飞机自适应机翼的驱动机构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科技的发展带来航空器设计的革命,自适应机翼因其具有自动调节机翼形状以获得最佳气动性能的能力而成为研究热点。形状记忆合金(Shape Memory Alloy,简称SMA)作为驱动器具有大应变、高效的工作输出和潜在的材料融合性,成为自适应机翼驱动器的最佳选择之一。因此,研究形状记忆合金驱动器在自适应机翼结构中的应用,必将推动自适应机翼设计的发展。
     基于上述思想,本文对形状记忆合金驱动自适应机翼的可行性进行了研究,将形状记忆合金与机械结构相结合,设计基于形状记忆合金驱动的自适应机翼结构。本文的主要工作有:(1)全面测试形状记忆合金各项性能参数,为自适应机翼结构的设计提供参考和依据;(2)分析形状记忆合金丝的驱动机理、驱动方式和影响形状记忆合金动作响应速度的因素;(3)设计多关节自适应机翼结构,并选择差动方式进行驱动;(4)利用测得的形状记忆合金参数建立自适应机翼变形结构的力学模型,并利用Pro/e软件仿真计算,验证设计的可行性;(5)制作自适应机翼结构,并利用本试验室自行设计的控制系统,对该自适应结构进行了弯曲角度的控制实验,实现了弯曲角度可控。通过以上工作,从理论和试验上,证明了该变体结构的可行性和有效性,为自适应机翼的进一步研究打下基础。
     本文只是对SMA变体机构做了一些基础性的设计、计算工作,在提高变体结构响应频率、控制系统的有效性等方面还有待进一步研究。
The surroundings of traditional aircraft change intensively during flight, and it is difficult for aircraft wings to fit the change properly. The adaptive wing based on smart structure is one of the most effective methods to solve the problem. The concept of adaptive wing is that the wing shape parameters such as camber, span-wise twist, and thickness can be varied to optimize the wing shape for various flight conditions. For aircraft, concepts include: active feedback control systems for flutter suppression, load alleviation, and improvements in ride quality; and changing the shape of the wing for optimal performance at different flight conditions (take-off, landing, maneuver, and multiple cruise conditions). Many scientists have completed a lot of research in this area and the aerodynamic benefits of this concept have been analyzed and proved.
     In this paper, Niti SMA is selected as the actuator; the theoretical model and analysis of SMA are achieved. The basic characteristics of shape memory alloy (SMA) are obtained. Then, the structures of the trailing edge of adaptive wing are designed, simulated and analyzed. The configuration of SMA actuators on this structure is also finished. Finally, the experiments are arranged to verify the feasibility and reliability of the adaptive wing structures.
引文
[1] Jayanth N.Kudva, Kari Appa etc. Design, Fabrication, and Testing of the DARPA/Wright Lab“Smart Wing”Wind Tunnel Model, American Institute of Aeronautics and Astronautics, 1997.
    [2] Jonathan D.Bartley-Cho, Donny P.Wang etc. Development of High-rate Adaptive Trailing Edge Control Surface for the Smart Wing Phase 2 Wind Tunnel Model, Journal of Intelligent Material Systems and Structures, 2004.
    [3] Michael S.Wrobleski, Joseph Henderson etc. BAC 1-11 and MAW F-111 Control Surface Weight Estimation for SWIFT Study, 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Confer, 18-21 April 2005, Austin, Texas.
    [4] James H.Mabe, Frederick T.Calkins etc. Boeing’s Variable Geometry Chevron Morphing Aero Structure for Jet Noise Reduction, 47th AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics, and Materials Con, 1-4 May 2006, Newport, Rhode Island.
    [5] Frank H.Gern, Daniel J.Inman, Rakesh K.Kapania. Computation of Actuation Power Requirements for Smart Wing with Morphing Airfoils, 43th AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics, and Materials Con, 22-25 April 2002, Denver, Colorado.
    [6] Tomohiro Yokozeki, Shin-ichi Takeda etc. Mechanical properties of corrugated composites for candidate materials of flexible wing structures, Composites, October 2005: 1578~1586.
    [7]张永新.能像鸟一样飞行——NASA研究柔性变形机翼飞机, INTERNATIONAL AVIATION,2001.6.
    [8] John S.Flanagan1, Rolf C.Strutzenberg etc. Development and Flight Testing of a Morphing Aircraft, the NextGen MFX-1, 48h AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics, and Materials Conference, 23-26 April 2007, Honolulu, Hawaii.
    [9] S.Ricci, A.Scotti, M.Terraneo. Design, Manufacturing and Preliminary Test Result of an Adaptive Wing Camber Model, 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Con, 1-4 May 2006, Newport, Rhode Island.
    [10] Adaptive Structures & Material Systems, ASME&AIAA Adaptive Structures & Material Systems Newsletter, Summer 2006.
    [11] Lucio Flavio Campanile, Stefan Anders. Aerodynamic and aeroelastic amplification in adaptive belt-rib airfoils, Aerospace Science Technology, 2005: 55-63.
    [12]李毅,王生楠.变体飞行器结构振动特性研究,航空计算技术, 2006.11, Vol.36 No.6:66~69.
    [13]郑华,裴承鸣等.自适应机翼的控制系统设计及其试验研究,西北工业大学学报, 2006.12, Vol.24 No.6:749~753.
    [14]夏人伟.自适应结构综述,北京航空航天大学学报,1999.12,Vol.25 No.6:623~628.
    [15]熊克,沈文罡. SMA丝缠绕角对扭力驱动器驱动性能影响的实验研究,机械工程学报,2003,39(12):123~128.
    [16]余海湖,赵愚,姜德生.智能材料与结构的研究及应用,武汉理工大学学报,2001,23(11):37~41.
    [17]谢建宏,张为公,梁大开.智能材料结构的研究现状及未来发展,材料导报,2006,20(11):6~9.
    [18]武秀根,郑百林,贺鹏飞等.增强型形状记忆聚合物材料研究进展,材料工程,2006年增刊1:423~425.
    [19] C.A.Rogers. Active Vibration and Structural Acoustic Control of Shape Memory Alloy Hybrid Composite Experimential Results.J.Acout Sco Am. 1990, 88(6):2803~2811.
    [20]叶宁,王军,郦正能等. SMAs复合材料层板大变形分析计算,复合材料学报,2001年5月第18卷第2期:114~117.
    [21]王军,郦正能. SMA智能复合材料结构的有限元分析与实验研究,航空学报,2006年7月第27卷第4期:610~613.
    [22]王军,郦正能,王俊兵.二元智能复合材料结构变形分析,北京航空航天大学学报,2003年11月第29卷第11期, 988~992.
    [23]王军,郦正能,王俊兵.含SMA和PZT二元驱动器的智能复合材料结构形状控制,复合材料学报,2004,21(2):142~146.
    [24] J.Jia, C.A.Rogers. Formulation of a Mechanical Model for Composites with embedded SMA Actuators.Journal of Mechanical Design.1992, 114: 670~376.
    [25]孙国军,李宜平,林驰.形状记忆合金丝复合材料单层板的拉伸,纤维复合材料,1994 (1):15~21.
    [26]孙国军.形状记忆合金增强复合材料梁的弯曲,复合材料学报,1995.12(4):119~124.
    [27] Victor Giurgiutiu, Craig A.Rogers, Jasper Zuideraart. Design and Preliminary Tests of an SMA Active Composite, Tab.SPIE. 2001, (4112):11~19.
    [28]王晓宏.形状记忆合金驱动主动变形结构的设计与制作,哈尔滨:哈尔滨工业大学硕士学位论文,2006.
    [29]何存富,金江,陶宝祺.形状记忆合金驱动薄壁圆管扭转变形分析及实验研究,机械工程学报,2001,(2):17~21.
    [30]陶宝祺.智能材料结构,北京:国防工业出版社,1997:32~38.
    [31]舟久保,熙康.形状记忆合金,北京:机械工业出版社,1992:83~84.
    [32]刘芹,任建亭,姜节胜等. SMA本构模型及其应用的研究进展,力学进展,2007,37 (2):189~204.
    [33]何存富.改善形状记忆合金响应频率及其驱动结构变形的研究,南京:南京航空航天大学博士后研究工作报告,1998.
    [34]姚仲鹏,王瑞君,张习军.传热学,北京:北京理工大学出版社,1995.12:7~8.
    [35]甄睿.形状记忆合金相变温度的常用测量方法,南京工程学院学报(自然科学版),2006,3(4):27~32.
    [36]机械工程手册编辑委员会.机械工程手册,北京:机械工业出版社,1982:22-17~22-18.
    [37] Chandhay Z, Rogers C A. Bending and shape control of beams using shape memory alloy actuator. J Intell Mater Syst and Struct, 1991, 2: 581~602.
    [38]刘芹,任建亭,郭运强等.埋入形状记忆合金丝的复合材料圆柱壳壁板的热振动特性分析,振动与冲击,2007,26(7):18~21.
    [39]王宏,姚熊亮.一种基于SMA的摆动式驱动器驱动原理及试验,传感器与微系统,2006,25(10):41~46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700