.
    [23]L. Gruner-Nielsen, S. Dasgupta, M. D. Mermelstein et al, A silica based highly nonlinear fibre with improved threshold for stimulated Brillouin scattering, ECOC 2010, Tu.4.D.3, Italy.
    [24]Xiaoqiang Sun, Kun Xu, Xi Shen, Yan Li, Yitang Dai, Jian Wu, Jintong Lin, "A new hierarchical architecture for ubiquitous wireless sensing and access with improved coverage using CWDM-ROF links," OSA Journal of Optical Communications and Networking, vol.3, no.10, Dec.2011, pp.790-796.
    [25]Xiaoqiang Sun, Kun Xu, Songnian Fu, Jianqiang Li, Xiaobin Hong, Jian Wu, Jintong Lin, Perry Shum, "All-Optical WDM subcarrier modulator for binary phase shift keying (BPSK) with optical SSB format using a phase modulator loop mirror filter,' Conference on Optical Fiber Communication (OFC 2009) in San Diego, California, USA, Mar.2009.
    [26]Fei Zeng, Jianping Yao, Frequency domain analysis of fiber Bragg grating based phase modulation to intensity modulation conversion, Proc. of SPIE, vol.5971,2005, pp. 59712B1-8.
    [27]X. Fang, K. Demarest, H. Ji, C. Allen, and L. Pelz, A subnanosecond polarization-independent tunable filter/wavelength router using a Sagnac interferometer, IEEE Photon. Technol. Lett., vol.9, no.11,1997, pp.1490-1492.
    [28]C.-S. Kim, F. N. Farokhrooz, and J. U. Kang, Electro-optic wavelengthtunable fiber ring laser based on cascaded composite Sagnac loop filters, Opt. Lett., vol.29,2004, pp.1677-1679.
    [29]M. P. Fok, K. L. Lee, C. Shu, Waveband-switchable SOA ring laser constructed with a phase modulator loop mirror filter, IEEE Photon. Technol. Lett., vol.17, no.7,2005, pp.1393-1395.
    [30]Lilin Yi, Weisheng Hu, Yi Dong, et al., A polarization-independent subnanosecond 2 X 2 multicast-capable optical switch using a Sagnac interferometer, IEEE Photon. Technol. Lett., vol.20, no.8,2008, pp.539-541.
    [31]P. Mitchell, A. Janssen, and J. K. Luo, High performance laser linewidth broadening for stimulated Brillouin suppression with zero parasitic amplitude modulation, J. Applied Physics, vol.105,2009, pp.093104.
    [32]F. H. Tithi and M. S. Islam, Suppression of stimulated Brillouin scattering effect using nonlinear phase modulation,6th International Conference on Electrical and Computer Engineering (ICECE 2010), Dhaka, Bangladesh,2010, pp.135-138.
    [1]Angeliki Alexiou, Martin Haardt, Smart antenna technologies for future wireless systems:trends and challenges, IEEE Communications Magazine, Wireless World Research Forum, Sept.2009, pp.90-97.
    [2]Mitchell, A.; Waterhouse, R.B., Broadband beamforming network using integrated optic RF phase shifters, International Topical Meeting on Microwave Photonics (MWP 2000),2000, pp.85-88.
    [3]Gregory C. Tavik, Charles L. Hilterbrick, James B. Evins, et al., The advanced multifunction RF concept, IEEE Trans, on Microw. Theory and Techn., vol.53, no.3, Mar.2005, pp.1009-1020.
    [4]Xin Qian, Hartmann P., White I.H., et al., Application of semiconductor optical amplifiers in scalable switched radio-over-fiber networks, International Topical Meeting on Microwave Photonics (MWP 2005),2005, pp.317-320.
    [5]Crisp M., Aw E.T., White I.H., Demonstration of an SOA efficient 32×32 optical switch for radio over fiber distribution systems, Conference on Optical Fiber communication (OFC 2008),2008, pp.1-3.
    [6]C.M. Okonkwo, S.T. Abraha, A.M.J. Koonen, et al., Simultaneous generation and routing of millimetre-wave signals exploiting optical frequency multiplication, ECOC 2010, Sept.2010, Torino, Italy, pp. Th.10.B.7.
    [7]Hyun-Do Jung, Marco Presi, Ton Koonen, et al., Flexible radio-over-fibre signal distribution in in-building networks based on modulated ASE noise, ECOC 2010, Sept. 2010, Torino, Italy, pp. P6.16.
    [8]H.-D. Jung, N. Calabretta, A.M.J. Koonen, et al., All-optical routing architecture of radio signals using label processing technique for in-building optical networks, ECOC 2008, Sept.2008, Brussels, Belgium, pp. Tu.4.F.2.
    [9]H. Yang, H.-D. Jung, Y. Zheng, A.M.J. Koonen, et al., OFDM radio-over-fibre systems employing routing in multi-mode fibre in-building networks, ECOC 2008, Sept.2008, Brussels, Belgium, pp. Tu.4.F.6.
    [10]Hyun-Do Jung, Chigo-Okonkwo, A.M.J. Koonen, et al., All-Optical Multicasting of Millimetre-Wave Signals using Optical Frequency Multiplication Technique for In-building Networks, ECOC 2009, Sept.2009, Vienna, Austria, pp.4.5.3.
    [11]马文英,董玮,刘彩霞等,光子射频移相器研究与进展,半导体技术,vol.132,no.14,2007,pp.281-284.
    [12]廖进昆,刘永智,侯文婷等,集成光子学微波移相器研究进展,激光与红外,vol.7,no.9,2007,pp.806-809.
    [13]祝宁华,闫连山,刘建国,光纤光学前沿,北京:科学出版社,2011,pp.513-517.
    [14]P.G.Sheehan, R.J.Foreest, The use of optical techniques for beam-forming phased arrays, SPIE.477,1984, pp.75-81.
    [15]Y. Dong, H. He, W. Hu, Z. Li, Q. Wang, W. Kuang, T. H. Cheng, Y. J. Wen, Y. Wang, and C. Lu, Photonic microwave phase shifter/modulator based on a nonlinear optical loop mirror incorporating a Mach-Zehnder interferometer, Optics Letters, vol.32, no.7, 2007, pp.745-747.
    [16]A. Loayssa, and F. J. Lahoz, Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation, IEEE Photonic Technology Letters, vol.18, no.1,2006, pp.208-210.
    [17]P. Peng, F. Wu, et al,40 GHz phase shifter based on semiconductor laser, Electron. Lett., vol.44, no 8, Apr.2008, pp.520-521.
    [18]M. Fisher, S. Chuang, A microwave photonic phase-shifter based on wavelength conversion in a DFB laser, IEEE Photon. Technol. Lett., vol.18, no.16, Aug.2006, pp. 1714-1716.
    [19]P. Peng, F. Wu, W. Jiang, et al, RF phase shifter using a distributed feedback laser in microwave transport systems, Optics Express, vol.17, no.9, Apr.2009, pp.7609-7614.
    [20]D.B. Adams, C. K. Madsen, A novel broadband photonic RF phase shifter, J. Lightw. Technol., vol.26, no.15, Aug.2008, pp.2712-2717.
    [21]Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, Y. Su, A tunable broadband photonic RF phase shifter based on a silicon microring resonator, IEEE Photon. Technol. Lett., vol. 21, no.1, Jan.2009, pp.60-62.
    [22]Yang Yongjun, Chen fushen, A novel photonic RF phase shifter based on dual-drive Mach-Zehnder modulator,2005 International Conference on Communications, Circuits and Systems, vol.1,2005, pp.565-567.
    [23]K. Lee, Y. Jhon, W. Choi, Photonic phase shifters based on a vector-sum technique with polarization-maintaining fibers, Opt. Lett., vol.30, no.7, Apr.2005, pp.702-704.
    [24]W. Xue, F. Ohman, S. Blaaberg, Y. Chen, S. Sales, J. Mork, Broadband microwave photonic phase shifter based on polarisation rotation, Electron. Lett., vol.44, no.11, May 2008, pp.684-685.
    [25]Xiaoqiang Sun, Songnian Fu, Kun Xu, et al., Photonic RF phase shifter based on a vector-sum technique using stimulated Brillouin scattering in dispersion shifted fiber, IEEE Transactions on Microwave Theory and Techniques, vol.58, no.11, Nov.2010, pp.3206-3212.
    [26]H. Chi, X. Zou, and J. Yao, Analytical models for phase-modulation-based microwave photonic systems with phase modulation to intensity modulation conversion using a dispersive device, IEEE J. Lightw. Technol., vol.27, no.5, Mar.2009, pp.511-523.
    [27]R. Waarts, A. Friesem, Y. Hefetz, Frequency-modulated to amplitude-modulated signal conversion by a Brillouin-induced phase change in single-mode fibers, Opt. Lett., vol. 13, no.2, pp.152-154, Feb.1988.
    [28]A. Loayssa, D. Benito, and M. Garde, Optical carrier Brillouin processing of microwave photonic signals, Opt. Lett., vol.25, no.17, Sep.2000, pp.1234-1236.
    [29]T. Tanemura, Y. Takushima, and K. Kikuchi, Narrowband optical filter with a variable transmission spectrum using stimulated Brillouin scattering in optical fiber, Opt. Lett., vol.27, Sep.2002, pp.1552-1554.
    [1]柏慧,徐锐,王欢,基于DSP的矿井光纤直放站的分析与研究,煤矿机械,vol.32,No.11,Nov.2011,pp.79-81.
    [2]李黎,光纤直放站在铁路长大隧道中的设计及应用,铁道通信信号,vol.44,no.11,Nov.2008,pp.50-52.
    [3]时庆飞,光纤直放站原理及在铁路移动通信的应用,铁路通信信号工程技术,vo1.7,no.2,2010,pp.38-39.
    [4]徐建,王志功,江汉等,GSM-R光纤直放站中射频光收发模块设计,东南大学学报(自然科学版),vol.41,no.4,Jul.2011,pp.687-690.
    [5]尹红波,光纤直放站在移动通信网中的应用及干扰舰船电子对抗,vol.30,no.1,Feb.2007,pp.104-107.
    [6]吴柯,射频拉远单元RAU与数字光纤直放站分析比较,烽火科技报,2008年第04期,pp.18-20.
    [7]FUTON website, http://www.ict-futon.eu.
    [8]C. Santiago, B. Gangopadhyay, A. Arsenio, Network management system for (FUTON-like) radio-over-fiber infrastructure, Special Issue of IJCCT, vol.1, no.2,3,4, 2010 for International Conference (ACCTA-2010),3-5 Aug.2010, pp.354-359.
    [9]Pato S., Pedro J., Santos J., et al., On building a distributed antenna system with joint signal processing for next generation wireless access networks:the FUTON approach, 7th Conference on Telecommunications, Portugal.
    [10]Fabian Diehm, Jorg Holfeld, Gerhard Fettweis, et al., The FUTON prototype: broadband communication through coordinated multi-point using a novel integrated optical/wireless architecture, IEEE Globecom 2010 Workshop on Broadband Wireless Access,2010, pp.757-762.
    [11]S. Pato, P. Monteiro, N. Gomes, A. Gameiro, T. Kawanishi, Next-generation distributed and heterogeneous radio architectures:the FUTON project, Asia-Pacific Microwave Photonics Conference, Beijing, China,22-24 April,2009.
    [12]G Heliotis, I.P. Chochliouros, G. Agapiou, Fibre optic networks:the case of the FUTON programme, The Journal of The Institute of Telecommunications Professionals, vol.2, no.3,2008, pp.113-118.
    [13]Chowdhury A., Chuang K., Hung-Chang Chien, et al., Field demonstration of bi-directional millimeter wave RoF systems inter-operable with 60 GHz multi-gigabit CMOS transceivers for in-building HD video and data delivery, Optical Fiber Communication Conference (OFC 2011),2011, pp.1-3.
    [14]Yu Jianjun, Xu Zhenbo, Zhang Xiupu, Jia, Zhensheng, Gee Kung Chuang, et al., A cost-effective scheme to generate and de-multiplex multiple frequency millimeter-wave signals in a ROF network,33rd European Conference and Ehxibition of Optical Communication (ECOC),2007, pp.1-2.
    [15]Ming-Fang Huang, Jianjun Yu, Zhensheng Jia, Gee-Kung Chang, Simultaneous generation of centralized lightwaves and double/single sideband optical millimeter-wave requiring only low-frequency local oscillator signals for radio-over-fiber systems, J. Lightw. Techn., vol.26, no.15,2008, pp.2653-2662.
    [16]Vegas Olmos J., Kuri T., Kitayama K., Dynamic reconfigurable WDM 60-GHz millimeter-waveband radio-over-fibre access network:architectural considerations and experiment, Journal of Lightwave Technology, vol.25, no.11, Nov.2007, pp. 3374-3380.
    [17]R. E. Schuh, C. Schuler, M. Mateescu, An architecture for radio-independent wireless access networks, Proceedings 49th IEEE Annual International Vehicular Technology Conference, VTC'99, Houston, Texas, USA, vol.2,16-19 May,1999, pp.1227-1231.
    [18]E. Welbourne, L. Battle, G Cole, K. Gould, K. Rector, S. Raymer, M. Balazinska, and G Borriello, Building the Internet of things using RFID. the RFID ecosystem experience, IEEE Internet Computing, vol.13, no.3, Jun.2009, pp.48-55.
    [19]G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy, Smart objects as building blocks for the Internet of things, IEEE Internet Computing, vol.14, no.1, Feb.2010, pp.44-51.
    [20]T. Gibbon, T. Pham, C. Neumeyr, E. Ronneberg, M. Ortsiefer, and I. Monroy, VCSEL-based gigabit impulse radio UWB for converged wireless sensor and communication in-building networks, in 36th European Conference and Exhibition on Optical Communication (ECOC),2010, Torino, Italy, Sept.19-23,2010, paper P6.10.
    [21]A. Chowdhury, H. Chi en, S. Fan, J. Yu, N. Jayant, and G. Chang, Radio over fiber technology for next-generation E-health in converged optical and wireless access network, in Optical Fiber Communication Conf. and Expo., and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC),2011, Los Angeles, CA, USA, Mar.6-10,2011, paper OTuF1.
    [22]M. Crisp, R. V. Penty, and I. H. White, Dual function sensing and multiservice communications radio over fiber network using second harmonic suppression, in Optical Fiber Communication Conf. and Expo., and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC),2009, San Diego, CA, USA, Mar.22-26,2009, paper OWF5.
    [23]M. Aime, G. Calandriello, and A. Lioy, Dependability in wireless networks:can we rely on WiFi, IEEE Security & Privacy, vol.5, no.1, Feb.2007, pp.23-29.
    [24]K. Nakatsuka, K. Nakamura, Y. Hirata, and T. Hattori, A proposal of the co-existence MAC of IEEE 802.11b/g and 802.15.4 used for the wireless sensor network, in 5th IEEE Conference on Sensors 2006, EXCO, Daegu, Korea, Oct.22-25,2006, pp. 722-725.
    [25]L. Angrisani, M. Bertocco, D. Fortin, and A. Sona, Experimental study of coexistence issues between IEEE 802.11b and IEEE 802.15.4 wireless networks, IEEE Trans. on Instrumentation and Measurement, vol.57, no.8, Aug.2008, pp.1514-1523.
    [26]Xiaoqiang Sun, Kun Xu, Xi Shen, Yan Li, Yitang Dai, Jian Wu, Jintong Lin, A new hierarchical architecture for ubiquitous wireless sensing and access with improved coverage using CWDM-ROF links, OSA Journal of Optical Communications and Networking, vol.3, no.10, Dec.2011, pp.790-796.
    [27]A. Iera, C. Floerkemeier, J. Mitsugi, and G. Morabito, The Internet of things [Guest Editorial], IEEE Wireless Communications, vol.17, no.6, Dec.2010, pp.8-9.
    [28]H. Schulzrinne, X. Wu, S. Sidiroglou, S. Berger, Ubiquitous computing in home networks, IEEE Commun. Mag., vol.41,2003, pp.128-135.
    [29]C. Suh, Y Ko, Design and implementation of intelligent home control systems based on active sensor networks, IEEE Trans. on Consumer Electron., vol.54,2008, pp. 1177-1184.
    [30]T. Koonen, Trends in optical access and in-building networks, ECOC 2008, Belgium, Paper.We.2.A.1.
    [31]A. Chowdhury, H. Chien, Y Hsueh, and G. Chang, Advanced system technologies and field demonstration for in-building optical-wireless network with integrated broadband services, J. Lightw. Technol., vol.27,2009, pp.1920-1927.
    [32]Y.Hsueh, Z.Jia, H.Chi en, A.Chowdhury, J.Yu, GChang, Generation and transport of independent 2.4GHz(Wi-Fi),5.8GHz(WiMAX), and 60-GHz optical millimeter-wave signals on a single wavelength for converged wireless over fiber access networks, OFC 2009, USA, Paper. OTuJ1.
    [33]H. Yang, D. Visani, C.M. Okonkwo, Y Shi, G. Tartarini, E. Tangdiongga and A.M.J. Koonen, Multi-standard transmission of converged wired and wireless services over 100m plastic optical fibre, ECOC 2010, Italy, Paper.We.7.B.3.
    [34]T. Gibbon, T. Pham, C. Neumeyr, E. Ronneberg, M. Ortsiefer, and I. Monroy, VCSEL-based gigabit impulse radio UWB for converged wireless sensor and communication in-building networks, ECOC 2010, Italy, Paper. P6.10.
    [35]Xiaoqiang Sun, Kun Xu, Jian Niu, Zhaoxin Tang, Zhishan Gong, Yan Li, Jian Wu, Jintong Lin, Integrated architecture of EPON and multiband ROF links for broadband and ubiquitous in-building networks, Conference on Information Photonics & Optical Communications, Singapore, Oct.2011, Paper.c11a303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700