吉林油田套保油区稠油出砂冷采技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国有丰富的稠油资源,稠油年产量达1300×10~4t以上,稠油产量占全国原油总产量的10%,是世界上四大稠油生产国之一。吉林稠油资源量也非常丰富,主要分布在松辽盆地南部的西部斜坡区内,二次资源评价,西部斜坡区资源量4.87×10~8t,三次资源评价区带可探明资源量1.41×10~8t,由于投入原因,于1999年在套保地区只提交探明石油地质储量2046×10~4t,面积14km~2,松辽盆地西部斜坡区具有巨大的稠油勘探开发前景。
     在开发动用方面,目前国内稠油油藏开发主要采取注蒸汽方式,普遍面临着采油成本过高的严峻挑战。特别是西部斜坡的套保稠油具有油层薄(3-10m)、埋藏浅(280-320m)、隔夹层薄且疏松不成岩、边底水特别活跃等不利因素,因此在先期研究和试验过程中,遇到了常规采油产量低、热采效益差、底层水上窜等难题,没有获得高效益开发的突破,矿场试验过程中,由于不利地质因素所造成开发难度极大,国内外同类油田又没有成功开采先例。但是,稠油资源能否有效动用,对提高吉林套保资源利用率、实现增储上产具有深远意义。
     为了使套保稠油资源能够有效动用,我们对油藏地质与开发工艺进行了研究,在油藏地质上,开展了油层对比、沉积微相、构造特征及构造发育史研究、储层特性研究、流体物性、储量状况等研究。在工程技术上开展了稠油普通采油试验区的研究、热力采油试验区的研究、稠油出砂冷采试验区的研究及防止底层水上窜油层防水技术等研究工作。
     针对套保稠油开发的工程技术难题,在对国内外资料进行调研的基础上,将地质与工艺相结合,室内试验与矿场试验相结合,经过五年时间的研究与试验,解决了吉林稠油油藏开发工艺技术三大主要难题:一是解决了薄浅层稠油油藏有效开发方式问题,经过近五年艰苦的试验确定出砂冷采方式为最佳开采方式;二是解决了底层水上窜油层难题,采用国内八种固井办法和不打开油水层间隔层(开采90%以上地质储量)方法试验,最终选择不钻穿隔层定深完钻技术,从根本上解决了底层水上窜这一“瓶颈”问题;三是采用大孔径、高孔密射孔工艺技术和保持油井高产稳产的激励出砂工艺技术现场试验研究,使单井产能提高为普通采油10倍以上(有的井甚至提高到20~30倍以上),是热力采油4.5倍以上,突破了产能关,有着非常好的经济效益。
     在套保稠油油藏出砂冷采工艺技术方面取得了五个创新点:
     一是有效的解决了薄浅层稠油油藏有效益开发方式问题;经过三种开发方式的试验确定了出砂冷采为吉林套保稠油油藏最佳开发方式。
     二是优化确定出适应出砂冷采高效射孔技术的各项技术参数,这是出砂冷采技术关键。
     三是开发出了大孔径、高孔密射孔工艺技术和保持油井高产稳产的激励出砂技术。
     四是解决了底层水上窜油层难题,总结出防止底层水上窜油层的避水开发定深完钻工艺技术。
     五是形成了一整套适合套保含砂稠油独特的地面油气集输、脱水、洗砂及油砂处理模式。
     套保稠油油藏出砂冷采工艺技术应用推广前景非常广阔,2006年到2007年采用此项技术投产54口井,平均单井日产油8.2t/d,单井产量大幅度提高,有60%的井单井产量达到10t/d以上。最高产量达到30t/d,折算成千米井深产量达15~60t/d。生产四个月累产油量为常规冷采产量的10倍,是蒸汽吞吐产量的4.5倍。
     稠油开发技术的成熟加快了西部斜坡的勘探开发进程。套保地区总体规划8个区块共部署开发井880口井,动用面积43km~2,动用地质储量3348×10~4t,年建产能56×10~4t,近期优选了3个区块,部署开发井123口井,建产能16.47×10~4t。该技术还可以在国内外同类稠油开发应用推广。
     采用该技术取得了可观的经济效益,仅54口井累计实现利润12581万元,其中今年建产能16.47×10~4t,当年产油13.2×10~4t,年创利润11655.7万元,比上年增加利润11293.6万元。
Heavy oil resource is abundant in China. Annual production of heavy oil is more than 1300*10~4 tons, account for 10% of total oil production in China. China is one of the four heavy oil producers in the world. Heavy oil resource is very rich in Jilin Province, which mainly located in western slope of southern Songliao Basin. OOIP (original oil in place) of western slope is 4.83 * 10~8 tons according to secondary resource assessment. Proved OOP is 1.41 * 10~8 tons in tertiary resource assessment zones. Submitted proved OOIP was only 2046 * 10~4 tons in Taobao oilfield. There are great prospective in exploration and development in western slope of Songliao Basin.
     At present, development fashion of domestic heavy oil reservoirs is mainly steam huff and puff recovery, with serious challenges of high cost. Specially, Taobao oilfield in western slope of Southern Songliao Basin has factors of thin pay zone (3-10 meters), shallow burial depth (280-320meters), thin barriers and interlayers, unconsolidated sandstone, active bottom water and edge water, and other unfavorable features. So, in the prophase of research and test, the difficulties are low production rate of convention cold heavy oil production, poor thermal recovery profit and upward breakthrough of bottom water and lateral water, and so on. Field tests of heavy oil development are very difficult due to unfavorable geologic features, without examples of successful development in the reservoirs with same geologic characteristics in domestic and abroad. High efficiency development of heavy oil reservoirs in Jilin Daobao oilfield has great significance in enhancing resource utilization ratio and increasing reserves and production rate.
     In order to develop efficiently the heavy oil resource in Daobao oilfield, we engaged the research to the oil reservoir geology and the development technology, in reservoirs geology, developing the research of pay zone correlation, depositional tiny facies, structural characteristics and structural developing history, reservoir bed characteristics, fluid property, reserves situation, in technological aspect, developing the research of cold heavy oil development test blocks, thermal recovery blocks, CHOPS blocks, preventing upward breakthrough of bottom water, and so on.
     Against the engineering and technical difficulties in Daobao heavy oil development, on the basis of research in the domestic and international research data, geological and technology were combined , the laboratory and field test were combined, after five years of research and testing, the three main problems have been solved by adopting CHOPS technology in Jilin heavy oil reservoir. Firstly, high-efficient development fashion problem in the special thin heavy oil reservoirs with shallow depth is solved. CHOPS technology has been determined as the optimum development fashion through 5 years trial field tests; secondly, upward channeling problem of bottom water has been solved. Drilling technology at certain depth completion without drilling through barriers has been selected finally,which is based on 8 advanced cementing techniques at home and abroad and drilling tests without drilling interlayer between oil reservoirs and aquifers (exploitation more than 90% OOIP), the bottleneck problem of upward channeling of bottom water has been basically solved; thirdly, productivity breakthrough has been carried out, perforation technology with large diameter, high density, sand stimulation technology that can keep oil well high and stable production rate is adopted. Productivity of individual well can be increased by 10 times of that of conventional cold production methods(sometimes 20-30 times in some wells), and 5 times of that of thermal recovery. Productivity breakthrough has been carried out. CHOPS has very great profit.
     There are five technical innovation points in CHOPS technology in Jilin heavy oil reservoir.
     First, the difficulty in developing the thin shallow heavy oil reservoir has been solved. By three development test mode, CHOPS is confirmed the optimum development methods in Jilin Daobao heavy oil reservoir.
     Second, all kinds of the technical parameters of high efficient perforation technology that suit CHOPS technology have been optimized and confirmed.
     Third, Developed the perforation technology with large perforation diameter and high perforation density, and the sand stimulation technology maintained production rate or increased production rate.
     Fourth, Solved the problem of upward channeling of bottom water, Summed up the development drilling technology at certain depth completion in order to prevent upward channeling of bottom water.
     Fifth, a series of unique surface oil and gas gathering technology of viscous sandy heavy oil in Taobao oilfield, dehydration, sand washing and treatment process of sandy heavy oil have been put forward.
     CHOPS technology has wide application potential in Daobao heavy oil reservoir. Matched development technologies have been adopted in 54 wells from 2006 to 2007. Daily production rate of individual well enhanced greatly, average daily production rate of individual well is 8.2 tons, daily production rate of individual well of 60% wells were more than 10 tons, the highest daily production rate of individual well is 30 tons. Equivalent daily production rate is 15-16 tons per one thousand well depths. Four-month cumulative production is 10 times of that of conventional cold production, 4.5 times of that of steam huff and puff recovery.
     Mature heavy oil development technologies speed up the process of exploration and development of western slope. There are 880 development wells, with producing area of 43 km~2, producing OOIP of 3348*10~4 tons in 8 blocks in Taobao oilfield. Annual productivity is 16.47*10~4 tons. CHOPS technology can be widely applied and promoted in heavy oil reservoirs with the same geologic features at home and abroad.
     Great economic benefit has been achieved by adopting CHOPS technology. Cumulative profit is 1.2581 billion Yuan. Productivity is 16.47*10~4 tons. Oil production rate is 13.2*10~4 tons. Annual profit is 1.16557 billion Yuan, increasing 1.2936 billion Yuan profit than that of last year.
引文
[1]白宝君,李宇乡,刘翔鹗.国内外化学堵水调剖技术综述[J].断块油气田,1998,5(1):1-4.
    [2]白宝君,李宇乡,刘翔鹗.区块整体调剖筛选技术研究[J].石油钻采工艺,1999,21(1):64-67.
    [3]波雷达特.试井解释方法[M].北京:石油工业出版社,2005,3.
    [4]昌锋,张琪,吴晓东.抽油杆柱在粘性流体中阻力的实验研究[J].石油大学学报(自然科学版),1994,18(增刊):37-42.
    [5]陈德春,李兆文,吴晓东.地面驱动螺杆泵采油系统抽油杆柱运动模型[J].石油大学学报(自然科学版),1999,23(1):42-44.
    [6]陈明志,鲍洪涛,汪泓,等.稠油油藏热采动态监测技术[J].油气井测试,2001,10(4):61-64.
    [7]陈宪侃,叶利平.有杆螺杆泵杆柱强度设计初探[J].石油钻采工艺,1995,17(4):78-83.
    [8]陈月明.注蒸汽热力采油[M].北京:中国石油大学出版社,1996.
    [9]程绍志,胡常忠,刘新福.稠油出砂冷采技术[M].北京:石油工业出版社,1998.
    [10]曹光胜.厚层块状稠油油藏产量劈分方法研究[J].特种油气藏,2006,13(1):58.
    [11]CosteJean-Paul,ZaitounA,白宝君.法国IFP选择性堵水技术[J].石油勘探与开发,2000,27(5):93-97.
    [12]董本京,穆龙新.国内外稠油冷采技术现状及发展趋势[J].钻采工艺,2002,25(6):18-21.
    [13]窦宏恩,常毓文,于军,等.稠油蒸汽吞吐过程中加热半径与井网关系的新理论[J].特种油气藏,2006,13(4):58-61.
    [14]杜大鸣,周林,梁军,等.汽驱井组封窜调堵技术[J].西南石油学院学报,2002,24(3):50.
    [15]房宝财,张玉广,许洪东.窄薄砂体油藏开发调整技术[M].北京:石油工业出版社,2004.
    [16]冯建忠,等.稠油热采注蒸汽系统设计参数探讨[J].石油规划设计,2005,16(3):28-29.
    [17]付冬平.粉煤灰的活化研究及其在注浆工程中的应用[D].中南大学,2003.
    [18]付美龙,张鼎业.杜84块超稠油油藏蒸汽+CO2+助剂吞吐[J].油田化学,2006,23(2):145.
    [19]葛东文,马春波,刘东菊.蒸汽加氮气泡沫剂控制水锥治理底水技术[J].内蒙古石油化工,2006,9:34-35.
    [20]宫俊峰,曹嫣镔,唐培忠,等.高温复合泡沫体系提高胜利油田稠油热采开发效果[J].石油勘探与开发,2006,33(2):212.
    [21]桂林,王新军.单家寺稠油油田提高采收率的主要做法及效果[J].科技资讯,2006,12(36):166.
    [22]郭东红,江龙.辽河超稠原油的流变性质及其乳化降粘[J].化学通报,2002,10:692.
    [23]郭平,杨学锋,冉新权.油藏注气最小混相压力研究[M].北京:石油工业出版社,2005.
    [24]何鲜,砧中,周宗良.难动用油气储量开采技术丛书-难动用储量油藏评价方法[M].北京:石油工业出版社,2005。
    [25]何艳青,王晶玫.石油科技发展启示录系列报道之六国外油气田开发科技回顾、展望与启示[J].石油科技论坛,2004,(03):31-38.
    [26]胡缠宏,李汉文,董爱玲,等.开发浅薄层稠油时的油层保护措施[J].油气田地面工程,2006,25(6):48.
    [27]胡常忠,刘新福.提高浅薄层特超稠油资源利用程度得技术途径[J].河南石油,1996,10(4):8-13.
    [28]胡常忠,杨晓蓓,杨志斌,等.河南油田薄层稠油出砂冷采可行性分析及矿场试验[J].石油勘探与开发,2000,27(5):87-89.
    [29]胡常忠,杨晓蓓,杨志斌,等.河南油田稠油出砂冷采可行性分析及矿场试验[J].石油勘探与开发,2000,27(5):87-89.
    [30]胡雪滨.结构性原油及其渗流流变特性[J].海洋石油,2005,2(6):44.
    [31]计秉玉,杨际平,吕志国.改变液流方向的数值模拟计算[J].大庆石油地质与开发,1994,13(2):73-74.
    [32]姜汉桥,陈月明.最优化方法在埕东油田控水稳油中的应用[J].石油大学学报(自然科学版),1997,21(5):35-37.
    [33]江勇,刘新福,徐家润,等.稠油出砂冷采技术研究与实践[J].河南石油,2000,14(5):14-18.
    [34]乐大发,周洪钟,韩建华,等.孤岛油田东区原油流变性研究[J].油气地质与采收率,2001,8(4):45-47.
    [35]雷占祥,姜汉桥,陈月明,等.稠油蒸汽吞吐开采过程中焖井压降解释研究[J].大庆石油地质与开发,2006,25(4):92.
    [36]李河玉.小导管注浆技术及在隧道和地下工程中的应用[D].西南交通大学,2002.
    [37]李健.三角洲低渗透储层流动单元四维模型及剩余油预测[M].北京:石油工业出版社,2004.
    [38]李明,侯连华,邹才能,等.岩性地层油气藏地球物理勘探技术与应用[M].北京:石油]二业 出版社,2005.
    [39]李宗田,刘应红.采油工艺技术新进展及发展趋势[J].断块油气田,2000,7(1):5-9.
    [40]刘宝和.从勘探实践看找油的哲学[M].北京:石油工业出版社,2005.
    [41]刘桂玲,魏纪德.螺杆泵采油工艺的合理应用[J].石油机械,2002,30(2):32-34.
    [42]刘喜林.难动用油气储量开采技术丛书-难动用储量开发稠油开采技术[M].北京:石油工业出版社,2005.
    [43]刘喜林,赵政超,刘德铸.蒸汽萃取开采稠油技术[M].北京:石油工业出版社,2002.
    [44]刘新福,宋鹏瑞.稠油出砂冷采特征与对策[J].河南石油,1997,11(3):17-22.
    [45]刘新福.稠油出砂冷采会引起塌陷吗?[J].河南石油,1997,11(3):27.
    [46]刘新福.稠油冷采技术[J]..河南石油.1996,10(3):28.
    [47]刘新福编译.世界稠油开采现状及发展趋势[J].石油勘探开发情报,1996,第4期,43-53.
    [48]刘新福,李琳译..塞尔狄克油田3-5米稠油油藏冷采机理[J]..石油勘探开发情报,1997,(2):81-89.
    [49]刘玉章,郑俊德,夏惠芬.难动用储量开发采油工艺技术[M].北京:石油工业出版社,2005.
    [50]潘志强.粗砂层中水泥渗透注浆渗透理论与计算机仿真研究[D].辽宁工程技术大学,2005.
    [51]蒲海洋,苏文江,张锐.蒸汽驱模型的特征分析及合理模型的选择方法[J].石油大学学报(自然科学版),2002,26(5):60.
    [52]冉新权,刘德来,赵明,等.中国石油勘探与生产工程技术座谈会报告集2003测井[C].北京:石油工业出版社,2004.
    [53]邵先杰.河南油田低品位稠油油藏蒸汽吞吐后进一步提高采收率研究[J].大庆石油地质与开发,2005,24(6):84.
    [54]沈琛.井下作业监督(第二版).北京:石油工业出版社,2005.
    [55]沈琛.中石化油气勘探开发工程监督系列培训教材-试油测试工程监督[M].北京:石油工业出版社,2005.
    [56]沈德煌,于立君,聂凌云,注水后期油藏转注蒸汽开采可行性研究[J].石油勘探与开发,1999,26(3):80-83.
    [57]沈平平.油田开发提高采收率技术[M].北京:石油工业出版社,2006.
    [58]师国臣,陈卓如,李修文.螺杆泵采油井杆柱断脱机理及其对策[J].石油机械,2000,28(9):42-45
    [59]师国臣,孙延安,魏纪德,夏丽娟.大庆油田螺杆泵采油实践及认识[J].石油机械,1998,26(5):47-49.
    [60]宋鹏瑞译.井底乳化-降粘增产[J].石油勘探开发情报,1997,(3),54-63.
    [61]宋鹏瑞译.溶解气驱稠油油藏中的流体流动和出砂[J].石油勘探开发情报,1997,(1):65-77.
    [62]苏东风.复合充填注浆材料与扩散充填注浆理论的研究[D].辽宁工程技术大学,2001.
    [63]苏义脑,徐鸣雨.钻井基础理论研究与前沿技术开发新进展[M].北京:石油工业出版社,2005.
    [64]束青林,毛卫荣,张本华.河道砂边际稠油油藏热采开发理论和技术[M].北京:石油工业出版社,2005.
    [65]孙焕泉,窦之林.胜利油田开发技术论文集[C].北京:石油工业出版社,2005.
    [66]孙来喜,伏卫东,董文龙,等。稠油出砂冷采技术的适用条件[J].石油与天然气地质,2001,22(4):378-381.
    [67]孙晓岗.稠油热采技术论文集[C].北京:石油工业出版社,2006.
    [68].田红,邓金根,曲丛锋,孙福街,曾祥林.油水两相同时流动出砂规律模拟试验[J].石油钻探技术,2005,33(1):48-50.
    [69]王峰,张建国,袁士宝,等.稠油井调堵防一体化工艺技术[J].特种油气藏,2006,13(2):64.
    [70]王凤岩,嵇锐,王忠伟,卫存芳.特(超)稠油流变特性试验研究及应用[J].特种油气藏,2002,9(5):91.
    [71].王旱祥,张彦廷,李淑萍.地面驱动单螺杆泵杆柱的组合设计[J].石油机械,1998,26(8):45-48.
    [72].王金龙,闫相祯,杨秀娟.裸眼完井出砂的有限元数值模拟分析[J].石油矿场机械,2005,34(1):39-41.
    [73]王丕烈,周健丽,程建军.稠油出砂油田常规开采提高采收率方法探讨[J].河南石油,2004,18(增刊):73-74.
    [74]王启尧,吴芝华.八面河油田注氮气与蒸汽提高稠油采收率试验[J].江汉石油职工大学学报,2006,19(6):59.
    [75]王为民,李恩田,申龙涉,等.辽河油田含水超稠油流变特性研究[J].石油化工高等学校学报,2003,16(2):69.
    [76]王霞,陈万洪,亓传和,等.水驱油藏转蒸汽驱提高采收率[J].油气采收率技术,1998,5(1): 13.
    [77]王新纯.石油工人技术培训系列丛书-油田机械修理[M].北京:石油工业出版社,2005.
    [78]王新纯.石油工人技术培训系列丛书-修井施工工艺技术[M].北京:石油工业出版社,2005.[79]王新纯.石油工人技术培训系列丛书-井下作业施工工艺技术[M].北京:石油工业出版社,2005.
    [80]王新纯.石油工人技术培训系列丛书-钻井施工工艺技术[M].北京:石油工业出版社,2005.
    [81]王新征.断陷湖盆缓坡带油气成藏机理与油气分布特征研究-以东营凹陷南斜坡为例[M].北京:石油工业出版社,2005.
    [82]王秀清,张宝龙.组合式蒸汽吞吐数值模拟优化研究[J].特种油气藏,2004,11(3):49.
    [83]王旭.辽河油区稠油开采技术及下步技术攻关方向探讨[J].石油勘探与开发,2006,33(4):484-490.
    [84]王岩楼,张传绪,郭殿军.大庆西部外围油田开发实践[M].北京:石油工业出版社,2005.
    [85]王正东.超稠油油藏深部封窜调剖技术的研究[J].石油化工高等学校学报,2006,19(4):65.
    [86]王卓飞,黄景龙,王力兴,何鑫.稠油油藏段塞蒸汽驱技术研究[J].新疆石油地质,2001,22(4):330.
    [87]魏纪德,师国臣,于波.螺杆泵抽油杆柱负载扭矩计算[J].石油机械,1995,23(9):38-43.
    [88]吴琳.高含水井调剖堵水技术及现场应用分析[J].西南石油学院学报,2002,24(3):58-6l
    [89]吴奇.井下作业工程监督(第二版)[M].北京:石油工业出版社,2003.
    [90]吴仕贵,冯永泉.螺杆泵优化设计方法及应用[J].石油钻采工艺,1997,19(1):73-77.
    [91]吴志坚,吴筱坚.地面驱动式单螺杆泵抽油杆的动力学特性[J].石油大学学报(自然科学版),2000,24(5):71-72.
    [92]向祖平,张烈辉,冯国庆,陈军.M稠油油藏蒸汽驱方案优化研究[M].特种油气藏,2005,12(1):49.
    [93]徐守余.油藏描述方法原理[M].北京:石油工业出版社,2005.
    [94].Yarlong Wang,王红涛,王润好.常规和稠油油藏中出砂对油田增产的影响--矿场实例及数值模拟研究[J].国外油田工程,2002,18(9):23-27.
    [95]杨光璐,蔺玉秋,刘加林,鲍君刚.辽河油田稠油油藏氮气泡沫驱适应性研究[J].新疆石油地质,2004,25(2):188.
    [96].杨生榛,喻克全,邹正银,木合塔尔.稠油冷采技术在准噶尔盆地西北缘的应用前景[J].新疆石油地质,1999,20(6):528-531.
    [97]于宝新.石油工人技术培训技术知识精读本[M].北京:石油工业出版社,2004.
    [98]袁士义,宋新民,冉启全.裂缝性油藏开发技术[M].北京:石油工业出版社,2004.
    [99]翟光明,高维亮.中国石油地质学[M].北京:石油工业出版社,2005.
    [100]张方礼,李晓光。辽河油田勘探开发研究院优秀论文集(2005)[C].北京:石油工业出版社,2006.
    [101].张军,陈听宽,金友煌.地面驱动螺杆泵采油系统管道内流体摩阻分析[J].石油机械,1999,27(8):35-38.
    [102].张来斌,陈舟圣,王朝晖.螺杆泵油井工况诊断技术研究[J].石油矿场机械,1998,27(4):34-36.
    [103].张明水,刘成杰,杨展荣.运用数值模拟进行砂岩层内堵水机理研究[J].断块油气田,1998,5(1):62-65.
    [104]张绍东,束青林,张本华,等.河道砂常规稠油油藏特高含水期聚合物驱研究与实践[M].北京:石油工业出版社,2005.
    [105].张胜利,崔金榜,谢江.地面驱动螺杆泵锚定装置及受力分析[J].石油机械,1998,26(5):22-25.
    [106]张旭,刘建仪,孙良田,等.注空气低温氧化提高轻质油气藏采收率研究[J].开发试采天然气工业,2004,24(4):78-80.
    [107].张彦廷,李增亮,王旱祥.地面驱动螺杆泵油井生产系统的优化设计[J].石油矿场机械,2000,29(1):24-26.
    [108]郑惠光.非牛顿原油渗流流变特性及其在油田开发中的应用[J].江汉石油学院学报,2003,9,25,(3):90.
    [109].郑应人.非牛顿液体环空螺旋流的精确解[J].石油学报,1998,19(2):91-96.
    [110]周继德.抽油机井的泵况判断和故障处理[M].北京:石油工业出版社,2005.
    [111]朱维耀,祝俊峰,刘泽俊.化学剂堵水调剖渗流理论研究与应用[J].油气采收率技术,1997,4(3):26-34.
    [112]宗幼芄,赵怀文,部鹃.油层射孔段套管抗挤能力的实验研究[J].石油学报,1988,9(4):84-96
    [113] Beatie, C. I., Boberg, T. C. and McNab, G SReservoir Simulation of Cyclic Stimulation in the Cold Lake Oil Sands [J], SPERE, May 1991. 34-37.
    [114] Bill Huang, W.S., Marcum, B.E: Cold Production of Heavy oil from Horizontal Well in the Frog Lake Field, SPE, 1997,37-45.
    
    [115] Brij Maini: Foamy oil Flow in Heavy oil Production, JCPT, 1996, 35 (6): 21-24.
    [116] Bratli, R. K. and Risnes, R.: Stability and Failure of Sand Arches, SPEJ, Trans, AIME, April 1981, p236-248.
    [117] Chalaturnyk, R. J. and Wagg, B. T.: The Mechanisms of Solids Production in Unconsolidated Heavy Oil Reservoirs, SPE Paper NO.23780,1992 (2) .
    [118] Coombe, D. and Maini, B.: Discussions at Workshop on Foamy Oil Flow held at the Petroleum Recovery Institute, Calgary, Alberta, April27, 1994.
    [119] Denbina, E. S., Boberg, T. C. and Rotter, M. B.: Evaluation of Key Drive Mechanisms in the Early Cycles of Steam Stimulation at Cold Lake, SPE Reservoir Engineering, May 1991. 207-211.
    [120] Dusseault, M. B., Geilikman, M. B. And Roggensack, W. D.: Practical Requirements for Sand Production Implementation in Heavy Oil Applications, SPE30250, presented at the International Heavy Oil Symposium, Galgary, June 19-21,1995.
    
    [121] Dusseault, M. B.: Massive Sand Production: New Heavy Oil Technology, Ontario, 1996.
    [122] Dusseault, M. B., Bilak, R.A.: Disposal of Produced Solids by Slurry Fracture Injection, Pet. Soc. of CIM, South Saskatchecoan Metting, 1993, P.9.
    [123] Dusseault M B, et al..Mechanisms of massive sanf production in heavy oils[C].7~(th) UNITAR International Conference on Heavy Crude and Tar Sands.Oct. 27-30,1998, Beijing,china.
    [124] E. R. Rangel-German, J. Schembre, C. Sandberg and A. R. Kovscek. Electrical-heating-assisted recovery for heavy oil . ARTICLE Journal of Petroleum Science and Engineering,, Issues 3-4, 15 December 2004,45: 213-231.
    
    [125] Figueredo, R. C: Venezuela Heavy Crude, International Heavy Oil Symposium, Calgary, June 1995.
    [126] Fung, L. S. K., Wong, R. C. K.: Modeling of Cavity Stability and Sand Prductino in Heavy Oil Reservoirs, JCPT, 1996, 35 (2): 47-52.
    
    [127] Geilikman, M. B. Dusseault, M. B. and Dulien, F. A. L. Dymanic Effects of Foamy Fluid Fluid Fliw in Sand Production Instability, SPE 30251, Proc. IHOC, Calgry, 1995.
    [128] Geilikman, M. B., Dusseault, M. B. and Dullien, F. A. L: Fluid-Saturated Solid Flow With Propagation of A Yielding Front, Paper SPE/ISRM 28067, EUROCK Int. Conf. Rock Mechanics in Petroleum Engineering, Delft, August 29-31,1994, Balkema, Rotterdam.
    [129] Geilikman, M. B., Dusserult, M. B., and Dullien F. A.: Fiuid Production Enhancement by Exploiting Sand Production, SPE Paper No.27820,1994.
    [130] Geilikman, M. B., Dusseault, M. B. and Dullien, F. A.: Sand Production As Viscoplastic Granular Flow, SPE 27343, Int. Symp. of Formation Damage Control ,1995.
    [131] Halleck, P. M., Wesson, D. S. et al prediction of In-Situ Shaped-Charge Penetration Using Acoustic and Density Logs, paper SPE 22808, Presented at the 66th Annual Technical Conference and Exhibition of the Society of Petrdeum Engineers, Dallas (1991), 483-490.
    [132] Hawkins, CD. and Mclellan, P.J.:Modeling of Yielded Zone Enlargement Around a Wellbore, 2nd North American Rock Mech. Symp., Montreal, Canada, 1996,2: 1051-1058.
    [133] Hsia, T. and Behrmann, L. A.: Perforating Skinas a Function of Roch Permeability and Underbalance, SPE 22810 (1991) .
    [134] J. Pierre Lebel: Performance Implications of Various Reservoir Access Geometries, 1994, 11th Annual Heavy oil & oil sands Technical Symposium.
    [135] Jian-Yang Yuan, Bernard Tremblay, Alex Babchin: A Wormhole Network Model of Cold Production, ADOE/ARC 9697-17.
    [136] Karyampudi, R. S.: Evaluation of Cyclic Steam Performance and Mechanisms in a Mobile Heavy Oil Reservoir at Elk Point Thermal Pilot, JCPT, 1995.
    [137] Kessler, N., Wang, Y. and Santarelli, F. J.:A simplified Pseudo 3D Model to Evaluate Sand Production Risk in Deviated Cased Holes, SPE 26541,1993.
    [138] Lea, J. F., Anderson P.D., Anderson D. G: Optimization of Progressive Cavity Pump Systems in the Development of the Clearwater Heavy Oil Reservoir, JCPT, 1998.
    [139] Lillico, D., Jossy, E., Sedgwick, G, Woolley, J.: Visualization of the Flow of Foamy Oil from Porous Media, ADOE/ARC, #9697-17.
    [140] Loughead, D. J., Saltuklaroglu, M.:Lloydinster Heavy Oil Production-Why So Unusual? Calgary, March 11,1992.
    [141] Maini, B.B., Sarma, H.K., George, A.E.: Significance of Foamy-Oil Behaviour in Primary Production of Heavy Oils,JCPT, 1993, 37 (9.): 32-35.
    
    [142] Maurice Dusseault: Cold Production and Enhanced Oil Recovery, JCPT ,1993.
    [143] Mccaffrey, W. J, Bowman, R. D.: Recent Successes in Primary Bitumen Production, Heavy Oil and Oil Sands, Houston, Feb.1995.
    
    [144] Metwally M., Solanki, S.C.: Heavy Oil Reservoir Mechanisms, Lindbergh and Frog Lake Fields, Alberta Part I: Field Observations and Reservoir Simulation, the Petroleum Society of CIM, 95-63.
    [145] Mills, R.A. R.Progressing Cavity Oilwell Pumps-Past, Present and Future, JCPT, 1993,32 (4): 5-6.
    [146] M. Tamim, J. H. Abou-Kassem and S. M. Farouq Ali .Recent developments in numerical simulation techniques of thermal recovery processes . ARTICLEJoumal of Petroleum Science and Engineeringjssues 1-4,2000,26,: 283-289.
    [147] Montis, G: Heavy Oil Expansions Gather Momentum Worldwide, Oil & Gas Journal, 1995 , 93 (33):31-38.
    [148] Nobuo Morita: Field and Laboratory Verifications of Sand Production Prediction Models, SPE 27341.
    [149] Poon, D., Kisman, K.: Non-newtoian Effects on the Primary Production of Heavy Oil Reservoirs, JCPT, 1992, 31 (7): 55-59.
    [150] Pucknell, J. K. and Behrmann, L.A.: An Investigation of the Damaged Zone Created by Perforation, SPE 2281(1991) .
    
    [151] Rob Morgan: Heavy Oil-Riding the Wave, JCPT, 1997.
    [152] Sametz, P. D. and Luhowy, V. M.: Horizontal Drilling-One Solution to Increasing Heavy oil Recoveries.
    [153] Sawatzky,R., Lillico, D., London, M., Law, D., Coates, R., Yuan, J-Y. , Babchin, A., Tremblay, B.: Cold Production Numerical Modelling Workshop, ADOE/ARC/CORE, 9697-13.
    [154] Sawatzky, R., Lillico, D. Vilcsak, G, Tremblay, B.:Initiation of sand Production in the Cold Production Process, 1996, Petroleum Society of CIM 47th Annual Technical Metting.
    [155] Serhat Akin and Suat Bagci.A laboratory study of single-well steam-assisted gravity drainage process . ARTICLEJoumal of Petroleum Science and Engineering, 2001, 32(1):23-33.
    [156] Shang, J. J., Maini, B. B., Hayes, R.E., Tortike, W. S. :Experimental Study of Foamy Oil Stability, JCPT, 1997, 36(4) 31-37.
    [157] Shen, C. and Batycky, J.: Some Observations of Mobility Enhancement of Heavy Oils Flowing Through Sand Pack Under Solution Gas Drive, Paper 96-27, CIM 47th Annual Meeing, Calgary, Alberta, 1996.
    [158] Solanki, S., Metwally, M.: Heavy Oil Reservoir Mechanisms, Linbergh and Frog Lake, Alberta Part II: Geomechanical Evaluation, SPE, 30249.
    [159] Squires, A.: Inter-Well Tracer Results and Gel Blocking Program, Papar Presented at the 10th Annual Meeting of the Canadian Heavy Oil Association, Calgary, March 1993.
    [160] Tayfun,Babadagli.Evaluation of EOR methods for heavy-oil recovery in naturally fractured reservoirs . ARTICLE Journal of Petroleum Science and Engineering, Issues 1-2, 2003, 37: 25-37.
    [161] Tortike, W .S. and Tarouq Ali, S. M.: Prediction of Oil Sand Failure Due to Steam-Induced Stresses, JCPT, 1991 , 30 (1): 35-44.
    [162] Tremblay, B., Sedgwick, G, Forshner, K.:Simulation of Cold Production in Heavy Oil Reservoirs: Wormhole Dynamics, SPE/DOE Tenth Symposium on Improved Oil Recovery, Tulse Ok, April 1996.
    [163] Tremblay, B., Sedgwick, G., and Forshnar, K.: Imaging of Sand Production in a Horizontal Pack by X-ray Computed Tomography, International Heavy Oil Symposium Calgary, June 19-21,1995.
    [164] Wand, Y.:Ground Response of Circular Tunnel in Poorly Consolidated Rock, J. Geotechnical Engineering, ASCE , 1996,122,(9): 703-708.
    [165] Wang, Y. and Dussenult,: M.B. Sand Production Potential Near Inclined, Perforated Wellbores, Paper96-27,CIM 47 th Annual Meeting, Calgary, Alberta, 1996.
    [166] Wang, Y. and Dusseault, M. B.: Response of A Circular Opening in a Friable Low-Permeability Medium to Temperature And Pore Pressure Changes, Int. J. Num. Anal, Meth. Geomech., 1995,19: 157-179.
    [167] Weingarten, J. S. and Perkins, T. K.: Prediction of Sand Production in Gas Wells: Methods and Gulf of Mexico Case Studies, July 1995, 596-560.
    
    [168] Yarlong Wang: Sand Production and Foamy Oil Flow in Heavy Oil Reservoirs, SPE ,37553.
    [169] Yeung, K. C: Cold Flow Production of Crude Bitumen at the Burnt Lake Project, Northeastern, Alberta, Canada, Sixth UNITAR International conference on Heavy Crude and Tar Sands, Houston, Feb.1995.
    
    [170] Yuan, J. Y., Babchin, A., Tremblay, B.: Modelling the Wormhole Flow in Cokd Production, ADOE/ARC Core Industry Research Program, June 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700