水溶性无机—有机多元共聚物制备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙烯酰胺(AM )、丙烯酸(AA)、丙烯腈(AN)的分子中都含有C=C,而且分别含有-CONH2、-COOH、-CN这些活泼性官能团,易于自聚或与其它烯类单体共聚,采用不同单体进行共聚,可得到不同结构和性能的共聚物,用途极广,可作钻井液降滤失剂、油井水泥降滤失剂、聚合物驱油剂和水处理絮凝剂等。
     凹凸棒(ATP)是一种含水镁铝硅酸盐的层状粘土矿物,它具有特殊的纤维结构、独特的分散、耐温、耐盐碱等良好的胶体性质和较高的吸附脱色能力,并具有一定的可塑性和粘结力,在各行各业中被广泛使用。
     由于凹凸棒石具有链层状结构,因此,利用AM、AN、AA单体在其层间进行插层或接枝聚合反应,从而制备无机-有机共聚物;首先尝试合成该无机-有机共聚物,用做纺织行业的上浆剂,希望能克服市场上的烯酸类浆料存在的吸湿再粘问题,在提高丙烯酸类浆料性能的同时,最大程度取代聚乙烯醇;并提高其固含量,降低成本。本论文通过对合成工艺的探讨,找到了其合适的合成工艺:引发剂为工业级过硫酸铵、加量为1%、反应温度为80℃、ATP加量为5%;并通过一些简单的性能评价,证实了其有良好的性能。
     针对常用的丙烯酰胺类聚合物钻井液降滤失剂在油田开发中存在着对盐敏感、剪切稳定性差及温度稳定性差等弱点,探讨合成具有独特的空间三维分子结构的无机-有机多元共聚物。这类产品分子链刚性大、耐温抗盐和耐剪切能力强,可以用作钻井液抗盐耐高温降滤失剂。本论文通过对单体配比、引发剂加量、凹凸棒石含量、反应时间等因素进行探讨,然后通过抗饱和盐水性能测试和抗高温性能测试来寻找最优合成工艺配方。最佳工艺配方为:0.2%引发剂,5%凹凸棒石,反应时间1h,反应温度98℃左右。实验结果表明,该降滤失剂有很强的抗饱和盐水能力和抗高温能力;抗盐耐高温降滤失剂方面,可抗150℃-180℃高温。通过红外光谱测试来探讨其结构,证明该共聚物是一种无机-有机纳米复合材料。其与市场上同类产品相比,具有成本较低,性能优越等特点。
All of the acrylamide (AM), acrylic acid (AA), acrylonitrile (AN) contain carbon-carbon double bond (C=C), and contain, respectively, such active and functional groups as -CONH2, -COOH, -CN, making it easy to self-polymerization or copolymerization with other vinyl monomers. To copolymerize different monomers, we can obtain copolymers with various kinds of structures, properties and wide applications. The copolymers can be used as filtrate control agents for drilling fluid, filtrate control agents of oil well cementing, oil drive polymers in water flooding, water treatment flocculants and so on.
     Attapulgite (ATP) is a hydratic magnesium-aluminium layered silicate clay minerals, with a special fiber structure, good colloidal properties such as unique dispersion, temperature resistance and salt-alkaline resistance, etc., higher adsorption decoloring capacity, certain plasticity and bonding strength, all of which make it used widely in all of life.
     As a result of attapulgite’s layered structure, therefore, the thesis used AM, AN and AA as monomers reacting in interbed or graft polymerization reaction, so as to prepare inorganic-organic copolymer. First of all, we tried to synthesize this inorganic-organic copolymer, used as a sizing agent in textile industry, hoping to overcome the moisture absorption and viscidity problems of the acrylic sizing agent which affected their market potentials, to replace polyvinyl alcohol to the greatest degree while improving the performance of acrylic sizing agent. At the same time, the solid content is hoped to be enhanced, costs to be reduced. In this paper, through the discusses of synthesis process, we find the suitable technique: 1% industrial-grade ammonium persulfate as initiator, reactive temperature 80℃, 5% addition amount of ATP; and through some simple performance evaluation, its good performance was confirmed.
     In view of the weaknesses of salt-sensitivity, worse shear stability and temperature stability of acrylamide polymer filtrate control agents in oil field development, we explored the synthesis of inorganic-organic monomer polymers with unique three-dimensional molecular structure. These samples have rigid molecular structure, and higher temperature / salt resistance and shear-resistant ability, can be used as a drilling filtrate control agent of salt resistance and high temperature resistance. In this paper, through the exploration of factors such as the ratio of monomers, initiator amount, attapulgite content, reaction time, etc, and then through performances test of saturated brine resistance and high temperature resistance, we sought an optimized synthesis process formula. The optimized formula is: 0.2% initiator, 5% attapulgite, reaction time 1 hour and the reaction temperature around 98℃. Experimental results showed that the filtrate control agent has strong saturated brine resistance and high temperature resistance capability, currently resistant to high temperature 150℃-180℃. Through infrared spectroscopy tests to explore the structure, it proved that the copolymer is a kind of inorganic-organic nanocomposites. In addition, compared to similar products on the market, it has superior performances and a lower cost.
引文
[1]赵献增,朱靖,王冬梅,等.低粘度聚丙烯酰胺的合成研究.中国胶粘剂,2004,13(5): 43~47
    [2]陆林玮.聚丙烯酰胺的应用与市场需求分析.精细石油化工进展, 2000,1(4):45~48
    [3] Morris on PW.Raghavan,R.Timpone,A.J.Artelt,C.P.Pratsinis,S.E.In Situ Fourier Transform Infrared Characterization of the Effect of Electrical Fields on the Flame Synthesis of Ti O2 Particles.Chem. Mater, 1997, 9: 2702~2708
    [4] Frank S.N.,Bard A.J . Heterogeneous pHotocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. pHys .Chem, 1977,81:1484~1488
    [5] Yoichi I , Ryoji T, Mitsunobu I, Hiroaki T.S . Mechanism of For mation of Nanocrystalline ZnO Particles through the Reaction of [Zn(acac)]2+ with NaOH in Et OH. Colloid Interface Sci,1998,200:220~227
    [6] Moser J, Grtzel M. Light induced electron transfer in colloidal semiconduct or dispersions : single vs.dielectronic reduction of acceptors byconduction band electrons. Am. Chem. Soc, 1983, 105: 6547~6555
    [7]陈晓青,杨娟玉,蒋新宇,等.掺铁Ti O2纳米微粒的制备及光催化性能.应用化学, 2003, 20: 73~76
    [8]梅相银.国内外丙烯腈市场供需现状和预测.石化市场论坛,2004,(1):28~32
    [9]钱伯章.丙烯腈产能需求和生产技术进展.上海化工,2002,(23) :34~36
    [10]韩秀山.丙烯腈的应用.四川化工与腐蚀控制,2000,3(6):52~53
    [11]钱伯章.国内外丙烯酸的产需分析和市场前景.江苏化工,2003,31(5):57~59
    [12]王中华.丙烯酸、丙烯酰胺和AMPS聚合物的研究及应用.精细与专用化学品,2000,(23):6~8
    [13]胡涛钱,运华,金叶玲,等.凹凸棒土的应用研究.中国矿业,2005,14(10):73~76
    [14]刘小华,钱树云.凹凸棒粘土的开发应用现状.化工矿物与加工,2007,(12):30~32
    [15]Leifu R.Clay and clay miners. Beijing:China Geology,1992
    [16]胡涛,钱运华,金叶玲,等.凹凸棒土的应用研究.中国矿业,2005,14(10):73~76
    [17]钱运华,金叶玲,吴洁,等.凹凸棒石粘土填充橡胶研究.非金属矿, 2000,23(6):25~26
    [18]曹艳君,王好平,张巧萍.植物油的脱色研究.沈阳化工,1998,27(1):15~17
    [19]沈钟,陈丽特.矿物油的凹凸棒土吸附精制.化学工程师,1994,(2):8~9
    [20]陈丽特,沈钟.凹凸棒土对植物油脱色的研究.化学工程师,1993,(6):8~11
    [21]朱挣海,郑茂松,孙新友,等.凹凸棒石粘土净化含强致癌物质黄曲霉毒素B1油脂工艺技术研究.非金属矿,1998,21(6):15~17
    [22]王以燕,屠豫钦.卫生杀虫剂剂型研究开发的若干问题.中华卫生杀虫药械, 2004,10(6) :341~345
    [23]赵美芝,邵宗臣,邓友军,等.有机粘土的特性及其对肥料养分的缓释作用.矿物学报, 2001,21(2):189~195
    [24]李升和,闻爱友,朱元召,等.凹凸棒石粘土粉对生长期鹅生长性能的影响.养殖技术顾问, 2002,(9):18~19
    [25]曹发魁,崔伟林,潘生功,等.饲喂凹土对鸡蛋品质的影响.甘肃农业大学学报,2003,38 (2):227~230
    [26]张华荫,陈余玲.凹凸棒土粉在鱼饵颗粒饵料加工中的应用.安徽农业科学,1995,23(3): 279~281
    [27]钱运华,金叶玲,陈振国.凹凸棒粘土填充PP的研究.塑料工业,1998,26(1):109~110,112
    [28]钱运华,金叶玲,陈振国.凹凸棒土填充硬质聚氯乙烯塑料.塑料工业,1998,27(2):37~43
    [29]王萍.凹凸棒石/丁苯橡胶纳米复合材料制备及其性能.非金属矿,2004,27(6):8~10
    [30]Torro PA, Fernandez GJC, Orgiles BA,etal.Attapulgite as a filler for solventbased polyurethane adhesives. Journal of Adhesion Science and Technology, 1998,12(5):479~495
    [31]金叶玲,谷亚昕,凹凸棒粘土在湿法聚氨酯人造革中的应用.非金属矿,1997,(3):44~45
    [32]徐捷.活性燃料印花用矿物增稠剂.非金属矿,1994,3(99):34~38
    [33]高翔,毛立新,马军朋,等.凹凸棒土表面改性及其对聚丙乙烯力学性能的影响.塑料, 2004,33(3):34~39
    [34]Hu X , Zhao X Y. Effects of annealing (solid and melt) on the time evolution of polymorpHic structure of PA6/silicate nanocomposites.Polymer,2004,45(11): 3819~3825
    [35]Kawasumi M , Hasegawa N, Kato M,Okada A. Preparation and Mechanical Properties of Polypropylene?Clay Hybrids. Macromolecules,1997,30:6333~6338
    [36] Peng S C,Wang S H. Adsorpotion kinetics of methylene blue from aqueous solutions on to palygorskite. Acta Geologica Sinica,2006,80(2):131~135.
    [37]Lee HS,Fishman D,Kim B,Weiss RA. Nano-composites derived from melt mixing a thermotropic liquid crystalline polyester and zinc sulfonated polystyreneionomers.Polymer,2004,45(23):7807~7811
    [38]郑茂松,王爱勤,詹庚申.凹凸棒石黏土应用研究.北京:北京化学工业出版,2007
    [39]Li An,Wang Aiqin. Synthesis and properties of clay-based superabsorbent composite. European Polymer Journal,2005,41:1630~1637
    [40]廖久明,熊方利.新型膨润土接枝聚合物钻井液降滤失剂的合成研究.重庆科技学院学报(自然科学版),2008,10(20)25~28
    [41]万明,武友勤,钱现.丙烯酸类浆料的性能分析与浆纱实践.北京纺织,1999,20(3): 25~28
    [42]万国江.纺织浆料的应用现状与展望.棉纺织技术,2007,35(9):513~517
    [43]王中华.钻井液化学品设计与新产品开发.西安:西北大学出版社,2006,11
    [44]杨小华,王中华.国内2001~2002年钻井液处理剂研究与应用进展.油田化学, 2003,20(1):89~93
    [45]周长虹,崔茂荣,蒋大林,等.国内水溶性钻井液降滤失剂的研究与应用.精细石油化工, 2006,23(5):1~5
    [46]赵昊炜,蒲晓林.抗高温抗盐钻井液降滤失剂研究现状.西部探矿程,2006,(10):110~112
    [47]张玉平,叶彦春,郭燕文,等.耐温抗盐型丙烯酰胺共聚物的研究进展.应用化工2005,34(10):598~600
    [48]陈娟,严波.新型降滤失剂NJ-1的研究与应用.钻井液与完井液,2005,22 :36~38.
    [49]彭瑞平.抗盐抗钙降滤失剂AOD-1的研制及应用.石油钻探技术,2005,33(4)51~53.
    [50]刘明华. AMPS/HMOPTA/AM共聚物降滤失剂的合成及性能.精细石油化工进展,2005,6 (3):24~27
    [51]王松.抗盐抗温降滤失剂AMPS/AM/MAM三元共聚物的合成与性能评价.精细石油化工进展,2003,4(4):18~20
    [52]杨小华,王厚燕.两性离子磺酸盐聚合物处理剂CPS-2000研究.钻井液与完井液,2002,19(6):9~12
    [53]刘明华.AMPS/DMDAAC/AM/MAA共聚物降滤失剂的合成及性能.精细石油化工进展, 2002,3(10):41~44
    [54]刘明华.AMPS/MTAAC/AM共聚物降滤失剂的合成及性能.精细石油化工进展,2002, 3(8):22~24
    [55]张春光,孙明波,侯万国,等.降滤失剂作用机理研究-对不同类型降滤失剂的分析.钻井液与完井液,1996,13(3):11~17
    [56]高素丽,郭保雨.AM/AN/AA/淀粉四元接枝共聚物的合成与钻井液性能.山东科学,2008, (3):18~21
    [57]王中华.AM/AA/淀粉接枝共聚物降滤失剂的合成及性能.精细石油化工进展,2003,4(2):23-25
    [58]郑自立,宋绵新,易发成,等.中国坡缕石.北京:地质出版社,1997:49~69
    [59]闻辂.矿物红外光谱学.重庆:重庆大学出版社,1989
    [60]郑自立,田煦,蔡克勤,等.中国坡缕石晶体化学研究.矿物学报,1977,17(2):107~114
    [61]荣俊峰,景振华,洪晓宇等.聚乙烯/凹凸棒石纳米复合材料的研究,乙烯工业,2005,17 (1):26~29
    [62]盛淼,杜中杰,荣峻峰等.聚乙烯/凹凸棒石纳米复合材料的微观结构与力学性能,高分子材料科学与工程2005,19(2):115~118
    [63]Rong J,Li H,Jing Z,et al. Novel organic/inorganic nanocomposite of polyethylene. I. Preparation via in situ polymerization approach. Journal of Applied polymer Science,2001,82 (8):1829~1837
    [64]徐国永,王平华.凹凸棒石土在高分子材料领域中的应用.现代塑料加工应用, 2002,15(4):36~38
    [65]Lai ShiQuan,et al. A Study on the Friction and Wear Behavior of PTFE Filled with Acid Treated Nano-Attapulgite. Macromolecular Materials and EngiNeering, 2004,289:916~922
    [66]王益庆,张立群,张慧峰等.凹凸棒土/橡胶纳米复合材料结构和性能研究,北京化工大学学报,1999,26(3):25~29
    [67]Zhang Liqun, Wang Yizhong,Wang Yiqing,etal. MorpHology and mechanical properties of clay/styrene-butadiene rubber nanocomposites. Journal of Applied Polymer Scicnce, 2000,78(11):1873~1878
    [68]彭英春.凹凸棒石改性及其在高分子复合材料中的应用:[硕士学位论文].北京:中国地质大学(北京),2007
    [69]蔡元峰,薛纪越.安徽官山两种坡缕石粘土的成分与红外吸收谱.矿物学报,2001, 21(3):323~329

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700