地下水石油类污染物(BTEX)的微生物降解试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水石油烃污染对人类健康和生态环境具有很大危害,苯系化合物(BTEX)是石油烃污染中的重要组成成分之一。苯系物具有“三致效应”,己被世界卫生组织确定为强致癌物质。微生物降解苯系化合物是一种有效的生态处理方法。
     本实验以上海金山化工区污水处理厂处理废水的活性污泥为菌源,以甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯作为底物,在好氧条件下,经过驯化和筛选得到能降解苯系物的7种菌(TEX-1~TEX-7)。
     通过16SrDNA序列测试,确认TEX-1为假单细胞菌属(Pseudomonas sp.),TEX-2节杆菌属(Arthrobacter sp.),TEX-3芽孢杆菌属(Bacillus sp.),TEX-4红球菌属(Rhodococcus sp.),TEX-5芽孢杆菌属,(Bacillus sp.),TEX-6戈登氏菌属(Gordonia sp.) , TEX-7列契瓦尼而氏菌属(Lechevalieria sp.),并为这7种菌株建立了系统发育树。
     实验进一步分析得到了混合菌的最佳生长条件:培养温度30℃,培养时间为48h,接种量10%,摇床转速180 r/min。降解甲苯,乙苯的的菌种适合弱碱性环境,pH=7~9时降解率均很高,降解二甲苯的菌种适合弱酸性或弱酸性环境,pH=4或10时降解率最高。
     针对苯系物极易挥发和溶解度小的特点,本实验采用添加离子表面活性剂吐温80,以达到苯系物增溶效果。研究表明吐温80含量为0.3%时,混合菌对甲苯的降解率最高达98%;吐温80含量为0.4%时,乙苯最高降解率达88%;吐温80含量为0.6%时,间对二甲苯的降解率最高达78.6%,吐温80含量为0.6%时,邻二甲苯的最高降解率达76%。实验表明,一定量的吐温80可以显著提高水相中苯系物的溶解度,增大酶与底物的接触几率,提高酶的反应速度,提高生物可利用率。但吐温80浓度高于一定值后,其与底物的竞争关系加剧,进而抑制微生物对底物的降解。
     研究表明这些混合菌对苯系物的降解率很高,对甲苯的降解率可以达到99%,对乙苯的降解率达92%,对二甲苯的降解率维持在70~83%之间。菌落在高浓度苯系物条件下也能存活。
     对降解产物的GC-MS分析发现,降解过程中产生了苯酚、环已醇、1.8-壬二烯-3-醇、长链烷烃、长链烯烃、乙酸等物质,表明降解过程中苯环被打破,碳链被微生物重新组合。此与苯系物的常规降解途径有所出入,有待于进一步考证,进而为苯系物污染的生物修复和治理提供基础理论资料。
Benzene (BTEX) is the main petroleum pollutants in groundwater. Microbial degradation is an effective ecological approach of benzene compounds disposal. This study selected activated sludge as a bacteria source from Shanghai Jinshan Chemical Industry Zone sewage treatment plant, toluene, ethylbenzene and xylene as substrates. Under aerobic conditions, 7 kinds of bacteria are selected that can degrade benzene compounds.
     Through 16SrDNA sequence test, the 7 kinds of bacteria (TEX1-7) are identified as Pseudomonas sp., Arthrobacter sp., Bacillus sp., Rhodococcus sp., Bacillus sp., Gordonia sp., and Lechevalieria sp., respectively. And then the phylogenetic tree is established. Further study shows that the optimal growth conditions for mixed bacteria are 30℃, reaction time 48h, inoculation 10%, shaking rotate 180r/min, pH=7~9 for toluene, ethylbenzene degradation and pH=4 or 10 for xylene degradation, respectively.
     Ionic surfactant Tween 80 is added to achieve solubilization effect. Studies have shown that the highest toluene degradation reaches to 98% at 0.3% Tween-80 content, ethylbenzene 88% at 0.4%, inter-p-xylene 78.6% and o-xylene 76% at 0.6%, respectively. A certain amount of Tween-80 can significantly improve the water solubility of benzene phase, increasing the contact probability of enzyme and substrate, then increase the enzyme reaction speed and improve bio-availability. However, excessive Tween 80 will inhibit microbial degradation of the substrate.
     The studies have shown that these mixed bacteria can degrade benzene compounds effectively. The biodegradation rate for toluene can reach 99%, ethylbenzene 92%, and xylene between 70-83%. Colonies can survive under high concentration of benzene compounds.
     GC-MS analysis of degradation products indicate that biodegradation produces phenol, cyclohexanol, 1, 8-Nonadiyne-3-ol, long-chain alkanes, long-chain olefins, etc. It is indicated that the benzene ring is broken and carbon chain is reset by these bacteria. This differs from the conventional degradation pathway. Further study is needed for the basic theory of bioremediation and control of BTEX contamination.
引文
[1]戴树桂,张林,白志鹏等.室内空气中苯系物的测定与模拟研究[J].中国环境科学, 1997, 17(6):485-488.
    [2] Ferrai C. P. , KaLuzny P.Roehe A., et al, Aromatic Hydroearbons and Aldehydes in the Atomsphere of Grenoble[J], France ChemosPhere,1998, 37(8):1587-1601.
    [3] Toshiyuki Tanaka, Tsuyoshi Samukawa. The Source Characterization and Chemical Change of Ambient Aromatic Hyduoearbons[J], Chemosphere, 1996, 33(1):131-145.
    [4]夏青,田仁生,尊文.中国首批环境标志产品的研究[J].环境科学研究, 1994, 7(1)11-14.
    [5] Wiedemeier T.H., Swanson, M.A., WiLson J.T., et al.Approximation of biodegradation of rate constants for monoaromatic hydrocarbons (BTEX) in groundwater[J]. Ground Water Monitoring and Remediation, 1996, 16(3):186-194.
    [6]魏复盛,徐晓白,闰吉昌.水和废水监测分析方法指南(下册)[M].中国环境科学出版社, 1997, 320.
    [7]史茂,李抗美.用毛细管柱测定水和废水中的苯系物[J].甘肃环境研究与监测, 1999, 12(3):123-125.
    [8]胡黎明,郝荣福,殷昆亭,劳敏慈. BTEX在非饱和土和地下水系统中迁移的试验研究.清华大学学报(自然科学版). 2003, 43:1546-1549
    [9]夏昭林,孙品等.苯的职业健康危害研究的回顾与展望[J].中华劳动卫生职业病杂志, 2005, 23(4):241-243.
    [10] Exberg Lars E. Volatile organic compounds in office buildings[J]. Atoms.Environ., 1994, 28(21):3571-3575.
    [11]я.M.鲁格什科著,张宏才译.大气中工业排放有害有机物手册[M].北京:中国环境科学出版社, 1990.
    [12]日本化学会编,李芥春,宁振东,王子亮译.碳氢化合物污染及其对策[M].北京:科学出版社, 1987.
    [13]高莲,谢永恒.控制挥发性有机化合物污染的技术[J].化工环保, 1998, 18(6):343-346.
    [14] Phelps, C.D., Young, L.Y. Anaerobic biodegradation of BTEX and gasoline in various aquatic sediments[J]. Biodegradation, 1999, 10:15-25.
    [15] Mohammde Niaz, Allyala R I, Nakhla G F, et al. State of art veriew of bioermediation studies[J]. J Enviorn Sci Haelt, 1997, 31(7):1547-1574. [161郑铭.制鞋生产中三苯废气的危害及治理措施[J].劳动安全与健康, 2001, 6:43-44.
    [17]史德,苏广和.室内空气质量对人体健康的影响[M].北京:中国环境科学出版社, 2005.
    [18]成东艳.室内空气中苯系物污染的危害及防治[J].环境保护与循环经济, 2008, 1:40-41.
    [19] Pezolt D.J., ColliekS.J., Johnson H.A., et al. Pressure Swing Adsorption for VOC Recovery atGasline Terminals[J]. Chemincal Engineering Progress, 1997, 16(l):16-22.
    [20] Ruhl M.J. Reeover VOC via adsorption on activated carbon[J]. ChemiealEngineering Progress, 1993, 89(7):37-41.
    [21] Stenzel M.H. Remove organics by activated carbon adsorption[J]. Chemical Engineering Progress, 1993, 89(4):36-41.
    [22] Chiang yu-Chun Pen-ChiChiang Chin-PaoHuang. Effects of pore structure and temperature on VOC adsorption on activated carbon[J]. Carbon, 2001, 39:523-534.
    [23] R.R.Bansode, et al. Adsorption of volatile organic compounds by pecanshel landalmondshell-base dgranula raetivated carbons[J].BioresoureeTeehnoLogy, 2003, 90:175-184.
    [24]苏建华,史长东,鲁树成等.有机废气生物处理进展.吉林化工学院学报, 2001, 18(2):73-76.
    [25]吴家信.冷凝、除雾、催化燃烧法治理油漆废气[J].铀矿地质, 1998, l4(5):313-317.
    [26]刘忠生,李花伊,陈玉香等.冷凝—催化燃烧法处理乙烯厂富含水蒸气的恶臭废水[J].化工环保, 2003, 23(2):97-99.
    [27] Dinelli G, Civitano L, Rea M, et al, . Industrial experiments on pluse Corona simultaneous removal of Nox and SO2 form fluegas [C]. IEEEIAS Annual Meeting, 1998, 1620-1627.
    [28] Yamamot T, Mizuno, Kutzner R, et al, . Control of volatility organic Compounds by an AC energized ferroelectric pelle treator and corona reactor[C]. IEEE Transaction on Industry Application, 1992, 28(3):528-532.
    [29] Oda T, Ogata, Eliasson B, et al, . Decomposition of gaseous organic Contaminants by surface diseharge induced plasma chemical plasma processing[C]. IEEE Transaction on Industry Application, 1996, 32(l):118-124.
    [30]乌锡康.有机化工废水治理技术[M].北京:化学工业出版社, 1999, 8-53.
    [31] S.Majumdar, D.Bhaumik, K.K.Sirkar and G.Simes. A Pilot-scale Demonstration of a Membrane-Based Absorption-Stripping Proeess for Removal and Reeovery of Volatile Organic Compounds[J]. Environmental Process, 2001, 20(l):27-35.
    [32] R.Klaassen and A.E Jansen. The Membrane Contactor:Enivrotunelltal Applieations and possibilities[J]. Environmental Process, 2001, 20(l):37-43.
    [33] B.Xia, S.Majumdar and K.K.Sirdar. Regenerative Oil Scrubbing of Volatile Organic Compounds from a Gas stream in Hollow Fiber Membrane DeveceS[J]. Ind.Eng.Chem.Res., 1999, 38:3462-3472.
    [34]张林,陈欢林,柴红.挥发性有机物废气的膜法处理工艺研究进展[J].化工环保, 2002, 22(2):75-80.
    [35]徐志康,刘振梅,戴清文.基于溶解的扩散机理的聚合物膜分离烯烃/烷烃的研究进展[J].石油化工, 2002, 31(2):135-140.
    [36] Galnaov M E et al. USSR 712400
    [37]王文燕.液膜法处理含酚油品碱洗液.工业用水与废水, 2001, 5
    [38]胡文伟,高亚岳.焚烧法处理含酚废水.工业用水与废水, 2000, 4
    [39]欧海峰,林金画.活性炭纤维吸附-催化燃烧装置处理有机废气[J].环境污染与防治, 2002, 24(2):85-87
    [40]何滢滢,潘涌璋,吸附浓缩-催化燃烧法处理有机废气[J].环境工程, 1997, 15(4):34-36.
    [41]刘宁楷,陆烽,郝英群.吸附-催化燃烧法处理低浓度有机废气[J].污染防治术, 1997, 10(4):218-219.
    [42] K Everaert J Baeyens. Catalytic combustion of volatile organic compounds[J]. Joumal of Hazardous Materials, 2004, B109:113-139.
    [43] RSG Ferreira, PG PdeOliveira, FBNoronha. Characterization and catalyticaetivity of Pd/V2O5/A12O3 catalysts on benzene total oxidation[J]. Applied Catalysis B:Environmental, 2004, 50:243-249.
    [44] Chang Yul Cha, Charlie T, CarlisLe. Mierowave Proeess for Volatile Organic ComPound Abatement[J]. Air & Waste Management Assoeiation, 2001, 51:16281641.
    [45] Sanada Hisao. Japan. Kokai 74105358
    [46]乌锡康.有机化学废水治理技术,化学工业出版社, 1998, 33-34
    [47] Arcangeli Jean-Pierre, Arvin E. Biodegradation. 1995, 6(1):19-21
    [48] Joergensen C et al. Biodegradation. 1995, 6(2), 141-146
    [49]叶峰.降解BTE的复合微生物菌剂制备及高效降解菌的研究[硕士论文].浙江:浙江工业大学. 2009.
    [50] FolsomB.R., Chapman P.J.Performance characterization of a model bioreactor for the biodegradation of trichloroethylene by Pseudomonas cepacia G4[J]. Appl.Envir.Microbiol.1991, 57, 1602-1608.
    [51] Johannes A.C.Barth GS., Christoph S., Markus B., Angela D., Mike I., Robert M.K. Carbon Isotope Fractionation during Aerobic Biodegradation of Triehloroethene by Burkholderia cepacia G4:a Tool To Map Degradation Meehanisms[J]. Appl.Envir.Microbiol.2002, 68, 1728-1734.
    [52] Prenafeta-BoldúF.X., Grotenhuis J.T.C., Vervoort J., van Groenestijn J.W. Substrate Interaetions during the Biodegradation of Benzene, Toluene, Ethylbenzene, and Xylene(BTEX) Hydroearbons by the Fungus Cladophialophora sp. Strain T1[J]. Appl.Envir.Microbiol., 2002, 68, 2660-2665.
    [53] Freedman D.L., Swamy M., Bell N.C., Verce M.E. Biodegradation of Chloromethane by Pseudomonas aeruginosa strain NB1 under nitrate-reducing and aerobic conditions[J]. Appl. Envir.Mierobiol. 2004, 70, 4629-4634.
    [54] Fbaiol G A, Davide B, Enrica G, et al. Organization and e Regulation of meta Cleavagae Pathway Genes of Toluene and o-Xylene Derivative Degrdation in Pseudomonas stutzeri OX1[J]. Appl Environ Microbiol, 2001 67(7):3304-3308.
    [55]王琳,邵宗泽. 4株苯系物降解菌菌株的筛选鉴定、降解特性及其降解基因研究[J].微生物学报, 2006, 46(5):72一76.
    [56] Dockyu Kim, Young-Soo Kim, Seong-Ki Kim, et al. Monocyclic Aromatic Hydocrarbon Degradation by Rhodococcus sp. StrainDK17[J]. Appl Environ Microbiol, 2002:3270-3278.
    [57] Hyung Y K, Armando M B, Ronald H O, et al. Characterization and Role of thuX in Utiliaztion of Toluene by Ralstonia pickettii PKO1[J]. J Bacteriol Majr, 2000:1232-1242.
    [58] L.Cavalca.E D Amico, V Andreoni. Intrinsic biorernediabiliy of an aromatic hydrocarbon-polluted groundwater:divesriyt of bacterial population and toluene monoxygenase genes[J]. Appl Microbiol Biotechnol, 2004, 64:576- 587.
    [59] Ying Wang, PETER C K, Donk B. A Marine Oligobacterium Harboring Genes Known To Be Part of Aromatic Hydrocarbon Degradation Pathways of Soil Pseudomonads[J]. Appl Enviorn Microbiol, 1996:2169-2173.
    [60] Mohajmed M E, A Zaar, C Ebenau-Jehle, et al. Reinvestigation of a new Type of aerobic benzoate metabolism in the Proteobacterium Azoarcus[J]. JBaceteriol, 2001, 183:1899-1908.
    [61] Carla A N, Babu Z F. Biodegradation of Benzene by Halophilic and Halotolerant Bacteria under Aerobic Conditions[J]. Appl Environ Microbiol, 2004, 70(2):1222-1225.
    [62] Glennr J, Ronald H O. Multiple Pathways for Toluene Degardation in Burkholderia sp. Starin JS150[J]. Appl Environ Microbiol, 1997, 4047-4052.
    [63] Barbara H. Howard J, Jolana V, et al. Alternative primer sets for PCR detection of genoytpes involved in bacterial aerobic BTEX degradation:Distribution of the genes in BTEX degrading isolates and in subsurface soil of a BTEX contaminated industrial site[J]. J Microbiol Met, 2006, 64:250-265
    [64] Meckenstock R U, Morasch B, Wartmann R, et al. 13C/12C isotope fractionation of aromatic hydrocarbons during microbial degradation[J]. Enviorn Microbiol, 1999, 1:409-414.
    [65] J K Fredrickson, D L Balkwill, G R Drake, et al. Aromatie-Degrading Spingomonas Isolates from the Deepe Subsurface[J]. Appl Enviorn Micorbiol, 1995, 61(5):1917-1922.
    [66]朱永光,严平等.炼油废水处理菌剂的研究[J].环境科学, 2006, 27(3):508-513.
    [67] LiK.Y, ZhangYuebo, XuTian. Bioremediation of oil-contaminated soil-A rate model[J]. Waste Management, 1995, 15(5-6):335-335.
    [68]齐永强,王红旗.微生物处理土壤石油污染的研究进展[J].上海环境科学, 2002, 21(3):177-180.
    [69] Diaz-Ramirez I J, Ramirez-saad H, Gutierrez-Rojas M, et al. Biodegradation of maya crude oil fractions by bacterial strains and a defined mixed culture isolated from cyperus laxus rhizosphere soil in a contaminated site[J]. Canadian Journal of Microbiolog, 2003, 49(12):755-761.
    [70] Peressuttis S R, Alvarez H M, Pucci O H. Dynamics of hydrocarbon degrading bacteriocenosis of an experimental oil pollution in Patagonian soil[J]. International Biodeterioration & Biodegradation. 2003, 52(l):21-30.
    [71]朱枕华,林明瑞等.以生物滤床法处理含BTEX废气之研究[C].第六届海峡两岸环境保护研讨会论文集, 1999.
    [72]孙佩石,杨显万等.生物填料塔净化有机废气研究[J].中国环境科学, 1996,16(2):92-95.
    [73]黄兵,孙佩石等.生物化学法净化低浓度甲苯废气的传质研究[J].环境污染与防治, 1998, 20(5):11-14.
    [74]孙佩石,杨显万等.生物膜填料塔对低浓度甲苯废气净化性能的研究[J].环境污染与防治, 1997, 19(3):8-11.
    [75]孙佩石,杨显万等.生物法净化废气中低浓度挥发性有机物的过程机理研究[J].中国环境科学, 1997, 17(6):545-549.
    [76]陈建孟,王家德,庄利等.生物滴滤池净化二氯甲烷废气的实验研究[J].环境科学, 2002, 23(4):8-12
    [77]李国文,胡洪营等.生物过滤塔甲苯降解性能研究[J].环境科学, 2001, 22(2):31-35.
    [78] Kenneth F.Reardon, DouglasC.Mosteller, et al. Biodegradation Kinetics of Benzene, Toluene and phenol as Single and Mixed Substrates for pseudomonas putida F1[J]. Bioteehnology and Bioengineering, 2000, 69(4):385-400.
    [79] R.Auria, G.Frere, M.Morales, et al. Influence of Mixing and Water Addtion or the Removal Rate of Toluene Vapors in a Biofilter[J]. Biotechnology and Bioengineering, 2000, 68(4):448-455.
    [80] Sorial, G.A, Smith, F.L., Suidan, M.T. Evaluation of Triekle Bed Air Biofilter Performance for BTEX Removal[J]. Environmental Engineering, 1997, 123(6):530-537.
    [81] Lichuan Zhu, Riyad J.Abumaizar, et al. Biofiltration of Benzene Contaminated Air Streams Using Compost-Activated Carbon Filter Media[J]. Environmental progress, 1998, 17(3):168-172.
    [82] Hyun-Keun Son, BradLey A.Striebig. Ehtylbenzene Removal in a Multiple-StageBiofilte〔rJ]. Air & wasted Management Association, 2001, 51:1689-1695.
    [83] Smith, F.L., Soria L, G.A., Suidan,M.T. Development of Two Biomass Control Strategies for Extended Stable Operation of High Efficiency Biogilters with High Toluene Loadings[J]. Enviromental Science &Technology, 1996, 30:1744-1751.
    [84] Aline Metris, A Mark Gerrard, Robert H Cumming, et al. Modeling Shock Loadings and Starvation in the Biofiltration of Toluene and Xylene[J]. Chemical Technology and Biotechnology, 2001, 76:565-572.
    [85]温桂照,陈敏,罗颖等.高效优势混合菌降解废水中的氯化芳香族化合物[J].上海环境科学.2000, 19(8):379-381.
    [86] Stapleton R.D., Bright N.G., Sayler G.C. Catabolic and Genetic diversity of degradative bacteria from fuel-hydrocarbon contaminated aquifers[J]. Microb.Eeol.,2000,39(3):211-221.
    [87] Kim D, Kim YS, Kim SK, et al. Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. Strain DK171[J]. Appl Environ Microbiol, 2002,68(7):3270-3278.
    [88] Das kishore, Mukherjee K. Ashis. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a Petroleum-oil contaminated soil from North-EastIndia[J]. Bioresource Technology, 2007,98(7):1339-1345.
    [89] SaadounIsmail. Isolation and Characerization of bacteria from crude petroleum oil contaminated oil and their potential to degrade diesel fuel[J]. Journal of Basic Microbiology,2002,42(6):420-428.
    [90] Gentili R. Alejandro, Cubitto A. María, Ferrero Marcela, Rodriguéz S. María. Bioremediation of crude oil polluted seawater by a hydrocarbon-degradingbacterial strain immobilized on chitin and chitosan flakes[JI. Internatienal Biodeterioration & Biodegradation, 2006,57(4):222-228.
    [91] Grishchenkov G.V., Townsend T.R., Mcdonald J.T., Autenrieth L.R., Bonner S.J., Boronin M.A. Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions[J]. Proeess Biochemistry, 2000,35(9):889-896.
    [92] Ayotamuno J.M., Kogbara B.R., Ogaji 0.T.S., Probert D.S. Bioremediation of a crude oil polluted agricultural-soil at Port Harcourt, Nigeria[J]. Applied Energy,2006,83(11):1249-1257.
    [93] Lazar1., Volcu A., Nicolescu C., Mucenica D., Dobrota S., Petrisor G.I., Stefanoscu M., Sandulescu L.. The use of naturally occurring selectively isolated bacteria for inhibiting paraffin deposition[J]. Journal of Petroleum Science and Engineering, 1999,22(3-4):161-169.
    [94]苏荣国,牟伯中,于修林,倪方大,周嘉玺.微生物对石油烃的降解机理及影洞因素[J].化工环保, 2001, 21(4):205-208.
    [95]任磊,黄廷林.石油污染土壤的生物修复技术[J].安全与环境学报, 2001, l(2):50-54.
    [96]金文标,宋莉辉,董晓利,吴东平.油污土壤微生物治理的影响因素[J].污染防治技术, 1998, 10:27-28.
    [97] Salmon C., Crabos J.L., Sambueo J.P., Basseres A., Caumette P., Baeeou J.. Artifieial wetland performances in the Purification effciency of hydrocarbon wastewater[J]. Water,Air,and Soil Pollution, 1998,104(3-4):313-329.
    [98] Rahman S.M.K., RahmanJ.Thahira, KourkoutasY., Petsasl I., MarehantR.,Banat M.I., Enhanced bioremediation of n-alkane in Pctroleum sludge using baeterial consortium amended with rhamnolipid and micronutrients[J]. Bioresource Technology,2003, 90(2):159-168.
    [99] Rahman S.M.K., Ralllnan-Thahira J., LakshmanaPerumalsamy P, Banat I M.Towards efficient crude oil degradation by a mixed bacterial consortium[J]. Bioresource Technology, 2002, 85(3):257-261.
    [100] Thanomsub Benjamas, Pumeechockehai Wnanna, Limtrakul Anirut, Arunrattiyakorn Panarat,Petchleelaha Wipawan,Nitoda Teruhiko,Kanzaki Hiroshi. Chemical structures and biological activities of rhaninolipids Produced by Pseudomonas aeruginosa B189 isolated from milkfactory waste[J].Bioresource Technology,2006,97(18):2457-2461
    [101] Ron Z. Elior, Rosenberg Eugene. Biosurfactants and ol bioremediation[J]. Current Opinion in Biotechnology,2002,13(3):249-252.
    [102] Makkar R.S.,RockneK.J..Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of Polycyclic aromatic hydrocarbons[J]. Environmental Toxicology & Chemistry,2003, 22(10):2280-2292.
    [103] prabhuy., phale P.S.. Biodegradation of phenanthrene by Pseudomonas sp.strainPP2: novel metabolic pathway,role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation[J]. Applied Microbio]ogy & Biotechnology,2003,61(4):342-351.
    [104] Mulligan N. Catherine. Environmental applieations for biosurfaetants[J]. Environmental Pollution, 2005,133(2):183-198.
    [105]沈德中.污染环境的生物修复[M].北京:化学工业出版社, 2002.
    [106]张景来,王剑波,常冠钦,刘平.环境生物技术及应用[M].南京:南京大学出版社,1998.
    [107]张丽芳,李艳,肖红.表面活性剂在石油污染治理中的应用[J].海洋环境科学, 2003,22(3):74-79.
    [108] Roy D., Kommalapati R.R..Mandawa S.S., Valsarajt.k., Constant D.W.. Soil Washing Potential of a Natural Surfactant[J]. Environmental Seience & Technology, 1997,31(3):670-675.
    [109]盛下放,何琳燕,龚建勋.二株假单胞菌的疏水性及其对菲的降解能力[J].环境科学学报,2004, 24(5):942-944.
    [110]钱欣平,杨永荣,孟琴.生物表面活性剂对微生物生长和代谢的影响[J].微生物学通报,2002,29(3):75-78.
    [111] Pinto Lj, Moore MM. Release of polycyclic aromatic hydrocarbons from contaminated soils by surfactant and remediation of this effluent by Penicillium spp [J]. Environ.Toxicol. Chem.2000, 19(7): 1741- 1748.
    [112] Li J L, Chen B H. Solubilization of model polycyclic aromatic hydrocarbons by nonionic surfactants [J]. Chemical Engineering Science, 2002, 57 (14): 2825- 2835.
    [113]朱利中,冯少良.混合表面活性剂对多环芳烃的增溶作用及机理[J].环境科学学报,2002,22(6):774-778.
    [114]余海粟,朱利中.混合表面活性剂对菲和芘的增溶作用[J].环境化,2004,23(5):485-489.
    [115] In.S.Kim. Enhanced biodegradation of polycyclic aromatic hydrocarbon susingn on ionic surfactants in soil slurry. Appl.Geochem.,2001,16 :1419 -1428
    [116] Sigma-Aldrich Company. Polyoxye thylene sorbitan monooleate. Product Information sheet.
    [117]邓栋,刘翔.等BTEX厌氧降解纯菌株的筛选及降解效率影响因素研究[J].农业环境科学学.2008,27(5):1991- 1996.
    [118]王琳,邵宗泽. 4株苯系物降解菌株的筛选鉴定、降解特性及其降解基因的研究[J].微生物学报, 2006, 46 (5): 753-757.
    [119]李闻,马静,张伟,张伟尉,刘红艳,黄正.高效甲苯降解菌的驯化及筛选方法研究[J].卫生研究.2008,37(2):129-130.
    [120] Commnadeur L C M, Parsons J R. Degradation of halogenatde organic compounds[J]. Biodegradation,1990,l:207-220.
    [121] Chaudhry G R, Chapalmadaugu S. Bidoegradation of halogenatde orgni compounds[J]. Micrbiol Rev,1991,55:59-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700