高砷煤矿废水在Fe(Ⅲ)存在下As的自然净化机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在自然氧化作用下,高砷煤矿中的As从含砷矿物中释放出来,经一系列复杂的物理化学过程进入矿区周围的水体和沉积物中,从而对周围环境造成污染。本研究拟通过对铁和砷在实验室酸性水环境中吸附、沉淀过程的模拟实验,观察和跟踪As、Fe元素在酸性水中的迁移转化行为,分析在酸性环境中砷元素的迁移转化机理,为高砷煤矿区酸性溪流水系环境中砷的自然净化机理提供科学的理论基础,并为酸性废水除砷工艺提供借鉴。取得以下结论:
     (1) H_3AsO_4和FeCl_3的反应体系中,经过三个月时间上清溶液里的残余As、Fe浓度几乎不变,说明吸附、沉淀完全。吸附率均在97%以上,说明铁离子的存在确实对砷有吸附和共沉淀的作用。
     (2) H_3AsO_4和Fe_2(SO_4)_3的反应体系中,上清液里的As浓度在七天的时间里急剧减少,七天到一个月时间里上清溶液里的剩余As浓度几乎不变,而后又急剧减少,可能是As在大量SO_4~(2-)离子存在的酸性环境下,与Fe离子的吸附、沉淀之间存在一个类似在盐效应影响过程。而后从一个月到两个月的时间里,Fe含量几乎没变,而As含量还有所降低,可能是后期沉积物对As有吸附的效果。吸附率均在99%以上,说明在大量SO_4~(2-)离子存在的酸性环境中,铁是砷在水体中由液相转化成固相的重要载体,对砷的自净起到了很明显的作用。
     (3)天然沉积物与人工模拟沉积物的红外吸收图谱显示:因采样地点相近或地质环境类似,故而天然样品TC1、TC2和TC3、TC4这两组红外图谱各自十分相似。四个现场样品(TC1、TC2、TC3、TC4)中均含有少量的臭葱石。TC1、TC2中的硫酸盐特征不很显著,TC3、TC4中的硫酸盐已发育较完善,并使水体形成了强酸介质环境。人工模拟MC1、MC2、MC3样品为H_3AsO_4和FeCl_3的反应沉积物,而MC4、MC5、MC6样品为H_3AsO_4和Fe_2(SO_4)_3的反应沉积物。两组方案沉积物的红外光谱各自十分相示,且均含有微量的臭葱石。事实上天然酸性环境中主要是铁的硫酸盐介质系统,而人工模拟的MC4、MC5、MC6样品也是在硫酸介质中进行,因此这三个红外图谱与天然沉积物典型红外吸收光谱图几乎完全一致。此外,由于野外环境中的砷含量是远小于铁的含量,MC1、MC2、MC3样品的红外图谱中显示出这种砷铁比的差距愈大,沉积物中的臭葱石的红外信号依次越弱。MC7样品已富集了MC6中的臭葱石,可以认为MC7的主要矿物之一为FeAsO_4·2H_2O。
     (4) MC7样品的X衍射分析结果:其矿物组成为非晶质体和隐晶质体,与前人对该研究区域沉积物所作的调查一致。组分中的大量非晶质体主要是由水体中重金属离子形成氢氧化物胶体吸附沉淀、共沉淀而成。臭葱石在X衍射的分析中并未显示出来,可能是因为沉积物中该矿物的含量太低以至于难以检出。
     (5)天然沉积物与人工模拟沉积物的透射电镜分析结果相似,均以氧化铁矿物为主,并吸附有微量的As,说明水体中砷的主要去除机理是铁的氧化物及氢氧化物的吸附作用。而MC7样品的透射电镜分析结果证实,在砷的迁移转化机理过程中确实有砷铁共沉淀的现象。通过人工模拟实验,进一步证实了由酸性矿山水带入水体的砷多吸附在悬浮的固体颗粒或被沉积物所吸附、络合或共沉淀,从而在水底的沉积物中富集。
     (6)碳酸钙对砷、铁的吸附沉淀确实有影响,其吸附砷效率也基本在60%以上。硫酸钙几乎没有吸附砷离子,说明硫酸钙对于砷离子在水溶液中几乎没有吸附影响。
Natural oxidation, the high concentration of arsenic in the As mine minerals from the arsenic released by a series of complicated physical and chemical processes to enter the mining area around water bodies and sediment, thus causing pollution of the surrounding environment. This study of iron and arsenic acid in the laboratory environment Absorption of water, sedimentation process simulation, observation and follow-up of As, Fe elements in the transfer of acid into the water behavior, analysis of arsenic in the acidic environment of the transfer element into the mechanism of coal mining area for the high-arsenic water streams acidic environment of the natural purification mechanism of arsenic in the provision of basic scientific theory and technology of acidic waste water used for reference in addition to arsenic. Made the following conclusions:
     (1) H_3AsO_4 and FeCl_3 in the reaction system, after three months in the supernatant solution of the residual As, Fe concentration is almost unchanged on adsorption, precipitation completely. Absorption rate of more than 97% indicating the existence of iron ions has indeed arsenic adsorption and the role of co-precipitation.
     (2) H_3AsO_4 and Fe_2(SO_4)_3 reaction system, the As concentration in the supernatant at the time, seven days a drastic reduction of time for seven days to a month remaining in the supernatant solution As concentration is almost unchanged, and then sharply reduction are possible As a large number of SO_4~(2-) ion in the acidic environment of existence, and Fe ions adsorption, precipitation between a similar effect in the process of salt. Then from one month to two months time, Fe content is almost unchanged, and also reduced As content, the sediments may be late on the Absorption As has effect. Absorption rate at 99% more than in the existence of a large number of SO_4~(2-) ion in the acidic environment, iron is the arsenic in water by solid-phase liquid into an important carrier of the self-purification of the arsenic has played a very significant role.
     (3) Natural sediments and artificial sediments map shows the infrared absorption: a result of sampling sites close to or similar to the geological environment, they are natural Samples TC1, TC2 and TC3, TC4 infrared map of these two groups is very similar to their own. Samples of four-site (TC1, TC2, TC3, TC4) are contained in a small amount of scorodite. TC1, TC2 characteristics of the sulfate is not very significant, TC3, TC4 Sulphate has been the development of a more perfect shape and the water environment has become a strong acid medium. Artificial MC1, MC2, MC3 and H_3AsO_4 Samples for the reaction of FeCl_3 sediment and the MC4, MC5, MC6 Samples for H_3AsO_4 and Fe_2(SO_4)_3 the reaction of the sediments. Two programs of their respective sediments of the infrared spectra show very similar, and contained a trace amount of scorodite . In fact the natural acidic environment of the major media are systems of iron sulfate, and the artificial simulation of MC4, MC5, MC6 sample is carried out in sulfuric acid medium, the infrared map of the three natural sediments and typical infrared absorption spectrum is almost exactly the same. In addition, the wild because of arsenic in the environment are far less than the iron content, MC1, MC2, MC3 infrared map of the sample shows that the gap between arsenic greater than iron, sediment scorodite in the infrared followed by the weaker signal. MC7 Samples have been enriched in the smell of scorodite MC6, we can think MC7 has one of the main mineral is FeAsO_4·2H_2O.
     (4)Samples MC7 results of X-ray diffraction analysis: The mineral composition of amorphous and cryptocrystalline body of the study area with the previous survey conducted by the same sediment. Substantial component in the amorphous mainly heavy metal ions are formed by water adsorption of colloidal hydroxide precipitation, by co-precipitation. scorodite in the X ray diffraction analysis did not show up, because the sediments are probably the mineral content is too low so that the detection difficult.
     (5) Natural sediments and artificial sediments is similar to the TEM analysis, are mainly of iron oxide minerals, and there is a trace amount of adsorbed As, that arsenic in water are the main removal mechanism of iron oxides and hydroxides of Adsorption. MC7 TEM samples and the results of the analysis confirmed that the mechanism of arsenic into the process of transfer has indeed arsenic co-precipitation of iron situation. Through artificial simulation experiments, further confirmed by acid mine water into the water adsorption of arsenic at many of the solid particles suspended sediments or adsorption, complexation or co-precipitation, resulting in enrichment of the bottom sediments.
     (6) Calcium carbonate on the arsenic, iron precipitation Absorption indeed affect the efficiency of its basic Absorption of arsenic at more than 60%. Almost no calcium sulfate ion adsorption of arsenic on arsenic ions for calcium sulfate in aqueous solution almost no impact on Absorption.
引文
[1]VC法默.矿物的红外光谱.北京:科学出版社,1982.
    [2]丁振华,郑宝山,张杰.黔西南高砷煤中砷存在形式的初步研究.中国科学(D 辑),1999,29(5):421-425.
    [3]丁振华,郑宝山,陈朝刚,等.黔西南高砷煤的分布及地球化学特征研究[J].地球化学,2000,29(5):493-494.
    [4]丁振华,郑宝山,Finkelmam RB等.黔西南高砷煤中砷赋存状态的XAFS和铁的Moessbauer 谱研究[J].高校地质学报2003,9(2):273-278.
    [5]丁振华,郑宝山,Finkelmam RB,等.典型高砷煤样品的连续浸取实验研究-兼论黔西南高砷煤中砷的赋存状态[J].地球科学,2003,28(2):209-213.
    [6]万群.砷的地球化学屏障作用研究[D].湖南大学.2001.
    [7]王振刚,何海燕,严于伦.石门雄黄矿地区居民砷暴露研究[J].卫生研究,1999,28(1):6-8.
    [8]中国环境监测总站,北京大学,中国科学院沈阳应用生态研究所编,中国土壤元素背景值,北京:中国环境科学出版社,1990.
    [9]丛志远,赵峰华.酸性矿山废水研究的现状及展望[J].中国矿业,2003,12(3):15-18.
    [10]冯丽娟,吴攀,裴廷权,等.贵州兴仁煤矿区水环境的水化学特征[J].地球与环境,2006,34(4):25-30.
    [11]冯丽娟.贵州兴仁煤矿区土壤/沉积物中砷的地球化学研究.贵州大学硕士研究生学位论文.2007.
    [12]闭向阳,马振东,任利民.鄂东南矿集区土壤砷环境地球化学特征[J].物探和化探,2003,27(6):480-483.
    [13]刘英俊,曹励明,李兆磷,等.,元素地球化学.北京:科学出版社,1984,326-327.
    [14]吕新之,砷的环境化学,枣庄师专学报,1998,3:40-46
    [15]李大华,陈坤,邓涛等.中国西南地区煤中砷的含量与对比.中国煤田地质,2003,15(1):15-16.
    [16]李社红.北疆资源开发环境污染问题研究[D].北京:中国科学院研究生院,2002,9.
    [17]李廷强,杨肖娥,砷从农业土壤向人类食物链的迁移,广东微量元素科学,2004.11(1):1-10.
    [18]肖唐付,洪冰,杨中华,等.砷的水地球化学及其环境效应[J].地质科技情报,2001,30(1):71-75.
    [19]吴攀,刘丛强,杨元根.矿山环境中(重)金属的释放迁移地球化学及其环境效应[J].矿物学报,2001,21(2):213-219.
    [20]吴攀,裴廷权,朱立军等.贵州兴仁高砷煤矿区土壤/沉积物中As的环境调查研究.地球与环境,2006,2.
    [21]杨宏伟,张毅.黄河(喇嘛湾段)沉积物中铜、铅、锌、镉的化学形态研究[J].中国环境监测,2002,18(5):13-16.
    [22]陈萍,黄文辉,唐修义.我国煤中砷的含量、赋存特征及对环境的影响[J].煤田地质与勘探,2002,30(3):1-4.
    [23]周代兴.高砷煤污染引起慢性砷中毒的调查[J].中华预防医学杂志,1993:27(3):147-149.
    [24]周代兴,周运书,刘定南等.高砷煤污染引起慢性砷中毒的调查.中华预防医学杂志,1993,27:147-150.
    [25]赵峰华,任德贻,郑宝山,等.高砷煤中砷赋存状态的扩展x射线吸收精细结构谱研究[J].科学通报,1998,43(14):1549-1551.
    [26]赵峰华,任德贻,彭苏萍等.煤中砷的赋存状态.地球科学进展,2003,18(2):214-220.
    [27]张银英,吴群河,容庆新.珠江(广州河段)沉积物中砷形态的存在及迁移特征[J].热带海洋,1994,13(2):49-56.
    [28]岳梅,赵峰华,任德贻,等.煤矿酸性水水化学特征及其环境地球化学信息研究[J].煤田地质与勘探,2004,32(3):46-49.
    [29]金赞芳,陈英旭,柯强.运河和西湖底泥砷的吸附及形态分析[J].浙江大学学报(农业与生命科学版),2001,652-656.
    [30]钟竹前,梅光贵.有色冶炼.1982,(6):28-32.
    [31]顾兴平、顾永柞.环境砷污染与健康[J].四川环境,1999,18(3):11-14.
    [32]陶秀珍.兴仁高砷煤矿区水环境中砷的自然净化机理.贵州大学硕士研究生学位论文.2008.
    [33]徐亮 白云石中和过滤流酸型酸性废水工艺技术研究[J].江苏理工大学学报.第19卷第5期1998年9月:85-89.
    [34]聂爱国,龙江平.贵州西南地区高砷煤与低温元素矿化的关系.贵州地质,1995,12(4):317-321.
    [35]聂爱国,龙江平.贵州西南部高砷煤的砷(As)来源及所致中毒途径研究[J].贵州环保科技,1996,4:25-28.
    [36]聂爱国等.蛾眉山玄武岩浆与贵州高砷煤成因研究.煤田地质与勘探,2004,32(1):8-10.
    [37]袁涛,罗启芳.环境砷对人体健康的影响.国外医学卫生学分册.1999,26(6):321-323.
    [38]常东胜 用过滤中和法治理酸性废水环境科学动态[J].2005(3):29-30.
    [39]康家对,砷对健康危害的研究进展,卫生研究,2004,33(3):372.
    [40]崔瑞平.环境砷污染及其危害[J].遵义医学院学报.1994,17(3):255-260.
    [41]彭文世,刘高魁.矿物红外光谱图集.北京:科学出版社,1982.
    [42]谢正苗,黄昌勇,何振立,土壤中砷的化学平衡,环境科学进展,1998,16(1):22-37.
    [43]谢宏.贵州西部高砷煤地质特征及成因研究.贵州大学硕士研究生学位论文.2005.
    [44]新矿物及矿物命名委员会,1984英汉矿物种名称入学出版社
    [45]魏世强.环境系统中重金属镉迁移研究[D].重庆:西南农业大学资源环境学院,2001.
    [46]魏显有,王秀敏,刘云惠等,土壤中砷的吸附行为及其形态分布研究[J].河北农业大学学报.1999,22(3):28-30.
    [47]Alam MGM,Tokunaga S,and Maekawa T.Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate[J].Chemosphere,2001,43:1035-1041.
    [48]Benko V.Smon K,et al.Health aspects of burning coal with a high arsenic content[J].Environ Res.,1977,13:(3)78-85.
    [49]Bhumbla,D.K.,& Keefer,R.F.Arsenic mobilisation and bioavailability in soil.In:Nriagu,J.O.(ed.),Arsenic in the Environment,Part 1:Cycling and characterization[M],New York:John Wiley and Sons,1994,62-66.
    [50]Blowes,D.W.,Ptacek,C.J.,Jurjovee,J.Mill tailings:hydrogeology and geochemistry.In:Jambor,J.L.,Blowes,D.W.,Ritchie,A.I.M.(Eds.),Environmental Aspects of Mine Wastes,Mineral.Assoc.Can.Short Course,2003(31):95-116.
    [51]Chapman B M,Jones D R and Jung R F.Processes controlling metal ion attenuation in acid mine drainage streams[J].Geoehim Cosmnchim Aeta,1983(47):1957-1973.
    [52]Dove,P.M.Rimstidt,J.A.The solubility and stability of scorodite,FeAsO_4·2H_2O. Am.Mineral.1985,70,838-844.
    [53]Dzombak,D.A.,and Moral,F.M.M.Surface complexation modeling[M]:hydrous ferric oxide.New York:John Wiley & Sons,1999,1-135.
    [54]Faulkner,B.B.,and J.G.Skousen.1994.Treatment of acid mine drainage by passive treatment systems,p.250-257.In:Proceedings,International Land Reclamation and Mine Drainage Conference,April 24-29,1994,USDI,Bureau of Mines SP 06A-94,Pittsburgh,PA.
    [55]Garcia-Guinea J and Harffy M(张康生译).玻利维亚采矿污染:过去、现在和未来[J].AMBIO 人类环境杂志,1998,27(3):250-252.
    [56]Guo,H.R.,Cancer risk assessment for arsenic exposure through oyster consumption,Environmental Health Perspectives,2002,110:123-124.
    [57]Harue Masuda,Yoshito Yamatani,Mitsuru Okai Transformation of arsenic compounds in modern intertidalsediments of Iriomote Island[J],Japan Journal of Geochemical Exploration,2005,87:73-81.
    [58]John A Dean.Lange's Handbook of Chemistry(Eleventh Edition).New York:McGraw-Hill Book.1973
    [59]Jurjovec,J.,Ptacek,C.J.,Blowes,D.W..Acid neutralization mechanisms and metal release in mine railings:A laboratory column experiment[J].Geochim.Cosmochim.Acta,2002(66),1511-1523.
    [60]Korte N.E.and Fernando Q.A review of arsenic(iii) in groundwater[J].Critical Rev.in Env.Control,1991,21:1-39.
    [61]Korte N.E.Naturally occurring arsenic in groundwabers of the Midwestem United States[J].Env.Geol.and Water Sci.,1991,18:137-141.
    [62]Nishimura,T.,Tozawa,K.On the solubility products of ferric,calcium and magnesium arsenates[J].Bull.Inst.Miner.Dress.Metall,1978,34,20-26.
    [63]Paul,B.K.,Arsenic contamination awareness among the rural residents in Bangladesh,Social Science&Medicine,2004,59:1741-1755.
    [64]Sadiq M.Arsenic chemistry in soils:An overview of thermodynamic predictions and field observations[J].Water,Air and Soil Pollution,1997,93:117-136.
    [65]Smedley,P.L.,Kjiniburgh,D.G.,A review of the source,behavior and distribution of arsenic in natural waters,Applied Geochemistry,2002,17:517-568.[66]Stumm,W.,and Morgan,J.J.Aquatic Chemistry:Chemical Equilibria and Rates in Natural Waters[M].Wiley Interscience,New York,1996,1022.
    [67]Thomas,D.J.,Arsenic concentration and distribution in a great plain of Hungary.Environmental Geochemistry and Health,1994,16(3/4):107.
    [68]Toshihiko Ohnuki,Fuminori Sakamoto,Naofumi Kozai,Takuo Ozaki,Takahiro Yoshida,Issay Narumi,Eiichi Wakai,Takuro Sakai,Arokiasamy J.Francis.Mechanisms of arsenic immobilization in a biomat from mine discharge water[J].Chemical Geology,2004,2 i 2:279-290.
    [69]Vink B W,Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams.Chemical Geology,1996,130:21-30.
    [70]Watanab,C.,Kawata,A.,Sudo,N.,et.al.,Water intake in an Asian population living in arsenic-contaminated area,Toxicology and Applied Pharmacology,2004,198:272-282.
    [71]Welch A.H.,Lico,M.S.,and Hughes,L.Arsenic in ground water of the Western United States[J].Ground Water,1988,26:333-347.
    [72]Yu JY,Heo B,Choi I K,Cho J P,Chang H W.Apparent solubilities of schwertmatmite and ferrihydrite in natural streamwaters polluted by mine drainage[J].Geochim Cosmochim Acta 1999;63(19-20):3407-3416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700