MSCT三维重建方法术前评价中耳炎患者听骨链完整性的对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中耳炎作为耳鼻喉科一种常见病严重影响人们的健康,尤其是慢性化脓性中耳炎和胆脂瘤型中耳炎。在其长期作用下常常可以出现听骨链的中断,患者表现为传导性听力下降。目前临床上有关该病治疗的总原则是在彻底清除病变,提高干耳率的前提下,最大可能改善患者的听功能。即采用鼓室成型加听骨链重建术。众所周知,听骨链不同方式及程度的破坏,需要采取不同的方式去重建,并且患者的预后与术前听骨链的状态密切相关。为此术前判断听骨链完好与否或具体的破坏方式,对于手术方式的选择可以提供指导,同时也可以准确预测患者的术后听力恢复情况。
     目前有关判断听骨链状态的指标多为间接指标,其敏感性和特异性比较低,即使是临床广为接受的气骨导差值(air bone gap-ABG)的大小,符合率也比较低。高分辨率CT (high resolution compute tomography, HRCT)的出现,使得直观观察听骨链成为可能,但是由于听小骨结构的细小,同时加上空间关系的复杂,任何一副常规的横断位或冠状位均图像无法完整的显示任何一个听小骨。为此就需要影像医生对所有图像进行观察,然后在脑中进行三维叠加,来判断听骨链情况,其结果通常比较主观,符合率也较低。
     基于多排螺旋CT (multi slice compute tomography, MSCT)的三维重建技术使得我们直观观察听骨链成为可能,图像通常形象直观。但是目前有关三维重建技术有多种,均有一定的价值。用于中内耳研究的常见的有多平面重组技术(multi-planar reformation, MPR),基于表面重建的仿真内镜技术(virtual endoscope built on three-dimensional shaded-surface display, SSD-based CTVE)以及容积重现技术(volume rendering, VR)。有关这几种技术价值的研究,报道不一,且主要是集中于正常人群或是鼓室充气好的听骨链畸形患者以及外伤或术后评估方面的研究。CT三维重建技术用于评价中耳炎患者听骨链完整性方面的研究比较少见,有关不同方法价值的对比研究更为罕见。
     本研究通过对正常人听骨链进行三维重建了解听骨链的正常解剖以及熟悉三维重建方法,并通过半定量评分系统判断各种技术显示听骨链的价值,通过对比分析,判断各种技术的优越性。随后对鼓室内伴有软组织病灶的中耳炎患者进行听骨链的三维重建,判断听骨链破坏情况,并与术中的情况进行对比分析,分析各种技术在病变患者中的价值,旨在得出最佳的三维重建方式以供以后的临床推广应用。
     本部分旨在探讨三种常用的基于MSCT三维重建技术:MPR,SSD-based CTVE以及VR在评价正常人群中耳听骨链方面的价值。首先选择32耳MSCT显示正常,鼓室导抗图为A型,纯音测听正常的原始影像数据,分别按照三种不同的参数重建出三组不同的源二维图像,然后分别将其导入3D后处理系统,对听骨链进行三维重建。随后由3名经验丰富的影像医生对听骨链14个不同的结构进行观察并按照同一标准进行打分。
     结果发现:除了镫骨足板在SSD-based CTVE图像上不能观察外,听骨链的其他结构均能在该三种技术上得到很好的显示。通过对比分析发现,MPR和VR在显示锤骨头和颈方面价值一致,且优于SSD-based CTVE;三种技术显示锤骨柄价值相当;对于锤骨外侧突而言,VR技术优于其他两种,但MPR与SSD-based CTVE之间差别无明显的统计学意义。在砧骨方面,VR和MPR效率相当,均优于SSD-based CTVE.就豆状突来讲,三者价值均有限,但是MPR相对还优于其他两种。对于镫骨来讲,三种技术显示前弓和足板的顺序为MPR优于VR,VR优于SSD-based CTVE;而就后弓和镫骨头,MPR和VR相率相当,优于SSD-based CTVE。在显示关节的效率上,三种均有限,除了MPR能见部分关节间隙存在外,其他的均只能观察到关节的外表面,判断关节在位与否;三种技术对于砧镫关节显示无明显差别;对于锤砧关节的显示,MPR相对显示出优越性。
     研究表明,除镫骨足板在SSD-based CTVE上不能显示外,其他的结构均能显示,而MPR与VR可以显示所有上述结构。且通过比较发现MPR和VR图像的质量相对于SSD-based CTVE图像较高。但是VR是真正意义上的三维图像,更为直观,形象,值得以后临床推广。
     本部分研究旨在探讨第一部分提到的基于MSCT的三种三维重建技术在评价鼓室内伴有软组织病灶的中耳炎患者听骨链完整性方面的价值。首先收集在我院进行术前CT检查,并接受鼓室成型术,病史超过3年以上的慢性中耳炎或胆脂瘤患者,然后按照余下的剔除标准剔除一部分对象:1)、术中无法清晰观察听小骨情况;2)、术前CT检查和手术相隔1个月以上。对所有符合标准的对象,进行听骨链的三维重建,分别由3位经验丰富的影像专家按照一定的标准进行打分,然后观察这些患者的听骨链术中的情况,同时也按照相似的标准进行打分。再后按照统一的标准进行处理数据,对比分析判断各种技术的价值。
     研究发现:三种技术对于锤骨的显示,约登指数和符合率无明显差别;对于砧骨而言,MPR和VR技术的约登指数和符合率相当,高于SSD-based CTVE。在镫骨方面,三种技术的约登指数和符合率均不高,具体如下:对于镫骨足板而言,SSD-based CTVE不能显示,MPR的约登指数和符合率高于VR;就镫骨头和前后弓,VR的约登指数较其他两种低。针对听骨链之间的关节,VR对锤砧关节的指标高于其他两种;MPR对砧镫关节和豆状突的指标相对其他两种高。
     研究显示,MPR及VR判断中耳炎患者锤骨、砧骨完整性的价值相当,优越于SSD-based CTVE。三种技术对于判断中耳炎镫骨完整性方面的价值均有限。但VR对于判断听骨链在位与否有明显的优势。同时VR较MPR是真正意义上的三维图像,操作也比较简单,因此是值得以后推广的技术。
     1.对于正常人群
     1.1 MPR技术与VR技术对于听骨链的显示效率均优于SSD-based CTVE技术。
     1.2 MPR技术与VR技术显示听骨链的效率相当,但是VR图像是真正意义上的三维图像,更形象直观,值得以后推广。
     2.对于鼓室内伴有软组织病灶的中耳炎患者。
     2.1阈值选择合适的前提下,三种技术均可以用来判断听骨链破坏情况。
     2.2 MPR和VR技术对于锤砧骨显示出较大的优势,无明显区别。
     2.3三种技术对于镫骨价值均有限。
     2.4 VR操作简单,图像直观,更有前景。
Otitis media, which is one of the most common diseases in Otology, especially the chronic suppurative otitis media and the cholesteatoma, decreases the patients'life quality dramatically. The patient will demonstrate conducitive hearing loss due to his ossicles was destroyed during the course. Currently, the general principle for the treatment of this disease is to improve patient's hearing to the utmost under the precise of thorough elimination of pathological tissue and avoidance to recurrence. For this purpose, patients will accept tympanoplasty and ossiculoplasty. It is well known that patients with different destroyed ways of ossicules need different types of ossiculoplasty. Therefore, it is very important for surgeons to know the ossicles' destroyed ways exactly. In addition, we can accurately forecast patients'hearing level after operation based on this information.
     Recently, there are some indirect marks for the diagnosis of ossicles abruption, such as the pathological tissue's site and ABG, whose low sensitivity and specificity are used to be proved. With the development of the HRCT, it is possible for us to observe the ossicles directly. However, owing to their minute size and complex relationship with the rest two, we can not wholly observe any ossicle in any one of the conventional axial or coronal images. For better diagnosis, we must mentally stack up multiple 2D planar images to reconstruct a complete 3D image. Nevertheless, the results are commonly dissatisfactory.
     The 3D reconstruction based on the MSCT facilitates us to observe the ossicules three-dimensionally and directly owing to the hard ware and soft ones development. To date, there have been some different 3D reconstruction ways, which were all proved to be valuable respectively. The following three modalities, MPR (multiplanar reformation), SSD-based CTVE (based on the surface shadow display) and VR (volume rendering), have been commonly used to reconstruct the middle and inner ear. However, different people had different opinions on these modalities'value, In addition, most of these researches mainly focused on the normal people or the cases with well aerated mastoid and middle ear cavity, such as the patient with abnormal ossicles or the one after trauma or operation. There has been a dearth of literature on the comment on the ossicles'status of the patient with chronic suppurative otitis media or the cholesteatoma, let alone the value comparative research among these three aforementioned different approaches.
     The study was composed of two parts. The first one was the research on the normal people. In this section, we would be familiar with the anatomy of the ossicles and the 3D reconstruction ways. What’more, we would assess the comparative value about these three modalities. The second part was the research on the patient with chronic suppurative otitis media or cholesteatoma. In this part, we also wanted to make a comparison of the three ones to diagnose the states of the ossicles, which was confirmed by the surgery.
     The aim of this part of the research was to examine and assess their comparative values of the three modalities. In this section we reviewed 32 human ears of 18 patients accompanied by normal pure tone audiograms, type-A tympanogram and normal HRCT characteristics, whose ossicular chains were reconstructed by the three aforementioned approaches and assessed via the three-point scoring system.
     The HRCT-based modalities could demonstrate a 3D image of the ossicular chain, except that of the footplate on the SSD-based CTVE. On the qualitative assessment, the efficacy of the MPR and VR, which were both superior to the SSD-based CTVE (P<0.05), presented no statistical significance among the major and/or hyperdense structures (P>0.05). As regards the lateral process of the malleus, VR was found to be significantly superior to the MPR and SSD-based CTVE (P<0.05), both of which, however, showed no significant comparative differences (P>0.05). Moreover, the three modalities showed little value for the lenticular process; however, MPR demonstrated superiority to the other two comparatively. What's more, the three modalities in terms of efficacy were found to be comparatively significant for representing the anterior crus and footplates of the stapes, respectively (P<0.05). In addition, regarding the posterior arch and head of the stapes, there were no differences between the technology of MPR and VR, which were both superior to the SSD-based CTVE technology. Besides, when it comes to the joints among the ossicles, the three modalities were of little value, since they demonstrated little representation of their inside interiors but only the morphous and location. Statistically, no significant difference were found about the incudostapedial joint (P>0.05); as for the malleoincudal joint, however, it was found that MPR was significantly superior to VR and SSD-based CTVE (P<0.05).
     In conclusion, the modalities could demonstrate a 3D image of the ossicular chain, except that of the footplate on the SSD-based CTVE. Both the MPR and VR showed no significance among most of the structures of the ossicular chain, however, they all superior to the SSD-based CTVE. And comparing with MPR, VR images are the real 3D images and are the more valuable approach.
     The aim was to explore the value of these three aforementioned approaches in the patients with otitis media. The patients with more than 3-year-history of otitis media, who would accept pre-operation CT examinations and tympanoplasty were enrolled in this section of the research. However, some patients, who could not be confirmed for their ossicles'condition in the operation or accepted tympanoplasty more than one month after CT examination, were excluded. All the suitable cases' ossicular chains were reconstructed three-dimensionally using the three modalities respectively and assessed by three radiologists via a three-scoring system. Moreover, the conditions of those patients'ossicular chains were observed, assessed and recorded in the operation by a similar three-scoring system. Then, we discussed those modalities'value by comparison with each other.
     For display of the malleus, the three modalities showed no significant differences in the Youden's index and coincidence rate; as regard the incus, the Youden's index and coincidence rate of the VR and MPR demonstrated no differences, however, both higher than the SSD-based CTVE. For representation the stapes, the value of these three modalities is very low. The SSD-based CTVE could not detect the footplate of the stapes, and the Youden's index and coincidence rate of the MPR technology for the footplate were higher than those of the VR technology; in addition, the Youden's index and coincidence rate of the VR technology for showing the anterior and posterior arch and the head of the stapes was inferior to the other two. Regarding the joints among these ossicles, the VR technology showed superiority to the other two in demonstration of incudomalleolar joint; and the MPR technology represented superiority to the other two in representation of the incudostapedial joint.
     In conclusion, for patient with otitis media, the value of the MPR and VR technology in assessing the integrity of the malleus and incus showed no significant differences, however, both were superior to the SSD-based CTVE technology; and for the stapes, those three modalities showed little value. In addition, for the joints, the VR technology could be helpful for observation of the relationship among the three ossicles. What's more, the VR technology was the real 3D one, which did not need complex operations. Hence, the VR technology could be the more valuable one for the clinical application.
     1. For the normal cases
     1.1 The efficacy of the MPR and VR technologies are superior to the SSD-based CTVE one for the demonstration of the ossicular chain.
     1.2 By comparison, the efficacy of the MPR and VR technology showed no significant differences, however, the VR images are the real 3D ones, which should be more applied for the clinic.
     2. For the patients with otitis media
     2.1 All the three modalities could demonstrate the destruction of the ossicular chain if the threshold was set appropriately.
     2.2 The efficacy of MPR technology and that of VR technology were both high and showed no significant differences in assessing the malleus and incus.
     2.3 All the three modalities showed some limitation for the representation of the stapes.
     2.4 The VR technology was a promising one among these three modalities.
引文
SSD-based CTVESSD-based CTVECTVESSD-based CTVE
    
    [1].李继孝,李哲生.化脓性中耳炎.耳科学.2002年第二版.
    [2].中耳炎的分类和分型(2004,西安).中华耳鼻咽喉头颈外科杂志.2005,40(1):5.
    [3].王文,周勤,伍春霞,等.完整鼓室的乳突开放式鼓室成形术与开放式鼓室成形术的比较.中华耳科学杂志.2008,6(2):190-193.
    [4]. Jeng FC, Tsai MH, Brown CJ. Relationship of preoperative findings and ossicular discontinuity in chronic otitis media. Otol Neurotol.2003 Jan;24(1):29-32.
    [5]. Lane JI, Lindell EP, Witte RJ, DeLone DR, Driscoll CL. Middle and Inner Ear: Improved Depiction with Multiplanar Reconstruction of Volumetric CT Datal. Radiographics.2006,26(1):115-124.
    [6]. Rodt T, Bartling S, Schmidt AM, Weber BP, Lenarz T, Becker H. Virtual endoscopy of the middle ear: experimental and clinical results of a standardised approach using multi-slice helical computed tomography. Eur Radiol.2002, 12:1684-1692.
    [7]. Calhoun PS, Kuszyk BS, Heath DG, Carley JC, Fishman EK. Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics.1999, 19:745-764.
    [8]. Seemann MD, Seemann O, Bonel H, Suckfull M, Englmeier KH, Naumann A, Allen CM, Reiser MF. Evaluation of the middle and inner ear structures: comparison of hybrid rendering, virtual endoscopy and axial 2D source images. Eur Radiol.1999,9:1851-1858.
    [9]. Fatterpekar GM, Doshi AH, Dugar M, Delman BN, Naidich TP, Som PM. Role of 3D CT in the Evaluation of the Temporal Bonel. Radiographics.2006,26:s117-s132.
    [10]. Howard JD, Elster AD, May JS. Temporal Bone: Three-dimensional CT Part I. Normal Anatomy, Technique and Limitation. Radiology.1990,177:421-425.
    [11]. Chuang MT, Chiang IC, Liu GC, Lin WC. Multidetector Row CT Demonstration of Inner and Middle Ear Structures. Clinical Anatomy.2006,19:337-344.
    [12]. Jun BC, Song SW, Cho JE, Park CS, Lee DH, Chang KH, Yeo SW. Three-dimensional reconstruction based on images from spiral high-resolution computed tomography of the temporal bone:anatomy and clinical application. J Laryngol Otol.2005,119(9):693-8.
    [13]. Rodt T, Ratiu P, Becker H, Bartling S, Kacher DF, Anderson M, Jolesz FA, Kikinis R. 3D visualisation of the middle ear and adjacent structures using reconstructed multi-slice CT datasets, correlating 3D images and virtual endoscopy to the 2D cross-sectional images. Neuroradiology.2002,44:783-790.
    [14]. Neri E, Caramella D, Panconi M, Berrettini S, Sellari Franceschini S, Forli F, Bartolozzi C. Virtual endoscopy of the middle ear. Eur Radiol.2001,11:41-49.
    [15]. Morra A, Tirelli G, Rimondini A, Cioffi V, Russolo M, Giacomarra V, Pozzi-Mucelli R. Usefulness of Virtual endoscopic three-dimensional reconstructions of the middle ear. Acta Otolayngol.2002,122:382-385.
    [16]. Karhuketo TS, Dastidar PS, Ryymin PS, Laasonen EM, Puhakka HJ. Virtual endoscopy imaging of the middle ear cavity and ossicles. Eur Arch Otorhinolaryngol. 2002,259:77-83.
    [17]. Trojanowska A, Trojanowski P, Olszanski W, Klatka J, Drop A. How to reliably evaluate middle ear diseases? Comparison of different methods of post-processing based on multislice computed tomography examination. Acta Otolaryngol.2007, 127(3):258-64.
    [18].巩若箴,晁宝婷,刘凯,等.CT多平面重组对镫骨病变的评价.中华耳鼻咽喉科杂志.2004,39(5):265-268.
    [19]. Martin C, Michel F, Pouget JF, Veyret C, Bertholon P, Prades JM. Pathology of the ossicular chain: comparison between virtual endoscopy and 2D spiral CT-data. Otol Neurotol.2004,25(3):215-9.
    [20]. Klingebiel R, Bauknecht HC, Kaschke O, Werbs M, Freigang B, Behrbohm H, Rogalla P, Lehmann R. Virtual Endoscopy of the Tympanic Cavity Based on High-resolution Multislice Computed Tomographic Data. Otol Neurotol.2001, 22:803-807.
    [21]. Decraemer WF, Dirckx JJ, Funnell WR. Three-Dimensional Modelling of the Middle-Ear Ossicular Chain Using a Commercial High-Resolution X-Ray CT Scanner. J Assoc Res Otolaryngol.2003,4(2):250-263.
    [22]. Himi T, Sakata M, Shintani T, Mitsuzawa H, Kamagata M, Satoh J, Sugimoto H. Middle Ear Imaging Using Virtual Endoscopy and Its Application in Patients with Ossicular anomaly. ORL Otorhinolaryngol Relat Spec.2000,62(6):316-320.
    [23]. Frankenthaler RP, Moharir V, Kikinis R, van Kipshagen P, Jolesz F, Umans C, Fried MP. Virtual otoscopy. Otolaryngol Clin North Am.1998,31(2):383-92.
    [24]. Pandey AK, Bapuraj JR, Gupta AK, Khandelwal N. Is there a role for virtual otoscopy in the preoperative assessment of the ossicular chain in chronic suppurative otitis media? Comparison of HRCT and virtual otoscopy with surgical findings. Eur Radiol.2009,19(6):1408-1416.
    [25].郑溶华,听骨链解剖.听骨链.耳解剖与临床.2007年第一版.
    [26]. Swartz JD. Cholesteatoma of the middle ear diagnosis etiology and complications. Radiol Clin North Am,1984,22:15-35.
    [27].蒋立新,马玉坤,罗冬等.虚拟耳镜对外伤后听骨链中断手术前后的评估作用.中华耳鼻咽喉头颈外科杂志.2008,43(4):272-276.
    [28]. Nakasato T, Sasaki M, Ehara S, Tamakawa Y, Muranaka K, Yamamoto T, Chiba H, Ishida T, Murai K. Virtual endoscopy of ossicles in the middle ear. Clin Imaging, 2001,25:171-177.
    [29]. Himi T, Kataura A, Sakata M, Odawara Y, Satoh JI, Sawaishi M. Three-dimensional imaging of the temporal-bone using a helical CT scan and its application in patients with cochlear implication. ORL J Otolaryngol Relat Spec.1996, 58:298-300.
    [30]. Schubert O, Sartor K, Forsting M, Reisser C. Three-dimentional computed display of otosurgical operation sites by spiral CT. Neuroradiology.1996,38:663-668.
    [31]. Pozzi Mucelli R, Morra A, Calgaro A, Cova M, Cioffi V.. Virtual endoscopy with computed tomography of the anatomical structures of the middle ear. Radiol Med.1997,94(5):440-446.
    [32].李龙,池晓宇,黄新才,等.听骨链螺旋CT仿真内镜成像的最佳观察阈值[J].中国医学影像技术,2001,17(11):1044-1046.
    [33].陈东野,陈晓巍,金佂宇,等.中耳结构及中耳病变的虚拟耳镜表现[J].中华耳鼻咽喉头颈外科杂志,2005,40(1):18-21.
    [34].林月娥,顾一峰,吴雅琴,等.CT对慢性化脓性中耳炎的诊断意义.中华耳鼻咽喉头颈外科杂志,2007,42(7):494-498. 角,减小图像的失真。
    虚拟耳镜的成像方式比较检查,主要是要选择合适的观察角度来对中耳腔情况进行判断。有关中耳腔结构的观察,大多数学者主要推荐六个基本的方位基本可以完整观察整个中耳腔情况:1)、从外耳道内向内看2)、从外耳道近鼓膜缘下方向内上观察鼓室全貌情况;3)、从后鼓室向前看,观察听骨链和咽鼓管;4)、从咽鼓管口向后外方45°观察听骨链;5)、从鼓室内侧壁外半规管水平向外观察鼓窦;6)、从下鼓室向后上观察后鼓室、鼓室上隐窝和听骨链。
    总之,目前的CT后处理技术在中内耳成像方面的研究有着较大的价值,但是主要是集中在对正常人群的显示,对于疾病状态虽然也有研究,但还不系统,临床价值还不突出。更进一步的研究应当主要是探讨各种后处理技术对常见中内耳疾病诊断方面的价值。
    [1]. Fatterpekar GM, Doshi AH, Dugar M, Delman BN, Naidich TP, Som PM. Role of 3D CT in the Evaluation of the Temporal Bone1. Radiographics.2006,26:s117-sl32.
    [2].王启华第一章耳.实用眼耳鼻咽喉解剖学.2002年12月第一版.
    [3].郑溶华,听骨链解剖.听骨链.耳解剖与临床.2007年第一版.
    [4].韩德民,第二节中耳解剖.第一章 颞骨临床解剖.2007年12月第一版.
    [5].王荣光,孙济治,汪馥堂.第三节中耳解剖.王正敏耳科学.2002年9月第二版本.
    [6].柳澄,陈青华,刘凯,等.多向调整多平面重组在听小骨显示中的作用评价.中华放射学杂志.2006,40(7):709-712.
    [7]. Lane JI, Lindell EP, Witte RJ, DeLone DR, Driscoll CL. Middle and Inner Ear: Improved Depiction with Multiplanar Reconstruction of Volumetric CT Data1Radiographics.2006,26(1):115-124.
    [8].巩若箴,晁宝婷,刘凯,等.CT多平面重组对镫骨病变的评价.中华耳鼻咽喉科杂志.2004,39(5):265-268.
    [9].丁元萍,孙晓卫,李笃民,等.HRCT多平面重组及最大密度投影对慢性化脓性中耳炎听骨链病变的术前评估.山东大学学报(医学版).2006,44(6):630-633.
    [10].崔凤玉,孙晓卫,丁元萍,等.半规管多平面重组技术及临床应用价值.山东大学学报(医学版).2006,44(9):922-925.
    [11]. Jang DP, Han MH, Kim SI. Virtual endoscopy using surface rendering and perspective volume rendering. Stud Health Technol Inform.1999,62:161-166.
    [12]. Udupa JK, Hung HM, Chuang KS. Surface and volume rendering in three-dimensional imaging: a comparison. J Digit Imaging.1991,4:159-168.
    [13]. Rodt T, Bartling S, Schmidt AM, Weber BP, Lenarz T, Becker H. Virtual endoscopy of the middle ear: experimental and clinical results of a standardised approach using multi-slice helical computed tomography. Eur Radiol.2002, 12:1684-1692.
    [14]. Bernd F. Tomandl, Peter Hastreiter, Dipl.-Ing, Knut E. W. Eberhardt. Virtual Labyrinthoscopy: Visualization of the Inner Ear with Interactive Direct Volume Rendering1. Imaging & Therapeutic Technology.2000,20(2):547-558.
    [15].陈东野,陈晓巍,曹克利,等.中耳结构及中耳病变的虚拟耳镜表现.中华耳鼻咽喉头颈外科杂志.2005,40(1):18-21.
    [16]. Calhoun PS, Kuszyk BS, Heath DG, Carley JC, Fishman EK. Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics.1999, 19:745-764。
    [17]. Frankenthaler RP, Moharir V, Kikinis R, van Kipshagen P, Jolesz F, Umans C, Fried MP. Virtual otoscopy. Otolaryngol Clin North Am.1998,31:383-392.
    [18]. Seemann MD, Seemann O, Bonel H, uckfull M, Englmeier KH, Naumann A, Allen CM, Reisser MF. Evaluation of the middle and inner ear structures:comparison of hybrid rendering, virtual endoscopy and axial 2D source images. Eur Radiol.1999, 9:1851-1858.
    [19]. Shibata T, Nagano T. Applying very high resolution microfocus X-ray CT and 3-D reconstruction to the human auditory apparatus. Nat Med.1996,2:933-935.
    [20]. Reisser C, Schubert O, Forsting M, Sartor K. Anatomy of the temporal bone: detailed three-dimensional display based on image data from high resolution helical CT: a preliminary report. Am J Otol.1996,17:473-479.
    [21].王东,张挽时,熊明辉,等.听骨链CT仿真内窥镜成像技术的临床应用价值.中华放射学杂志.2000,34(7):459-461.
    [22].徐志华,王继群,王丽华,等.虚拟耳镜对慢性中耳炎听骨链病变的诊断价值.中国中西医结合耳鼻咽喉科杂志.2008,16(4):256-256.
    [23]. Howard JD, Elster AD, May JS. Temporal Bone:Three-dimensional CT Part Ⅰ. Normal Anatomy, Technique, and Limitation. Radiology.1990; 177:421-425.
    [24]. Chuang MT, Chiang IC, Liu GC, Lin WC. Multidetector Row CT Demonstration of Inner and Middle Ear Structures.2006, Clinical Anatomy 19:337-344.
    [25]. Jun BC, Song SW, Cho JE, Park CS, Lee DH, Chang KH, Yeo SW. Three-dimensional reconstruction based on images from spiral high-resolution computed tomography of the temporal bone: anatomy and clinical application. J Laryngol Otol.2005 Sep;119(9):693-8.
    [26]. Rodt T, Ratiu P, Becker H, Bartling S, Kacher DF, Anderson M, Jolesz FA, Kikinis R. 3D visualisation of the middle ear and adjacent structures using reconstructed multi-slice CT datasets, correlating 3D images and virtual endoscopy to the 2D cross-sectional images. Neuroradiology.2002,44:783-790.
    [27]. Neri E, Caramella D, Panconi M, Berrettini S, Sellari Franceschini S, Forli F, Bartolozzi C. Virtual endoscopy of the middle ear. Eur Radiol.2001,11:41-49.
    [28]. Morra A, Tirelli G, Rimondini A, Cioffi V, Russolo M, Giacomarra V, Pozzi-Mucelli R. Usefulness of Virtual endoscopic three-dimensional reconstructions of the middle ear. Acta Otolayngol.2002,122:382-385.
    [29]. Pandey AK, Bapuraj JR, Gupta AK, Khandelwal N. Is there a role for virtual otoscopy in the preoperative assessment of the ossicular chain in chronic suppurative otitis media? Comparison of HRCT and virtual otoscopy with surgical findings. Eur Radiol.2009,19(6):1408-1416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700