碳纳米管混杂功能化及其PU复合材料制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNT)具有独特的结构和优异的理化性能,是制备聚合物基复合材料最理想的增强体之一,然而其极易团聚、与聚合物基体间界面结合力差的缺点,极大地限制了其在复合材料中的应用。为改善碳纳米管的分散性能,提高碳纳米管与基体间的界面结合力,最终制备出性能优异的复合材料,我们以多壁碳纳米管为研究对象,首先研究了不同温度下混酸氧化和4,4'-二氨基-3,3'-二氯二苯基甲烷(MOCA)改性对碳纳米管结构和性能的影响;在羧化碳纳米管的基础上进一步酯化生成溴引发剂,引发甲基丙烯酸缩水甘油酯(GMA)的原子转移自由基聚合(ATRP)反应,制备了聚甲基丙烯酸缩水甘油酯(PGMA)包裹的碳纳米管;再以混杂功能化的方法作为指导,分别制备了聚苯乙炔(PPA)包覆的不同温度下羧化碳纳米管;最后研究了PU复合材料的力学和热学性能与碳纳米管种类、配比的关系。主要结果如下:
     (1) 50℃和回流温度下混酸氧化碳纳米管1.5h,均可在其表面接枝上羧基和羟基等活性基团,且温度越高接枝基团数量越多,纯化效果也越好。拉曼光谱对原始多壁碳纳米管(MWNT)、50℃羧化碳纳米管(MWNT-COOH(Ⅰ))和回流温度羧化碳纳米管(MWNT-COOH(Ⅱ))的分析表明,氧化处理会在碳纳米管表面引入缺陷,导致结构有序度下降。利用DCC脱水缩合的作用原理,一步法制备MOCA接枝碳纳米管。
     (2)通过ATRP反应,成功地将GMA单体原位接枝到碳纳米管表面,得到PGMA包裹的碳纳米管,通过透射电子显微镜(TEM)可以明显观察到碳纳米管表面包裹的PGMA层。
     (3)将羧化碳纳米管和PPA加入四氢呋喃溶剂中,经超声分散5h,得到PPA包覆的混杂功能化碳纳米管,其分散性能要优于未包覆前羧化碳纳米管。
     (4) PU复合材料的热学性能与加入的碳纳米管种类有很大关系,当加入的是MWNT或MWNT/PPA时,复合材料的热学性能有所下降;当加入的是羧化碳纳米管、MOCA接枝碳纳米管及PPA包裹羧化碳纳米管时,复合材料的初始分解温度会有所上升,复合材料的热稳定性有一定提高。
     (5)碳纳米管的种类和用量对PU复合材料的拉伸强度有较大影响。当以MWNT和MWNT/PPA做为增强体时,复合材料力学性能下降;当以MWNT-COOH(Ⅰ)和MWNT-COOH(Ⅰ)/PPA做为增强体时,复合材料的拉伸强度有所提高;随着碳纳米管含量的增加,拉伸强度先升后降,在0.2%时达到最佳;当以MWNT-COOH(Ⅱ)、MOCA接枝碳纳米管和MWNT-COOH(Ⅱ)/PPA做为增强体时,复合材料的拉伸强度进一步提高,均在碳纳米管含量为0.3%时达到最佳,其中MWNT-COOH(Ⅱ)/PPA/PU复合材料拉伸强度提高最大。
Carbon nanotubes (CNT) are one of the best promising reinforcement materials for polymer composites due to their unique structure and extraordinary physicochemical properties. However, their applications to polymer composites are limited because of the easy formation of aggregates and rather weak interfacial interactions between CNT and polymer matrix. In order to improve the dispersion and the interfacial behavior of CNT in polymer matrix and synthesize high-performance polymer composites, we firstly studied the effect of experimental temperature and modification of Methylene-bis-ortho-chloroanilline (MOCA) on the structure and properties of CNT; Through the esterification reaction on the basis of oxidization of multi-walled carbon nanotubes (MWNT-COOH), the MWNT-based macroinitiators, MWNT-Br was produced, and then the atom transfer radical polymerization (ATRP) of glycidyl methacrylate (GMA) was initiated to produce the MWNT wrapped by poly-(glycidyl methacrylate) (MWNT-g-PGMA); Under the guidance of hybrid functionalization, We synthesized different temperature oxidization of MWNT coated by PPA. Finally, the dependence of mechanical and thermal properties of PU composites on the content of different MWNT was investigated. The main results are:
     (1) The active groups(-COOH, -OH) could be grafted to the MWNT via oxidation with a mixture of concentrated sulfuric acid and nitric acid at different temperature. In addition, the drafted amount of active groups and dispersion effect could be enhanced with higher temperature. Raman spectra analysis of pristine MWNT, 50℃oxidization of MWNT (MWNT-COOH(Ⅰ)), refluxing-temperature oxidization of MWNT (MWNT-COOH(Ⅱ)) indicated that the oxidation treatment generated defects and reduced the structural order degree of MWNT. The MOCA had been drafted to the oxidized MWNT in one-step with the aid of condensation agent N,N'-dicyclohexylcarbodiimide (DCC).
     (2) The morphological structures of MWNT-g-PGMA were examined by Transmission Electron Microscope (TEM). It was clearly observed that the PGMA was grafted to the MWNT via the ATRP through the TEM images.
     (3) We got the hybrid functioanlization MWNT coated by PPA through the ultrasonic dispersion treatment for 5 hours, it has a better dispersion than the MWNT-COOH.
     (4) The thermal properties of polyurethane (PU) composites have relation to the category of functionalized MWNT (f-MWNT). When MWNT or MWNT/PPA was added to the matrix, the thermal properties of PU composites declined. When MWNT-COOH, MOCA-grafted MWNT or MWNT-COOH/PPA was added to the matrix, the temperature of initial decomposition increased and the thermal properties of PU composites were improved.
     (5) The category and content of f-MWNT have great influence on the tensile strength of PU composites. When the reinforcement was MWNT or MWNT/PPA, the mechanical properties of PU composites declined; When the reinforcement was MWNT-COOH(Ⅰ) or MWNT-COOH(Ⅰ)/PPA, the tensile strength of PU composites increased. The curve of tensile strength and the content of f-MWNT fell after raising, and the optimum content was 0.2wt%; When the reinforcement was MWNT-COOH(Ⅱ), MOCA-grafted MWNT or MWNT-COOH(Ⅱ)/PPA, the tensile strength of PU composites increased more, and the optimum content was 0.3wt%. Comparing the tensile strength of all kinds of PU composites, MWNT-COOH(Ⅱ)/PPA/PU had the maximum tensile strength.
引文
[1] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58
    [2] Iijima S, Ichihashi T. Single shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363: 603-605
    [3] Bethune D S, Klang C H, deVries M S, Gorman G, et al. Cobalt catalysed growth of carbon nanotubes with single atomic layer wells. Nature, 1993, 363: 605-607
    [4]杨春嘉.碳纳米管表面聚合物修饰及其性能的研究.青岛大学硕士学位论文. 2008. 4
    [5] Ebbesen T W, Ajayan P M. Large scale synthesis of carbon nanotubes. Nature, 1992, 358: 220
    [6] Mauricio T. Sceince and technology of the twenty-first century: Synthesis, properties and applications of carbon nanotubes. Annu. Rev. Mater. Sci., 2003, 330: 419-501
    [7] Zhu H W, Xu C L, Wu D H, Wei B Q, Vajtai R, Ajayan P M. Direct Synthesis of Long Single-Walled Carbon Nanotubes Strands. Science, 2002, 296: 884-886
    [8]胡文平,刘云圻,曾鹏举,周书琴,朱道本.化学通报, 2000, 2: 2-6
    [9] Peigney A, Laurent C, Dobigcon F, Rousset A. Carbon nanotubes grown in situ by a novel catalytic method. J. Mater. Res., 1997, 12: 613-615
    [10] Carroll D L, Redlich P, Ajayan P M. Phys. Rev. Lett., 1997, 78: 2811-2814
    [11]朱宏伟,吴德海,徐才录.《碳纳米管》.北京:北京机械出版社, 2003
    [12] Sinnott S B, White C T, Shenderova O A, Brenner D W. Mechanical Properties of Narnotubule Fibers and Composites Determined Form Theoretical Calculations and Simulations. Carbon, 1998, 36: 1-9
    [13] Lu J P. Elastic Properties of carbon nanotubes and nanoropes. Phys. Rev. Lett., 1997, 79: 1297
    [14] Collins P G, Zettl A. Unique characteristics of cold cathode carbon nanotube-matrix field emitters[J]. Phys. Rev. B., 1997, 55: 9391-9399
    [15] He B J, Wang M, Sun W L, Shen Z Q. Preparation and magnetic properties of the MWNT-Fe2+ composite.Mater. Chem. Phys., 2006, 289: 295-298
    [16] George R, Kashyap K T, Rahul R, Yamdangni S. Strengthening in carbon nanotube/aluminum composites. Scripta Mater., 2005 53: 1159-1163
    [17] Li Z H, Wang X Q, Wang M, Wang F F, Ge H L. Preparation and tribologicalproperties of the carbon nanotubes-Ni-P composite coating. Tribol. Int., 2006, 39:
    [18] Dong S R, Tu J P, Zhang X B. An investigation of the sliding wear behavior of Cu-matrix composite reforced by carbon nanotubes. Mat. Sci. Eng., A, 2001, 313: 83-87
    [19]吴德海,朱宏伟,张先锋,李延辉,韦进全,李雪松,郝东辉.碳纳米管的制备与应用.清华大学学报(自然科学版), 2003, 43: 577-585
    [20]董树荣,张孝彬.碳纳米管增强铜基复合材料的滑动磨损特性研究.摩擦学学报, 1999, 19: 1-6
    [21] Ma R Z, Wu J, Wei B Q, Wu J, Liang J, Wu D H. Processing and properties of carbon nanotubes-nano-SiC ceramic. J. Mater. Sci., 1998, 33:243-245
    [22] Peigney A, Laurent C, Rousset A. Synthesis and characterization of alumina matrix nanocomposites containing carbon nanotubes. Key Eng. Mater., 1997, 132-136: 743-746
    [23]孙莉,杨晋涛,施艳琴,钟明强. PA6/CNT复合材料的动态机械性能和增强机理分析.塑料工业, 2007, 35: 247-249
    [24]王平华,王贺宜,唐龙祥,张斌,程文超,梁永标.碳纳米管/PVC复合材料的制备及表征.高分子材料科学与工程, 2008, 24: 36-38
    [25]喻光辉,曾繁涤.聚氨酯/碳纳米管复合材料力学及电性能研究.工程塑料应用, 2005, 33: 11-14
    [26] Zhu W, Bower C, Zhou O, Kochanski G, Jin S. Large current density from carbon nanotube field emitters. Appl. Phys. Lett., 1999, 75: 873-875
    [27] Heer W A, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source. Science, 1995, 270: 1179-1180
    [28] Cao A Y, Ci L J, Li D J, Wei B Q, Xu C L, Liang J, Wu D H. Vertical aligned carbon nanotubes grown on Au film and reduction of threshold field in field emission. Chem. Phys. Lett., 2001, 335: 150-154
    [29] Cao A Y, Zhang X, Xu C, Liang J,Wu D H, Wei B. Thinning and diluting aligned carbon nanotubes films for uniform field emission. Appl. Phys. A, 2002, 74: 415-418
    [30] Hoogenraad M S, Onwezen M F, van Dillen A J, Geun J W. Supported catalysts based on carbon fibrils. Stud. Surf. Sci. Catal., 1996, 101: 1331-1339
    [31] Planeix J M, Coustel N, Coq V B, Kumbnar P S, Dutartre R, Geneste P, Bernie P,Ajayan P M. Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc., 1994, 116: 7935-7936
    [32] Wong S S, Harper J D, Lansbury P T, Lieber C M. Carbon nanotube tips: High-resolution probes for imaging biological systems. J. Am. Chem. Soc., 1998, 12: 603-604
    [33] Collins P G, Bradley K, Grimes C A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 2000, 287: 1801-1804
    [34] Miasik J, Hooper A, Tofield B. J. Conducting polymer gas sensors. Chem. Soc.Rev., 1986, 82: 1117-1126
    [35] Takao Y, Miyazaki K, Shimizu Y, Egashira M. High ammonia sensitive semiconductor gas sensors with double-layer structure and interface electrodes. J. Eletrochem. Soc., 1994, 141:1028-1034
    [36] Capone S, Mongelli S, Rella R, Siciliano P, Valli L. Gas sensitivity measurements on NO2 sensors based on copper tetrakis phthalocyanine LB films. Langmuir, 1999, 15: 1748-1753
    [37] Mcconnell H M, Owicki J C, Parce J M, Miller D L, Baxter G T, Wada H G, Pitchford S. The cytosensor microphysiometer: biological applications of silicon technology. Science, 1992, 257: 1906-1912
    [38]曹清,陈召勇,李言荣,邓新武,蔡帝.碳纳米管纯化的研究进展.电子元件与材料. 2004, 23: 37-40
    [39] Duesberg G S, Blau W, Byrne H J, Muster J, Burghard M, Roth S. Chromatography of carbon nanotubes. Synth. Met., 1999, 103: 2484-2485
    [40]唐文华,邹洪涛,张艾飞,刘吉平.碳纳米管纯化技术评价与研究进展.炭素, 2005, 3: 30-35
    [41] Bonard J M, De Heer W A, Fauth K, Chatelain A, Ugarte D, Forro, L. Electron field emitters based on carbon nanotube films. Adv. Mater., 1997, 9: 87-89
    [42] Tak Jeong, Kim W Y, Hahn Y B. A new purification method of single-wall carbon nanotubes ueing H2S and O2 mixture gas. Chem. Phys. Lett., 2001, 344: 18-22
    [43] Colomer J F, Piedigrosso P, Fonseca A, Nagy J B. Different purification methods of carbon nanotubes produced by catalytic synthesis. Synth. Met., 1999, 103: 2482-2483
    [44] Hernadi K, Siska A, Thiên-Nga L, ForróL, Kiricsi I. Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes.Solid State Ionics, 2001, 141: 203-209
    [45]余荣清,程大典,詹梦熊,王育煌,郑兰荪.液相化学腐蚀法用于碳纳米管的纯化及顶端开口研究[J].化学通报, 1996, 4: 25-26
    [46] Ivanov V, Fonseca A, Nagy J B, Lucas A, Lambin P, Bernaerts D, Zhang X B. Catalytic production and purification of nanotubules havin pullerene-scale diameters. Carbon, 1995, 33: 1727-1738
    [47] Tsang S C, Chen Y K, Harris P J F, Green M L H. A simple chemical method of opening and filling carbon nanotubes. Nature, 1994, 372: 159-162
    [48]肖素芳,王宗花,罗国安.碳纳米管的功能化研究进展.分析化学, 2005, 33: 261-266
    [49]李权龙,袁东星,林庆梅.多壁碳纳米管纯化.化学学报, 2003, 61: 931-936
    [50]沈剑锋,黄玮石,吴利平,胡轶喆,李俊,叶明新.多壁碳纳米管的纯化及修饰.材料导报, 2006, 20: 117-119
    [51] Chen J, Hamon M A, Hu H, Chen Y S, Rao A M, Eklund P C, Haddon R C. Solution properties of single-walled carbon nanotubes. Science, 1998, 282: 95-98
    [52] Hamon M A, Chen J, Hu H. Adv. Mater., 1999, 11: 835-840
    [53]李博,廉永福,施祖进,顾振南.单层碳纳米管的化学修饰.高等学校化学学报, 2000, 21: 1633-1635
    [54] Lim J K, Yun W S, Yoon M H, Lee S K, Kim C H, Kim K, Kim S K. Selective thiolation of single-walled carbon nanotubes. Synth. Met., 2003, 139: 521-527
    [55] Nakajima T, Kasamatsu S, Matsuo Y. Synthesis and characterization of fluorinated carbon nanotubes. Eur. J. Solid State Inorg. Chem., 1996, 33: 831-840
    [56] Khabashesku V N, Billups W E, Margrave J L. Fluorination of Single-Wall Carbon Nanotubes and Subsequent Derivatization Reactions. Acc. Chem. Res., 2002, 35: 1087-1095
    [57] Boul P J, Liu J, Mickelson E T, Huffman C B, Ericson L M, Chiang I W, Smith K A, Colbert D T, Hauge R H, Margrave J L, Smalley R E. Reversible sidewall functionalization of buckytubes. Chem. Phys. Lett., 1999, 310: 367-372
    [58] Chen Y, Haddon R C, Fang S, Rao A M, Eklund P C, Lee, W H, Dickey E C, Grulke E A, Smalley R E. Chemical attachment of organic functioanl groups to single-walled carbon nanotubes material. J. Mater. Res., 1998, 13: 2423-2431
    [59] Umek P, Seo J W, Hernadi K, Mrzel A, Pechy P, Mihailovic D D, ForróL. Addition ofcarbon radicals generated from organic peroxides to single wall carbon nanotubes. Chem. Mater., 2003, 15: 4751-4755
    [60] Vincenzo L, Nan Y. Molecular mechanics of binding in carbon nanotubes polymer composites. J. Mater. Res., 2000, 15: 2770
    [61] Curran S A, Ajayan P M, Blau W J. Composite from PmPV and carbon nanotubes: A novel material for molecular optoelectronics. Adv. Mater., 1998, 10: 1091-1093
    [62] O'Connell M J, Boul P, Ericson L M, Huffman C, Wang Y H, Haroz E, Kuper C, Tour J, Ausman K D, Smalley R E. Reversible water-solublization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett., 2001, 342: 265-271
    [63] Carrillo A, Swartz J A, Gamba J M, Kane R S. Noncovalent functionalization of graphite and carbon nanotubes with polymer multilayers and gold nanoparticles. Nano Lett., 2003, 3: 1437-1440
    [64] Safadi B, Andrews R, Grulke E A. Multiwalled carbon nanotube polymer composites:Synthesis and characterization of thin films. J. Appl. Polym. Sci., 2002, 84: 2660-2669
    [65] Jin Z X, Pramoda K P, Goh S H, Xu G. Poly(vinylidene fluoride)-assisted melt-blending of multi-walled carbon nanotube/poly(methyl methacrylate)composites. Mater. Res. Bull., 2002, 37: 271-278
    [66] Jia Z J, Wang Z Y, Xu C, Liang J, Wei B, Wu D, Zhu S. Study on poly(methyl methacrylate)/carbon nanotube composites. Mater. Sci. Eng., A 1999, 271: 395-400
    [67]贾志杰,徐才录,梁吉,魏秉庆,吴德海,朱绍文.关于尼龙-6/碳纳米管复合材料的研究.新型碳材料, 1999, 14: 32-35
    [68] Zhao B, Hu H, Haddon R C. Synthesis and Properties of a Water-Soluble Single-Walled Carbon Nanotube-Poly(m-aminobenzene sulfonic acid) Graft Copolymer. Adv. Funct. Mater., 2004, 14: 71-76
    [69] Ng H T, Foo M L, Fang A P, Li J, Xu G, Jaenicke S, Chan L, Li Sam F Y. Soft-lithography-mediated chemical vapor d eposition of architectured carbon nanotube networks on elastomeric polymer. Langmuir, 2002, 18: 1-5
    [70] Gong X, Liu J, Baskaran S, Voise R D, Young J S. Pull-out of SWNTs bundles possibility ofcrack-bridging 1wt%CNT-epoxy composites. Chem. Mater., 2000, 12: 1049-1052
    [71] Qian D, Dickey E C, Andrews R, Rantell T. Load Transfer and Deformation Mechanisms in Carbon Nanotube-polystyrene Composites. Appl. Phys. Lett., 2000,76: 2868-2870
    [72] Kumar S, Doshi H, Srinivasarao M, Park J O, Schiraldi D A. Fibers from polypropylene/nano carbon fiber composites. Polymer, 2002, 43: 1701-1703
    [73]王国建,郭建龙,屈泽华.碳纳米管/环氧树脂复合材料力学性能影响因素的研究.玻璃钢/复合材料, 2007, 4: 18-22
    [74] Heeger A J. Semiconducting and metallic polymers: the fourth generation of polymeric materials. Chem. Phys. Lett., 2001, 347: 36-40
    [75] Gao M, Huang S M, Dai L M, Wallace G, Gao R, Wang Z L. Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers. Angew. Chem. Int. Ed., 2000, 39: 3664-3667
    [76]余颖,曾艳,张丽莎,贾志杰.碳纳米管对三元乙丙橡胶性能的影响.弹性体, 2002, 12: 1-4
    [77] Sandler J, Shaffer M S P, Prasse T, Bauhofer W, Schulte K, Windle A H. Development of a dispersion process for carbon nanotubes in an epoxymatrix and the resulting electrical properties. Polymer, 1999, 40: 5967-5971
    [78] Park S J, Lim S T, Cho M S, Kim H M, Joo J, Choi H J. Electrical properties of multi-walled carbonnanotube/poly(methyl methacrylate)nanocomposite. Current Applied Physics, 2005, 5: 302-304
    [79] Hone J, Batlogg B, Benes Z, Johnson A T, Fischer J E. Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes. Science, 2000, 289: 1730-1733
    [80]冯青平,谢续明.多壁碳纳米管改性热固性酚醛树脂的研究.玻璃钢/复合材料, 2007, 3: 25-27
    [81]徐化明,李聃,梁吉. PMMA/定向碳纳米管复合材料导电与导热性能的研究.无机化学学报, 2005, 21: 1353-1356
    [82] Biercuk M, Llaguno M C, Radosavljevic M, Hyun J K, Johnson A T, Fisher J F. Carbon nanotube composites for thermal management. Appl. Phys. Lett, 2002, 80: 2767-2769
    [83]宋文会.碳纳米管的功能化及聚氨酯复合材料研究.上海交通大学博士学位论文. 2008, 6
    [84]赵德仁.高聚物合成工艺学.第二版.北京:化学工业出版社, 1997, 6
    [85]汪晓.原位包覆聚氨酯碳纳米管复合材料的制备及其性能研究.北京化工大学硕士学位论文. 2008, 6
    [86]郑伟玲.碳纳米管的功能化及其在复合材料中的应用.汕头大学硕士学位论文. 2009, 5
    [87]曹清,陈召勇,李言荣,邓新武,蔡帝.碳纳米管纯化的研究进展.电子原件与材料, 2004, 23:37-40
    [88] Xiong J W, Zheng Z, Song W H, Zhou D S, Wang X L. Microstructure and properties of polyurethane nanocomposites reinforced with methylene -bis- orthochloroanilline- grafted multi-walled carbon nanotubes. Composites, 2008, 39: 904-910
    [89]曹春华,李家麟,贾志杰,陈正华.用二胺在碳纳米管上引入胺基团的研究.新型炭材料, 2004, 19: 137-140
    [90]丰涛.多壁碳纳米管功能化及其与聚苯乙烯复合研究.湖南大学硕士学位论文. 2008, 4
    [91]杨昱.碳纳米管/热塑性聚氨酯复合材料的制备及其性能研究.东华大学硕士学位论文. 2009, 2
    [92]潘祖仁.高分子化学.第三版.北京:化学工业出版社, 2003.
    [93] Liu J Q, Xiao T, Liao K, Wu P. Interfacial design of carbon nanotube polymer composites: Hybrid system of noncovalent and covalent functionalizations. Nanotechnology, 2007, 18, 165701
    [94]刘举庆.混杂功能化碳纳米管/聚合物复合材料的研究.汕头大学硕士学位论文. 2007, 6
    [95] Liao K, Li S. Interfacial characteristics of a carbon nanotube-polystyrene composite system. Appl. Phys. Lett., 2001, 79: 4225-4227
    [96]叶梅.聚氨酯弹性体复合材料的制备及结构性能研究.苏州大学硕士学位论文. 2006, 4
    [97] Bradley F, Darren M, Peter H, Rowan T, Kayleen C. Morphology and properties of thermoplastic polyurethane nanocomposites incorporating hydrophilic layered silicates. Polymer, 2004, 45: 2249-2260
    [98]王红研,栾道成,魏成富.纳米TiO2增强聚氨酯弹性体的制备及力学性能.济南大学学报, 2008, 22: 343-346

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700