捻转血矛线虫ES15/ES24在秀丽隐杆线虫体内的表达特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
捻转血矛线虫病是危害牛、羊等反刍动物的主要寄生虫病,其病原是捻转血矛线虫,成虫以宿主的血液和粘膜为食,导致动物贫血、消瘦、发育不良、生长缓慢甚至死亡,给畜牧业带来重大损失。目前捻转血矛线虫的控制主要靠广谱驱虫药物,化学药物过度和长期使用导致抗药虫株不断出现,同时也造成了肉制品药物残留和环境污染,寻找新的控制方法尤其是疫苗的开发显得十分迫切。捻转血矛线虫在宿主体内的寄生过程或体外培养的过程中可以向体外分泌产生多种分子,这些分子被命名为分泌排泄产物(Excretory/Secretory product, ESP),由于分泌排泄抗原(ES抗原)直接暴露于宿主免疫系统,是最有可能激发宿主产生保护性免疫的靶抗原之一,成为寄生虫抗原成分研制的热点。本研究以捻转血矛线虫寄生阶段释放的ES15/24抗原为研究对象,以秀丽隐杆线虫(Caenorhabditis elegans)作为模式生物,进行捻转血矛线虫分泌排泄抗原ES15/24转基因表达的可行性研究,以为寄生性线虫的疫苗研制提供技术支持。
     利用PCR技术从C. elegans基因组中克隆得到C. elegans肠道表达基因:sre-49、acdh-7、cpr-1的5’侧翼区作为表达外源基因的候选启动子筛选对象,用以在C. elegans体内表达ES抗原,将sre-49、acdh-7、cpr-1的5’侧翼区序列克隆到表达载体pPD-95.77, GFP基因的上游,利用显微注射技术转入C. elegans的性腺,通过检测报告基因EGFP的表达情况分析其作为启动子转录外源基因的可行性。结果发现:sre-49基因的5’侧翼区启动功能较弱,GFP表达量低;在acdh-7基因的5’侧翼区的转录下,GFP能够在虫体的咽部和肠道特异性表达,但表达呈区段性,即咽部、咽肠交接部及肠道末端呈现较高强度的表达,表达量和表达强度因虫体个体不同有一定差异;而cpr-1基因的5’侧翼区的转录功能则强而稳定,GFP可以在除胚胎期外所有阶段虫体的整个肠道表达,尤其4期幼虫(larve 4, L4)和成虫阶段表达量特别高。根据GFP表达的组织定位、L4幼虫和成虫阶段GFP表达的强度和稳定性,最后选择cpr-1基因的5’侧翼区作为C. elegans表达ES蛋白的启动子。
     根据已发表的分泌排泄抗原基因序列设计两对引物,以H. contortus,总RNA为模板,用RT-PCR方法分别扩增出大小为400bp和600bp的产物。序列分析结果表明:与已发表的的序列一致。将目的基因插入到重组质粒Cpr1-pPD-95.77中,构建重组真核表达质粒cprl-ES15/24-pPD-95.77。通过显微注射技术将cpr1-ES15-pPD-95.77与marker质粒PRF4共注射到C. elegans的性腺,通过紫外辐照的方法获得可稳定遗传虫株。通过对转基因C. elegans进行单虫PCR、RT-PCR及western-blot分析发现,ES15基因能够在C. elegans体内转录,可以在ES15转基因C. elegans肠道内检测到绿色荧光信号;而ES24转基因虫体不能检测明显的荧光信号,可能由于ES24基因或其转录产物对虫体有毒性,具体原因有待进一步的研究。
     为分离纯化秀丽隐杆线虫表达的ES15重组蛋白,在ES15抗原成功的在秀丽隐杆线虫表达的基础上,进一步对重组载体cpr-15’侧翼区::GFP进行了改造,即添加了His标签或将ES15基因下游的GFP终止,实验结果表明,改造后的ES15的表达强度和表达量与改造前基本一致。但有关虫体转基因目的蛋白的纯化和提取条件,仍需要进一步的摸索和优化。
     综上,本实验首次利用显微注射技术研究了捻转血矛线虫ES15/24抗原在秀丽隐杆线虫体内的表达情况,成功实现了ES15抗原在秀丽隐杆线虫体内的表达,为今后捻转血矛线虫抗原在秀丽隐杆线虫体内的表达、纯化研究奠定了理论基础。
Haemonchosis is a major parasitic disease of ruminants such as cattle and sheep, whose pathogen is Haemonchus contortus, which feed on the mucous membrane and blood of the host. Its infection may be manifested as anemia, weight lost, stunted growth or even death in some case, which cause significant losses to livestock industry. The control of haemonchosis is depandent on the use of broad-spectrum deworming drugs currently. However, alternative methods of control are required, such as vaccine, with the emergence of anthemintic resistant strains of H. contortus and drug residues in meat products. H. contortus in host body during parasitic process or in vitro secreted a variety of molecules named excretory product (ESP). As ES antigen directly exposed to the host immune system, it is most likely to stimulate host protective immunity as a target antigen. ES antigens have become a hot spot in parasite research. Therefore, the studies carried were focused on proteins released during parasitic pHase of infection-ES15/24. Caenorhabditis elegans was choosen as an alternative expression system to try to express ES antigens. My research aimed to take C. elegans as a heterologous system, analyze the transcriptional activity of ES15/24 and make sure the feasibility of expression of ES15/24 using C. elegans, based on established transgenic platform, which would provide technical supports for the vaccination against parasitic nematodes.
     The core promoter region of sre-49 gene and acdh-7 gene chosen as candidate genes of target promoter for the expression of ES antigen in C. elegans were amplified from the genomic DNA of C. elegans using PCR technology. The 5'flanking region of sre-49, acdh-7 and cpr-1 were cloned into the expression vector pPD-95.77. After microinjected into C. elegans' gonad, worms were picked up to detect the expression of EGFP reporter gene. The results showed that fluorescence directed by 5' flanking region of sre-49 gene was poor. The fluorescence directed by 5'flanking region of acdh-7 gene was detected in the pHarynx, anterior intestine and posterior intestine of transgenic-worms, but the expressions were segmental and there were some differences in the expression's patterns and intensities of GFP between different individuals. The transcriptional function of the 5'flanking region of cpr-1 gene was not only strong but also stable compared to the former two genes, GFP could expressed intensively in the whole intestine of worms in all stages expect embryos. So 5'flanking region of cpr-1 gene was determined to direct the expressions of ES15/24 eventually, referred to the location of GFP, the expression intensity in L4 and adult C. elegans, and also stability between different individuals.
     RT-PCR was carried out to amplify the cDNA of ES15/24 from total RNA of H. contortus, referred to the sequence of ES15/24 from H. contortus reported.400bp and 600bp product fragments were amplified and inserted into plasmid cprl-pPD-95.77, aimed to construct the recombinant plasmid cpr-ES15/24-pPD-95.77 which were injected into C. elegans'gonad respectively together with a marker plasmid--PRF4 by micro injection. Through ultraviolet irradiation, stably inherited transgenic C. elegans strains had been obtained. The transcripts of ES15/24 could be found in transgenic C. elegans by single-worm PCR and RT-PCR analysis. With fluorescence microscopy, green fluorescence could be found in the guts of ES15 transgenic C. elegans, while green fluorescence could not be found in the bodies of ES24 transgenic worms. Maybe ES24 gene was toxic to C. elegans, which still requires further research.
     In order to obtain recombinant protein of ES 15 expressed by C. elegans, some changes were made to the recombinant vector-cpr-1 5'flanking region::GFP with the method of adding His tag or ending GFP gene in the downstream of ES15. Experimental results showed that the intensity and pattern of expression of ES15 were consistent with the transformation of the former results. As for the conditions for purification of recombinant protein from transgenic worms, those still need us to explore and optimize.
     Overall, this experiment is the first study about transgenic expression of ES15/24 in C. elegans using microinjection techniques. We successfully achieved the expression of ES15 antigen in C. elegans taking the advantage of established transgenic platform, which laid a theoretical foundation for the expression and purification of antigens of H. contortus using C. elegans in the future.
引文
汪明.兽医寄生虫学[M](第三版),北京,中国农业出版社.2006:157-158.
    王祥,姚宝安,夏雪山等.苏云金芽孢杆菌伴胞晶体蛋白对捻转血矛线虫第四期幼虫的毒杀作用[J].中国兽医科技.1999,29(6):33-34.
    李国清.人兽医寄生虫学[M].广州:广东高等教育出版社.1999:156-159.
    邹丰才,宋慧群,陈宁等.应用RNA干扰技术对猪蛔虫性别相关基因功能的初步研究.中国兽医科学.2006,36(9):724-728.
    杨玉荣,高雅君,细菌介导的RNA干扰对C. elegans中par 23基因的作用.细胞生物学杂志.2006,28(4):617-621.
    孙磊,邓洪宽等.RNA干扰技术在寄生虫基因功能研究中的应用.国际医学寄生虫病杂志.2007,34:4.
    田小军,薛燕萍.表达序列标签在寄生虫功能基因组学研究中的应用.中国病原生物学杂志.2008,3:3.
    赵宏亮,冯仁军等.香蕉中Maasr1基因的生物信息学分析.生物技术通讯.2006,17:336-340.
    佘高明等.新基因FAM92A1的生物信息学分析及功能预测.郧阳医学院学报.2008,27:289-294.
    陈克克,武雪.植物查耳酮异构酶生物信息学分析.生物信息学.2009,3.
    Alawa, C.B., Adamu, A.M., Gefu, J.O., Ajanusi, O.J., Abdu, P.A., Chiezey, N.P., Alawa, J.N., Bowman, D.D.,2003. In vitro screening of two Nigerian medicinal plants (Vernonia amygdalina and Annona senegalensis) for anthelmintic activity. Veterinary parasitology 113, 73-81.
    Anbu, K.A., Joshi, P.,2008. Identification of a 55 kDa Haemonchus contortus excretory/secretory glycoprotein as a neutropHil inhibitory factor. Parasite immunology 30,23-30.
    Ankeny, R.A.,2001. The natural history of Caenorhabditis elegans research. Nature reviews 2, 474-479.
    Bakker, N., Vervelde, L., Kanobana, K., Knox, D.P., Cornelissen, A.W., de Vries, E., Yatsuda, A.P., 2004. Vaccination against the nematode Haemonchus contortus with a thiol-binding fraction from the excretory/secretory products (ES). Vaccine 22,618-628.
    Ballweber, L R.2001, Veterinary parasitology [M]. Boston:Butterworth-Heinemann.219.
    Bellafiore, S., Shen, Z., Rosso, M.N., Abad, P., Shih, P., Briggs, S.P.,2008. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLoS pathogens 4, el000192.
    Boshart, M., Weber, F., Jahn, G., Dorsch-Hasler, K., Fleckenstein, B., Schaffner, W.,1985. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41,521-530.
    Bowles, V.M., Brandon, M.R., Meeusen, E.,1995. Characterization of local antibody responses to the gastrointestinal parasite Haemonchus contortus. Immunology 84,669-674.
    Britton, C., Murray, L.,2004. Cathepsin L protease (CPL-1) is essential for yolk processing during embryogenesis in Caenorhabditis elegans. Journal of cell science 117,5133-5143.
    Britton, C., Murray, L.,2006. Using Caenorhabditis elegans for functional analysis of genes of parasitic nematodes. International journal for parasitology 36,651-659.
    Brunet, S., de Montellano, C.M., Torres-Acosta, J.F., Sandoval-Castro, C.A., Aguilar-Caballero, A.J., Capetillo-Leal, C., Hoste, H.,2008. Effect of the consumption of Lysiloma latisiliquum on the larval establishment of gastrointestinal nematodes in goats. Veterinary parasitology 157,81-88.
    Campbell, B.E., Nagaraj, S.H., Hu, M., Zhong, W., Sternberg, P.W., Ong, E.K., Loukas, A., Ranganathan, S., Beveridge, I., McInnes, R.L., Hutchinson, G.W., Gasser, R.B.,2008. Gender-enriched transcripts in Haemonchus contortus-predicted functions and genetic interactions based on comparative analyses with Caenorhabditis elegans. International journal for parasitology 38,65-83.
    Capon, R.J., Miller, M., Rooney, F.,2001. Mirabilin G:a new alkaloid from a southern Australian marine sponge, Clathria species. Journal of natural products 64,643-644.
    Costa, J.C., Lilley, C.J., Atkinson, H.J., Urwin, P.E.,2009. Functional characterisation of a cyst nematode acetylcholinesterase gene using Caenorhabditis elegans as a heterologous system. International journal for parasitology.
    Davis, M.W., Birnie, A.J., Chan, A.C., Page, A.P., Jorgensen, E.M.,2004. A conserved metalloprotease mediates ecdysis in Caenorhabditis elegans. Development (Cambridge, England) 131,6001-6008.
    De Vries, E., Bakker, N., Krijgsveld, J., Knox, D.P., Heck, A.J., Yatsuda, A.P.,2009. An AC-5 cathepsin B-like protease purified from Haemonchus contortus excretory secretory products shows protective antigen potential for lambs. Veterinary research 40,41.
    Donnelly, S., O'Neill, S.M., Sekiya, M., Mulcahy, G., Dalton, J.P.,2005. Thioredoxin peroxidase secreted by Fasciola hepatica induces the alternative activation of macropHages. Infection and immunity 73,166-173.
    El-Naggar, M., Conte, M., Capon, R.J., Mirabilins revisited:polyketide alkaloids from a southern Australian marine sponge, Clathria sp. Organic & biomolecular chemistry 8,407-412.
    Ellis, H.M., Horvitz, H.R.,1986. Genetic control of programmed cell death in the nematode C. elegans. Cell 44,817-829.
    Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C.,1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391,806-811.
    Gomez-Escobar, N., Gregory, W.F., Maizels, R.M.,2000. Identification of tgh-2, a filarial nematode homolog of Caenorhabditis elegans daf-7 and human transforming growth factor beta, expressed in microfilarial and adult stages of Brugia malayi. Infection and immunity 68, 6402-6410.
    Gomez-Escobar, N., Gregory, W.F., Britton, C., Murray, L., Corton, C., Hall, N., Daub, J., Blaxter, M.L., Maizels, R.M.,2002. Abundant larval transcript-1 and-2 genes from Brugia malayi: diversity of genomic environments but conservation of 5'promoter sequences functional in Caenorhabditis elegans. Molecular and biochemical parasitology 125,59-71.
    Gourbal, B.E., Guillou, F., Mitta, G., Sibille, P., Theron, A., Pointier, J.P., Coustau, C.,2008.
    Excretory-secretory products of larval Fasciola hepatica investigated using a two-dimensional proteomic approach. Molecular and biochemical parasitology 161,63-66.
    Gregory, W.F., Maizels, R.M.,2008. Cystatins from filarial parasites:evolution, adaptation and function in the host-parasite relationship. The international journal of biochemistry & cell biology 40,1389-1398.
    Gronvold, J., Henriksen, S.A., Larsen, M., Nansen, P., Wolstrup, J.,1996. Biological control. Aspects of biological control-with special reference to arthropods, protozoans and helminths of domesticated animals. Veterinary parasitology 64,47-64.
    Hewitson, J.P., Harcus, Y.M., Curwen, R.S., Dowle, A.A., Atmadja, A.K., Ashton, P.D., Wilson, A., Maizels, R.M.,2008. The secretome of the filarial parasite, Brugia malayi:proteomic profile of adult excretory-secretory products. Molecular and biochemical parasitology 160,8-21.
    Hewitson, J.P., Grainger, J.R., Maizels, R.M.,2009. Helminth immunoregulation:the role of parasite secreted proteins in modulating host immunity. Molecular and biochemical parasitology 167, 1-11.
    Hoekstra, R., Visser, A., Otsen, M., Tibben, J., Lenstra, J.A., Roos, M.H.,2000. EST sequencing of the parasitic nematode Haemonchus contortus suggests a shift in gene expression during transition to the parasitic stages. Molecular and biochemical parasitology 110,53-68.
    Hosking, B.C., Stein, P.A., Mosimann, D., Seewald, W., Strehlau, G., Kaminsky, R.,2008. Dose determination studies for monepantel, an amino-acetonitrile derivative, against fourth stage gastro-intestinal nematode larvae infecting sheep. Veterinary parasitology 157,72-80.
    Huynh, M.H., Carruthers, V.B.,2009. Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80. Eukaryotic cell 8,530-539.
    Jacobs, H.J., Wiltshire, C., Ashman, K., Meeusen, E.N.,1999. Vaccination against the gastrointestinal nematode, Haemonchus contortus, using a purified larval surface antigen. Vaccine 17,362-368.
    Jasmer, D.P., Perryman, L.E., McGuire, T.C.,1996. Haemonchus contortus GA1 antigens:related, pHospHolipase C-sensitive, apical gut membrane proteins encoded as a polyprotein and released from the nematode during infection. Proceedings of the National Academy of Sciences of the United States of America 93,8642-8647.
    Karanu, F.N., Rurangirwa, F.R., McGuire, T.C., Jasmer, D.P.,1993. Haemonchus contortus: identification of proteases with diverse characteristics in adult worm excretory-secretory products. Experimental parasitology 77,362-371.
    Krause, S., Sommer, A., Fischer, P., BropHy, P.M., Walter, R.D., Liebau, E.,2001. Gene structure of the extracellular glutathione S-transferase from Onchocerca volvulus and its overexpression and promoter analysis in transgenic Caenorhabditis elegans. Molecular and biochemical parasitology 117,145-154.
    Kwa, M.S., Veenstra, J.G., Van Dijk, M., Roos, M.H.,1995. Beta-tubulin genes from the parasitic nematode Haemonchus contortus modulate drug resistance in Caenorhabditis elegans. Journal of molecular biology 246,500-510.
    Li, X., Du, A., Cai, W., Hou, Y., Pang, L., Gao, X.,2007. Evaluation of a recombinant excretory secretory Haemonchus contortus protein for use in a diagnostic enzyme-linked immunosorbent assay. Experimental parasitology 115,242-246.
    Loukas, A., Doedens, A., Hintz, M., Maizels, R.M.,2000. Identification of a new C-type lectin, TES-70, secreted by infective larvae of Toxocara canis, which binds to host ligands. Parasitology 121 Pt 5,545-554.
    Loukas, A., Bethony, J.M., Mendez, S., Fujiwara, R.T., Goud, G.N., Ranjit, N., Zhan, B., Jones, K., Bottazzi, M.E., Hotez, P.J.,2005. Vaccination with recombinant aspartic hemoglobinase reduces parasite load and blood loss after hookworm infection in dogs. PLoS medicine 2, e295.
    Murray, J., Manoury, B., Balic, A., Watts, C., Maizels, R.M.,2005. Bm-CPI-2, a cystatin from Brugia malayi nematode parasites, differs from Caenorhabditis elegans cystatins in a specific site mediating inhibition of the antigen-processing enzyme AEP. Molecular and biochemical parasitology 139,197-203.
    Murray, L., Geldhof, P., Clark, D., Knox, D.P., Britton, C.,2007. Expression and purification of an active cysteine protease of Haemonchus contortus using Caenorhabditis elegans. International journal for parasitology 37,1117-1125.
    Narkowicz, C.K., Blackman, A.J., Lacey, E., Gill, J.H., Heiland, K.,2002. Convolutindole A and convolutamine H, new nematocidal brominated alkaloids from the marine bryozoan Amathia convoluta. Journal of natural products 65,938-941.
    Newton, S.E., Munn, E.A.,1999. The development of vaccines against gastrointestinal nematode parasites, particularly Haemonchus contortus. Parasitology today (Personal ed 15,116-122.
    Newton, S.E., Meeusen, E.N.,2003. Progress and new technologies for developing vaccines against gastrointestinal nematode parasites of sheep. Parasite immunology 25,283-296.
    Ofran, Y., Rost, B.,2003. Analysing six types of protein-protein interfaces. Journal of molecular biology 325,377-387.
    Paolini, V., Bergeaud, J.P., Grisez, C., Prevot, F., Dorchies, P., Hoste, H.,2003. Effects of condensed tannins on goats experimentally infected with Haemonchus contortus. Veterinary parasitology 113,253-261.
    Pessoa, L.M., Morais, S.M., Bevilaqua, C.M., Luciano, J.H.,2002. Anthelmintic activity of essential oil of Ocimum gratissimum Linn. and eugenol against Haemonchus contortus. Veterinary parasitology 109,59-63.
    Pillai, S., Kalinna, B.H., Liebau, E., Hartmann, S., Theuring, F., Lucius, R.,2005. Studies on Acanthocheilonema viteae cystatin:genomic organization, promoter studies and expression in Caenorhabditis elegans. Filaria journal 4,9.
    Rathore, D.K., Suchitra, S., Saini, M., Singh, B.P., Joshi, P.,2006. Identification of a 66 kDa Haemonchus contortus excretory/secretory antigen that inhibits host monocytes. Veterinary parasitology 138,291-300.
    Redmond, D.L., Clucas, C., Johnstone, I.L., Knox, D.P.,2001. Expression of Haemonchus contortus pepsinogen in Caenorhabditis elegans. Molecular and biochemical parasitology 112,125-131.
    Rhoads, M.L., Fetterer, R.H.,1990. Biochemical and immunochemical characterization of 1251-labeled cuticle components of Haemonchus contortus. Molecular and biochemical parasitology 42, 155-164.
    Ruyssers, N.E., De Winter, B.Y., De Man, J.G., Loukas, A., Pearson, M.S., Weinstock, J.V., Van den Bossche, R.M., Martinet, W., Pelckmans, P.A., Moreels, T.G.,2009. Therapeutic potential of helminth soluble proteins in TNBS-induced colitis in mice. Inflammatory bowel diseases 15, 491-500.
    Schallig, H.D., van Leeuwen, M.A., Hendrikx, W.M.,1994. Immune responses of Texel sheep to excretory/secretory products of adult Haemonchus contortus. Parasitology 108 (Pt 3),351-357.
    Schallig, H.D., van Leeuwen, M.A., Cornelissen, A.W.,1997a. Protective immunity induced by vaccination with two Haemonchus contortus excretory secretory proteins in sheep. Parasite immunology 19,447-453.
    Schallig, H.D., van Leeuwen, M.A., Verstrepen, B.E., Cornelissen, A.W.,1997b. Molecular characterization and expression of two putative protective excretory secretory proteins of Haemonchus contortus. Molecular and biochemical parasitology 88,203-213.
    Semnani, R.T., Law, M., Kubofcik, J., Nutman, T.B.,2004. Filaria-induced immune evasion: suppression by the infective stage of Brugia malayi at the earliest host-parasite interface. J Immunol 172,6229-6238.
    Siracusano, A., Margutti, P., Delunardo, F., Profumo, E., Rigano, R., Buttari, B., Teggi, A., Ortona, E., 2008. Molecular cross-talk in host-parasite relationships:the intriguing immunomodulatory role of Echinococcus antigen B in cystic echinococcosis. International journal for parasitology 38, 1371-1376.
    Stringfellow, F.,1986. Cultivation of Haemonchus contortus (Nematoda:Trichostrongylidae) from infective larvae to the adult male and the egg-laying female. The Journal of parasitology 72, 339-345.
    Vercruysse, J., Schetters, T.P., Knox, D.P., Willadsen, P., Claerebout, E.,2007. Control of parasitic disease using vaccines:an answer to drug resistance? Revue scientifique et technique (International Office of Epizootics) 26,105-115.
    Vervelde, L., Kooyman, F.N., Van Leeuwen, M.A., Schallig, H.D., MacKellar, A., Huntley, J.F., Cornelissen, A.W.,2001. Age-related protective immunity after vaccination with Haemonchus contortus excretory/secretory proteins. Parasite immunology 23,419-426.
    Vervelde, L., Van Leeuwen, M.A., Kruidenier, M., Kooyman, F.N., Huntley, J.F., Van Die, I., Cornelissen, A.W.,2002. Protection studies with recombinant excretory/secretory proteins of Haemonchus contortus. Parasite immunology 24,189-201.
    Vuong, D., Capon, R.J., Lacey, E., Gill, J.H., Heiland, K., Friedel, T.,2001. Onnamide F:a new nematocide from a southern Australian marine sponge, Trachycladus laevispirulifer. Journal of natural products 64,640-642.
    Xenarios, I., Rice, D.W., Salwinski, L., Baron, M.K., Marcotte, E.M., Eisenberg, D.,2000. DIP:the database of interacting proteins. Nucleic acids research 28,289-291.
    Yatsuda, A.P., Krijgsveld, J., Cornelissen, A.W., Heck, A.J., de Vries, E.,2003. Comprehensive analysis of the secreted proteins of the parasite Haemonchus contortus reveals extensive sequence variation and differential immune recognition. The Journal of biological chemistry 278,16941-16951.
    Zhu, S., Hanneman, A., Reinhold, V.N., Spence, A.M., Schachter, H.,2004. Caenorhabditis elegans triple null mutant lacking UDP-N-acetyl-D-glucosamine:alpHa-3-D-mannoside beta1,2-N-acetylglucosaminyltransferase Ⅰ. The Biochemical journal 382,995-1001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700