膜丝结构对中空纤维更新液膜传质性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中空纤维更新液膜(HFRLM)技术是一种新型的同级萃取反萃技术,具有传质阻力小、传质速率高、操作简单、无二次污染等优点,在重金属废水处理、发酵产物原位提取等方面有较大的应用潜力。作为液膜过程重要的支撑体,中空纤维膜丝结构、中空纤维管内流体的流动状态等对中空纤维更新液膜过程的传质性能有重要的影响。
     以Cu(II)-LIX984N/煤油-H2SO4为体系,考察了中空纤维膜丝内径、膜丝壁厚等结构参数在不同管壳程流速、油水比等条件下对中空纤维更新液膜过程传质性能的影响。结果表明,中空纤维更新液膜过程的传质通量随膜丝壁厚的增大而降低,随膜丝内径、油水比、管程料液流速的增大而升高。且当膜丝内径和油水比较大时,中空纤维更新液膜过程的更新强化作用更加明显。
     在显微镜和摄像机的辅助下,让油—水两相流充分混合后通过水平纤维管,对不同内径的疏水性聚偏氟乙烯中空纤维膜丝管内两相流的流动状态进行了可视化研究。结果表明,液滴粒径大小和粒径分布幅度均随中空纤维膜丝内径和两相流平均流速的增大而增大。通过可视化研究结果,拟合得到了液滴Sauter平均径、膜丝内径和流速的关系式,‘并最终获得了疏水性聚偏氟乙烯中空纤维膜丝管内LIX984N/煤油—去离子水体系的两相流型图。
     以阻力串联模型为基础,假设膜丝管内存在更新传质过程和萃取传质过程,采用更新传质关联式和管内连续相、分散相传质关联式计算管程分传质系数,并进而建立了中空纤维更新液膜过程的传质模型,模型计算值与实验值吻合较好。
Hollow fiber renewal liquid membrane (HFRLM) techniques is a new type of simultaneous extraction and stripping processes in the same stage. It has many advantages, such as low mass transfer resistance, high mass transfer rate, simply operate, non secondary pollution, long-term stability, etc. It has great application potential in the following industrial field, including heavy metal wastewater treatment and in-situ fermentation product recovery, etc. In HFRLM process, the core part is the membrane module. Moreover, the hollow fiber in the module play an imoprtant role in the whole process, because the hollow fiber membrane structures and the fluid flow in the fiber have great influence on the mass transfer performance.
     In this work, copper sulfate solution was used as feed phase, LIX984N dissolved in kerosene was choosen as membrane phase and sulfuric acid is used as stripping phase. Effects of inner diameter and thickness of hollow fiber membrane, tube side and shell side velocity, oil-water ratio on the HFRLM process performance were investigated. Results indicated that the better performance of HFRLM in our study could be obtained in case of the thinner fiber thickness, the larger fiber inner diameter, the larger oil-water ratio and the larger tube velocity. Besides, the mass transfer enhancement increased with increasing hollow fiber inner diameter and oil-water ratio.
     The visualization research on oil-water flow in horizontal PVDF hollow fiber with different inner diameter was done by using microscope and high speed camera. Experimental results indicated that the mean and variance of droplet size distributions increased with increasing fiber inner diameter and velocity. The correlation for calculating the Sauter mean diameter of various hollow fiber inner diameter and velocity has been established. And, the flow pattern of the system of LIX984N dissolved in kerosene and deionized water was obtained.
     Based on the resistance in series model and assuming the renewal mass transfer and extract mass transfer exist in the tube, the mass transfer model of HFRLM process was founded. The model results were in good agreement with the experimental data.
引文
[1]Osterbout V W J. Some models of protoplasmic surface[J]. Cold Spring Habor Symp. Quant. Biol.,1940,8:51-56
    [2]Bloch R, Finkelstein A, Kedem O, et al. Metal ion separation by dialysis through solvent membranes[J]. Ind. Eng. Chem. Process. Des. Develop.,1967,6:231-237
    [3]Ward W J III, Robb W L. Carbon dioxide-oxygen separation:facilitated transport of carbon dioxide across a liquid film[J]. Science,1967,156:1481-1486
    [4]Li N N, Somerset N J. Separating hydrocarbons with liquid membrane[P]. US Patent: 3410794,1968-11-12
    [5]Cussler E L, Evans D F, et al. Theoretical and experimental basis for a specific counter transport system in membranes[J]. Science,1971,172:377-379
    [6]Fakhari A R, Khorrami A R, Shamsipur M. Selective uphill Zn2+transport via a bulk liquid membrane using an azacrown ether carrier[J]. Sep. Purif. Technol.,2006,50(1):77-81
    [7]Zhang W D, Liu J T, Ren Z Q, et al. Kinetic study of chromium(VI) facilitated transport through a bulk liquid membrane using tri-n-butyl phosphate as carrier[J]. Chem. Eng. J.,2009, 150:83-89
    [8]马竞男.中空纤维更新液膜技术用于含铬废水处理的研究[D].北京,北京化工大学,2009
    [9]Nigong L, Condamimines N, Cordier P Y, et al. Recent advances in the treatment of nuclear wastes by the use of diamide and picolinamide extractants[J]. Sep. Sci. Technol.,1995,30: 2075-2099
    [10]Ansari S A, Mohapatra P K, Manchanda V K. Recovery of actinides and lahthanides from high-level waste using hollow-fiber supported liquid membrane with TODGA as the carrier[J]. Ind. Eng. Chem. Res.,2009,48:8605-8612
    [11]Gherrou A, Kerdjoudj H, Molinari R, et al. Removal of silver and copper ions from acidic thiourea solutions with a supported liquid membrane containing D2EHPA as carrier[J]. Sep. Purif. Technol.,2002,28:235-244
    [12]Chaudry M A, Bukhari N, Mazhar M, et al. Coupled transport of chromium(III) ions across triethanolamine/cyclohexanone based supported liquid membranes for tannery waste treatment[J]. Sep. Purif. Technol.,2007,55:292-299
    [13]Danesi P R, Horwitz E P, Rickert P G. Rate and mechanism of facilitated americium(III) transport through a supported liquid membrane containing a bifunctional organophosphorus mobile carrier[J]. J. Phys. Chem.,1983,87:4708-4715
    [14]Zha F F, Fane A G, Fell C J D. Phenol removal by supported liquid membranes[J]. Sep. Sci. Technol.,1994,29(17):2317-2343
    [15]Audunsson G. Aqueous/aqueous extraction by means of a liquid membrane for sample cleanup and preconcentration of amines in a flow system[J]. Anal. Chem.,1986,58:2714-2723
    [16]Wang K L, Cussler E L. Baffled membrane modules made with hollow fiber fabric[J]. J. Membr. Sci.,1993,85:265-278
    [17]Wickramasinghe S R, Semmens M J, Cussler E L. Hollow fiber modules made with hollow fiber fabric[J]. J. Membr. Sci.,1993,84:1-14
    [18]Wickramasinghe S R, Semmens M J, Cussler E L. Mass transfer in various hollow fiber geometries[J]. J. Membr. Sci.,1992,69:235-250
    [19]Yang M C, Cussler E L. Designing hollow fiber contactors[J]. AIChE J.,1986,32:1910-1915
    [20]Brewster M E, Chung K Y, Belfort G. Dean vortices with wall flux in a curved channel membrane system:1. A new approach to membrane module design[J]. J. Membr. Sci.,1993, 81:127-137
    [21]Ghogomu J N, Guigui C, Rouch J C, et al. Hollow fiber membrane module design:comparison of different curved geometries with dean vortices[J]. J. Membr. Sci.,2001,181:71-80
    [22]刘舜华,骆广生,戴猷元.用螺旋管技术提高中空纤维膜传质性能[J].膜科学与技术,2001,21(4):9-12
    [23]Wang Y Y, Chen F, Wang Y, et al. Effect of random packing on shell-side flow and mass transfer in hollow fiber module described by normal distribution function[J]. J.Membr. Sci., 2003,216:81-93
    [24]Zheng J M, Xu Z K, Li J M, et al. Influence of random arrangement of hollow fiber membranes on shell side mass transfer performance:a novel model prediction[J]. J. Membr. Sci.,2004,236:145-151
    [25]Wu J, Chen V. Shell-side mass transfer performance of randomly packed hollow fiber modules[J]. J. Membr. Sci.,2000,172:59-74
    [26]Asimakopoulou A G, Karabelas A J. A study of mass transfer in hollow-fiber membrane contactors:the effect of fiber packing fraction[J]. J. Membr. Sci.,2006,282:430-441
    [27]Gawronski R, Wrzesinska B. Kinetics of solvent extraction in hollow-fiber contactors[J]. J. Membr. Sci.,2000,168:213-222
    [28]Kocherginsky N M, Yang Q, Seelam L. Recent advances in supported liquid membrane technology[J]. Sep. Sci. Technol.,2007,53(2):171-177
    [29]Zha F F, Fane A G, Fell C J D, et al. Critical displacement pressure of a supported membrane[J]. J. Membr. Sci.,1992,75:69-80
    [30]Danesi P R. Separation of metal species by supported liquid membranes[J]. Sep. Sci. Technol., 1984,85:857-894
    [31]Zha F F, Fane A G, Fell C J D. Instability mechanisms of supported liquid membranes in phenol transport process[J]. J. Membr. Sci.,1995,107:59-74
    [32]Makoto N, Takahashi K, Takeuchi H. A method for continuous operation of supported liquid membranes[J]. J. Chem. Eng. Japan,1987,20 (3):326-328
    [33]Neplenbroek A M, Bargeman D, Smolders C A. Supported liquid membranes:stabilization by gelation[J]. J. Membr. Sci.1992,67:149-165
    [34]Yang X J, Fane A G, Bi J, et al. Stabilization of supported liquid membranes by plasma polymerization surface coating[J]. J. Membr. Sci.2000,168:29-37
    [35]Lacan P, Guizard C, Gall P L, et al. Facilitated transport of ions through fixed-site carrier membranes derived from hybrid organic-inorganic materials[J]. J. Membr. Sci.1995,100: 99-109
    [36]Sugiura M, Kikkawa M, Urita S. Carrier-mediated transport of rare earthions through cellulose triacetate membranes[J]. J. Membr. Sci.,1989,42:47-55
    [37]Kim J S, Kim S K, Ko J W, et al. Selective transport of cesium ion in polymeric CTA membrane containing calixcrown ethers[J]. Talanta,2000,52(6):1143-1148
    [38]Kim J S, Kim S K, Cho M H, et al. Permeation of silver ion through polymeric CTA membrane containing acyclic polyether bearing amide and amine end-group[J]. Bull. Kor. Chem. Soc,2001,22(10):1076-1080
    [39]Matsumoto M, Inomoto Y, Kondo K. Selective separation of aromatic hydrocarbons through supported liquid membranes based on ionic liquids[J]. J. Membr. Sci.2005,246:77-81
    [40]Boyadzhiev L, Lazerova Z, Bezenshek E. Mass transfer in three liquid phase system[A]. Proceedings of ISEC'83, Denver Colorado, USA,1983,391-393
    [41]Teramoto M, Matsuyama H, Yamashiro T, et al. Separation of ethylene from ethane by a flowing liquid membrane using silver nitrate as a carrier[J]. J. Membr. Sci.,1989,46:115-136
    [42]Sengupta A, Basu R, Sirkar K K. Separation of solutes from aqueous solution by contained liquid membrane[J]. AIChE J.,1988,34:1698-1708
    [43]Raghuraman B, Wiencek J. Extraction with emulsion liquid membranes in a hollow fiber contactor[J]. AIChE J.,1993,39:1885-1889
    [44]Ho W S. Combined supported liquid membrane/strip dispersion process for the removal and recovery of penicillin and organic acids[P]. US Patent:6433163,2002-4-3
    [45]Gu Z M, Wu Q F, Zheng Z X, et al. Laboratory and pilot plant test of yttrium recovery from wastewater by electrostatic pseudo liquid membrane[J]. J. Membr. Sci.,1994,93:137-147
    [46]顾忠茂,汪德熙,等.液膜分离过程的新发展—内耦合萃反交替分离过程[J],化工进展,1997,2:30-35
    [47]朱国斌,严纯华,杜启云,等.中空纤维管夹心型支撑液膜萃取体系中La3+的迁移行为[J].中国稀土学报,1995,13(4):303-307
    [48]张卫东,朱慎林,骆广生,等.中空纤维封闭液膜用于乳酸分离[J].膜科学与技术,1997,17(6):20-24
    [49]张卫东,朱慎林,骆广生,等.中空纤维封闭液膜的传质强化研究[J].膜科学与技术,1998,18(3):53-57
    [50]张凤君,马根祥,李德谦,等.氨化HEH/EHP膜基萃取钕、钐及传质研究[J].稀土,1999,20(4):8-11
    [51]张卫东,李爱民,等.利用中空纤维更新液膜技术实现同级萃取—反萃的方法[J].中国专利:200410077945X,2009-2-18
    [52]李爱民.中空纤维更新液膜用于Cu(Ⅱ)回收的传质性能研究[D].北京,北京化工大学,2005
    [53]杜昌顺.中空纤维更新液膜稳定性及传质机理研究[D].北京,北京化工大学,2006
    [54]李皓淑.中空纤维更新液膜分离柠檬酸的传质性能及小试研究[D].北京,北京化工大学,2007
    [55]刘一鸣.中空纤维更新液膜萃取水溶液中Cu(H)的传质性能研究[D].北京,北京化工大学,2007
    [56]戴园.以LIX984N为载体的含铜废水液膜处理技术的研究[D].北京,北京化工大学,2008
    [57]吕元元.液膜法提取青霉素G的实验研究[D].北京,北京化工大学,2008
    [58]孟慧琳.中空纤维更新液膜处理铜钴废水[D].北京,北京化工大学,2008
    [59]马竞男.中空纤维更新液膜技术用于含铬废水处理的研究[D].北京,北京化工大学,2009
    [60]李晶.中空纤维更新液膜用于青霉素G提取的工艺研究[D].北京,北京化工大学,2009
    [61]Liu J T, Zhang W D, Ren Z Q, et al. The separation and concentration of Cr(VI) from acidic dilute solution using hollow fiber renewal liquid membrane[J]. Ind. Eng. Chem. Res.,2009, 48:4500-4506
    [62]Zhang W D, Cui C H, Ren Z Q, et al. Simultaneous removal and recovery of copper(II) from acidic wastewater by hollow fiber renewal liquid membrane with LIX984N as carrier[J]. Chem. Eng. J.,2010,157:230-237
    [63]Ren Z Q, Meng H L, Zhang W D, et al. The transport of copper(II) through hollow fiber renewal liquid membrane and hollow fiber supported liquid membrane[J]. Sep. Sci. Technol., .2009,44:1181-1197
    [64]张卫东,刘君腾,任钟旗,等.含铬废水闭路循环处理工艺[P].中国专利:ZL2006101131265.2008-3-21
    [65]Ren Z Q, Zhang W D, Li H S, et al. Mass transfer characteristics of citric acid extraction by hollow fiber renewal liquid membrane[J]. Chem. Eng. J.,2009,146:220-226
    [66]Ren Z Q, Zhang W D, Lv Y Y, et al. Simultaneous extraction and concentration of penicillin G by hollow fiber renewal liquid membrane[J]. AIChE Bio. Prog.,2009,25:468-475
    [67]刘君腾.中空纤维更新液膜传质机理研究[D].北京,北京化工大学,2009
    [68]Chen Y, Xiangli F, Jin W, et al. Organic-inorganic composite membranes prepared by self-assembly of polyelectrolyte multilayers on macroporous ceramic supports[J]. J. Membr. Sci.,2007,302:78-86
    [69]Resina M, Fontas C, Palet C, et al. Comparative study of hybrid and activated composite membranes containing Aliquat 336 for the transport of Pt(IV)[J]. J. Membr. Sci.,2008,311: 235-242
    [70]McCleskey T M, Ehler D S, Young J S, et al. Asymmetric membranes with modified gold films as selective gates for metal ion separations[J]. J. Membr. Sci.,2002,210:273-278
    [71]Prasad R, Sirkar K K. Solve extraction with microporous hydrophilic and composite membranes[J]. AIChE J.,1987,33:1057-1066
    [72]Prasad R, Sirkar K K. Dispersion free solvent extraction with microporous hollow fiber modules[J]. AIChE J.,1988,34:177-188
    [73]Zha F F, Fane A G, Fell C J D. Liquid membrane processes for gallium recovery from alkaline solutions[J]. Ind. Eng. Chem. Res.,1995,34:1799-1809
    [74]Lin S H, Juang R S. Mass transfer in hollow fiber modules for extraction and back-extraction of copper(II) with LIX64N carriers[J]. J. Membr. Sci.,2001,188:251-262
    [75]金美芳,Strathmann H.复合支撑液膜[J].水处理技术,2000,26(1):18-21
    [76]Ho C C, Zydney A L. Measurement of membrane pore interconnectivity[J]. J. Membr. Sci., 2000,170:101-112
    [77]Rodgers V G J, Oppenheim S F, Datta R. Correlation of permeability and solute uptake in membranes of arbitrary pore morphology [J]. AIChE J.,1995,41:1826-1829
    [78]Venkateswaran P, Palanivelu K. Studies on recovery of hexavalent chromium from plating wastewater by supported liquid membrane using tri-n-butyl phosphate as carrier[J]. Hydrometallurgy,2005,78:107-115
    [79]Hassoune H, Rhlalou T, Metayer M, et al. Facilitated transport of aldoses by methyl cholate through supported liquid membranes impregnated with various solvents[J]. J. Membr. Sci., 2005,248:89-98
    [80]Lakshmi D S, Mohapatra P K, Mohan D, et al. Uranium transport using a PTFE flat-sheet membrane containing alamine 336 in toluene as the carrier[J]. Desalination,2004,163:13-18
    [81]Linden J V, Ketelaere R F D. Selective recuperation of copper by supported liquid membrane extraction[J]. J. Membr. Sci.,1998,139:125-135
    [82]Panja S, Mohapatra P K, Tripathi S C, et al. Studies on uranium(VI) pertraction across a N,N,N'N'-tetraoctyldiglycolamide (TODGA) supported liquid membrane[J]. J. Membr. Sci., 2009,337:274-281
    [83]Chakrabarty K, Saha P, Ghoshal A K. Separation of mercury from its aqueous solution through supported liquid membrane using environmentally benign diluent[J]. J. Membr. Sci.,2010, 350:395-401
    [84]Rathore N S, Leopold A, Pabby A K. et al. Extraction and permeation studies of Cd(II) in acidic and neutral chloride media using Cyanex 923 on supported liquid membrane[J]. Hydrometallurgy,2009,96:81-87
    [85]Mackie J S, Meares P. The diffusion of electrolytes in a cation-exchange resin membrane:I. Theoretical[J]. Proc. Roy. Soc. London. Ser. A,1955,232:498-509
    [86]Wolf J R, Striender W. Surface and void tortuosities for a random fiber bed:overlapping, parallel cylinders of several radii[J]. J. Membr. Sci.,1990,49:103-115
    [87]Chiarizia R. Stability of supported liquid membranes containing long chain aliphatic amines as carriers[J]. J. Membr. Sci.,1991,55:65-77
    [88]Keller O C, Poitry S, Buffle J. A hollow fiber supported liquid membrane system for metal speciation and preconcentration:calculation of the response time[J]. J. Electroanal. Chem., 1994,378:165-175
    [89]Paugam M F, Buffle J. Comparison of carrier-facilitated copper(II) ion transport mechanisms in a supported liquid membrane and in a plasticized cellulose triacetate membrane[J]. J. Membr. Sci.,1998,147:207-215
    [90]Guyon F, Parthasarathy N, Buffle J. Mechanism and kinetics of copper(II) transport through diaza-crown ether-fatty acid-supported liquid membrane[J]. Anal. Chem.,1999,71:819-826
    [91]Sriram S, Mohapatra P K, Pandey A K, et al. Facilitated transport of americium(III) from nitric acid media using dimethyldibutyltetradecyl-1,3-malonamide[J]. J. Membr. Sci.,2000,177: 163-175
    [92]Panja S, Ruhela R, Misra S K, et al. Facilitated transport of Am(III) through a flat-sheet supported liquid membrane (FSSLM) containing tetra(2-ethyl hexyl) diglycolamide (TEHDGA) as carrier[J]. J. Membr. Sci.,2008,325:158-165
    [93]Zhang Z S, Buffle J, Van Leeuwen H P, et al. Roles of metal ion complexation and membrane permeability in the metal flux through lipophilic membranes:labile complexes at permeation liquid membranes[J]. Anal. Chem.2006,78:5693-5703
    [94]Shailesh S, Pathak P N, Mohapatra P K, et al. Role of diluents in uranium transport across a supported liquid membrane using di(2-ethylhexyl) isobutyramide as the carrier[J]. Desalination,2008,232:281-290
    [95]Singh S K, Misra S K, Tripathi S C, et al. Studies on permeation of uranium (VI) from phosphoric acid medium through supported liquid membrane comprising a binary mixture of PC88A and Cyanex 923 in n-dodecane as carrier[J]. Desalination,2010,250:19-25
    [96]Swain B, Jeong J, Lee J, et al. Extraction of Co(II) by supported liquid membrane and solvent extraction using Cyanex 272 as an extractant:a comparison study[J]. J. Membr. Sci.,2007, 288:139-148
    [97]Sastre A, Madi A, Cortina J L, et al. Modelling of mass transfer in facilitated supported liquid membrane transport of gold(III) using phospholene derivatives as carriers[J]. J. Membr. Sci., 1998,139:57-65
    [98]钟兴福,黄志尧,吕鹏举,等.125 mm垂直圆管中油水两相流流型辨识研究[J].石油学报,2001,22(5):89-94
    [99]Charles M E, Govier G W, Hodgson G W. The horizontal pipeline flow of equal density oil-water mixtures[J]. Can. J. Chem. Engng.,1961,39:27-36
    [100]Russell T W F, Hodgson G W, Govier G W. Horizontal pipelines flow of mixture of oil and water[J]. Can. J. Chem. Engng.,1959,37(1):9-17
    [101]Charles M E, Redberger P J. The reduction of pressure gradients in oil pipelines by the addition of water:numerical analysis of stratified flow[J]. Chem. Eng.,1962,40:70-75
    [102]Trallero J L. Oil-water flow patterns in horizontal pipes[D]. Tulsa, The University of Tulsa, 1995
    [103]Guzhov A, Grishin A D, Medredev V F, et al. Emulsion formation during the flow of two immiscible liquids[J]. Neft. Choz.,1973,8:58-61
    [104]Nadler M, Mewes D. The effect of gas injection on the flow of immiscible liquids in horizontal pipes[J]. Chem. Eng. Tech.,1995,18:156-165
    [105]Angeli P, Hewitt G F. Flow structure in horizontal oil-water flow[J]. Int. J. Multiphase Flow, 2000,26:1117-1140
    [106]Angeli P. Liquid-liquid dispersed flow in horizontal pipes[D]. London, Imperial College. University of London,1996
    [107]Valle A. Three phase gas-oil-water pipe flow[D]. London, Imperial College, University of London,2000
    [108]Lovick J. Horizontal oil-water flows in the dual-continuous flow regime[D]. London, University College London, University of London,2004
    [109]Angeli P, Hewitt G F. Drop size distributions in horizontal oil-water dispersed flows[J]. Chem. Eng. Sci.,2000,55:3133-3143
    [110]Taitel Y, Bornea D, Dukler A E. Modeling flow pattern transitions for steady upward gas-liquid flow in vertical tubes[J]. AIChE J.,1980,26(3):345-354
    [111]Mishima K, Ishii M. Flow regime transition criteria for upward two-phase flow in vertical tubes[J]. Int. J. Heat Mass Transfer,1984,27(5):723-737
    [112]Soleimani A. Phase distribution and associated phenomena in oil-water flows in horizontal tubes[D]. London, Imperial College, University of London,1999
    [113]Kolmogoroff A N. The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers[J]. C. R. Acad.Sci. U. S. S. R.1941,30:301-305
    [114]Kolmogoroff A N. On the disintegration of drops in turbulent flow [J]. Doke. Acad. Nauk SSSR.,1949,66:825-829
    [115]Hinze O J. Fundamentals of the hydrodynamic mechanism of splitting up in'dispersion processfJ]. AIChE. J.,1955,1(3):289-295
    [116]Chem H T, Middleman S. Drop size distribution in agitated liquid-liquid systems[J]. AIChE J., 1967,13:989-995
    [117]Lane G L, Schwarz M P, Evans G M. Numerical modeling of gas-liquid flow instirred tanks[J]. Chem. Eng. Sci.,2005,60:2203-2214
    [118]Rod V. Bri. Chem. Eng.,1966,17:483-490
    [119]Lochiel A C, Calderbank P H. Mass transfer in the continuous phase around axisymmetric bodies of revolution[J]. Chem Eng Sci,1964,19:471-484
    [120]Newamn A B. The drying of porous solids:diffusion and surface emission effects[J]. Trans. Am. Inst. Chem. Eng.,1931,27:203-220
    [121]Garner F H, Foord A, Tayeban M. Mass transfer from circulating drops[J]. J. Appl. Chem., 1959,9:315-323
    [122]Calderbank P H, Korchinski IJ O. Circulation in liquid drops:a heat transfer study[J]. Chem. Eng. Sci.,1956,6:65-78
    [123]Garner F H, Tayeban M. The importance of the wake in mass transfer from both continuous and dispersed phase systems[J]. An. R. Soc. Esp. Fis. Quim. Ser. B,1960,56:479-490
    [124]丘星初,丘山.金—钯—铜合金镀液中微量铜的光度测定[J].电镀与精饰,2000,22(4):12—13
    [125]徐孝轩,宫敬.水平管中油水两相流动研究进展[J].化工机械,2006,33(1):59-65
    [126]Kumar A, Hartland S. Correlations for prediction of mass transfer coefficients in single drop systems and liquid-liquid extraction columns[J]. Trans. IChemE.,1999,77:372-384
    [127]Tung L S, Luecke R H. Mass transfer and drop sizes in pulsed-plate extraction columns[J]. Ind. Eng. Chem. Process Des. Dev.,1986,25:664-673
    [128]Kadam B D, Joshi J B, Patil R N. Hydrodynamic and mass transfer characteristics of asymmetric rotating disc extractors[J]. Chem. Eng. Res. Des.,2009,87:756-769
    [129]Ren Z Q, Zhang W D, Liu Y M, et al. New liquid membrane technology for simultaneous extraction and stripping of copper(II) from wastewater[J]. Chem. Eng. Sci.,2007,62: 6090-6101
    [130]Osman N A. Mathematical modeling of unsteady-state transport of metal ions through supported liquid membrane[J]. Hydrometallurgy,2007,87:148-156

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700