锰矿废水污染现状分析与微生物修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锰作为一种重要的冶金、化工原材料,为我国工业快速发展做出了巨大贡献。在锰矿大量产出的同时,生态环境也遭受严重破坏,其中以锰矿废水及尾矿淋滤所引发的环境问题最为严重。作者在两年多时间内多次对遵义长沟锰矿开采区域进行实地调查,开展了遵义地区锰矿废水污染分析和胶质芽孢杆菌处理锰矿废水的试验研究,并采用模拟烟气与胶质芽孢杆菌联合处理锰矿废水,获得初步研究结果。
     运用单项污染指数法、内梅罗综合污染指数法等评价方法以及污染评价标准,分析了该锰矿地区河流——底泥——土壤——农作物中的重金属污染特征。研究表明,遵义湘江河长沟河段已受到锰矿废水污染,多项水质指标均已超出国家二级排放标准;矿区河流底泥重金属含量高,锰含量高出土壤背景值上百倍,污染严重;矿区土壤潜在酸度较大,锰含量高达115051.10mg/kg,而且还伴有锌、铅轻度污染,铜中度污染,镉重度污染,重金属综合污染程度深;锰矿开采区及加工区农作物都受到锰矿废水及尾矿重金属影响。各种采集的农作物同时受锰、铁、锌、镉不同程度污染,尤其是受锰污染最为普遍,其中苋菜、莴笋、白菜污染最为严重,分别高出农作物一般营养成分29.7倍、16.2倍、15.9倍;其次镉污染在白菜和苋菜中最为严重,其污染程度分别高于国家最高允许量的12.3倍和11.2倍;部分农作物还受到锌和铁的重度污染;受锌重度污染的农作物有:白菜、苋菜、萝卜、莴笋;受铁重度污染农作物为玉米。
     采用微生物吸附法,以胶质芽孢杆菌BM03菌株开展对锰矿废水的微生物治理初步研究。结果表明,废水中的SS最高去除率达到99.13%,最大絮凝率为96.97%,对锰去除率可达100%,絮凝率可以达到97.94%,SS去除率高达99.43%,效果显著。在此基础上,采用微生物与模拟废气联合作用处理锰矿废水,结果表明,锰矿废水重金属得到更好处理效果的同时,废水颜色也得以改善,处理后产生硫酸钙、碳酸钙、硫酸铁、碳酸铁、硫酸锰等,废气中的二氧化硫和二氧化碳也得到利用。此外,采用不同解吸剂,研究了微生物处理后的絮凝沉淀物重金属的解吸。结合微生物吸附法治理锰矿废水的试验结果以及对锰矿废水环境污染评价,设计出较为可行的废水处理组合工艺。
     遵义地区锰矿资源丰富,矿点分布较多,污染严重,亟待治理。研究采用微生物法治理锰矿废水具有广阔应用前景。
As an important part of metallurgical and chemical raw materials,Manganese has made great contributions to the rapid development of China's industrial.However,with manganese ore substantial output,the ecological environment has also suffered serious damage.In particular,the most serious environmental problems are caused by wastewater of manganese mineral and tailings leaching.The author has investigated manganese mining region of Changgou in Zunyi several times in last two years,and carried out analysis of manganese pollution in wastewater and study on the use of Bacillus mucilaginosus dealing with wastewater of manangese mineral of Zunyi region.Then,the combination of simulated flue gas and BM03 are used to deal with wastewater of manganese mineral,and acquired preliminary research results.
     Use the pollution evaluation methods,such as single pollution index method and Nemero integrated pollution index,and evaluation criteria to analyse characteristics of heavy metal pollution in river of manganese mineral and river mud sediment and soil and crops of this region. Studies show that the Changgou section of Xiangjiang River in Zunyi has been contaminated by wastewater of manganese mineral,and a number of water quality indicators have been beyond the limits of national emission secondary standards.There is high heavy metals content in sediments of the mining river,and manganese content in the soil than a hundred times the background value, pollution problem in mud sediments of river is serious.The soil potential acidity of mining region is large,and manganese content in soil is up to 115051mg/kg.Simultaneously,with mild pollution caused by zinc and lead,moderate pollution of copper and severe pollution of cadmium,heavy metals comprehensive pollution in deep-General.The crops in manganese mining and processing region receive an impact which by manganese tailings wastewater and heavy metals.A variety of collected crops are affected by manganese,iron,zinc and cadmium pollution in varying degrees, In particular,manganese pollution is the most common,and pollution in the amaranth,lettuce and Chinese cabbage are most serious,have also preponderated over General nutrient composition of the crops contents by 29.7,16.2 and 15.9 times,respectively.Followed by most serious pollution of cadmium in Chinese cabbage and amaranth,which the degree of pollution is higher than the national maximum allowable amount of 12.3 and 11.2 times,respectively.Some crops also receive pollutes seriously by zinc and iron,crops that polluted seriously by zinc as follows.Chinese cabbage,amaranth,radish,lettuce,heavily polluted crop by iron is the corn.
     Use the microbial assay with Bacillus mucilaginosus BM03 to carry out preliminary study on micro-organisms treatment on wastewater of manganese pollution.The results showed that the highest removal rate of SS reached 99.13%in wastewater,maximum flocculation rate is 99.97%, the removal rate of manganese up to 100%,it's flocculation rate can be achieved 97.94%and the removal rate of ss is also up to 99.43%after treatment,the effect is obvious.On this basis,The results showed that use the method which simulated flue gas and micro-organisms joint role in dealing with wastewater of manganese mineral is better than any single,and the effect on water color also can be improved.Then calcium sulfate,calcium carbonate,ferric sulfate,iron carbonate, manganese sulfate,etc was found after treatment.At the same time,the method aslo make use of sulfur dioxide and carbon dioxide in flue gas.In addition,utilize different desorption agents, author researched on desorption of heavy metals in flocculation sediments after treatment by microbial.In order to design a feasible confederative process of wastewater treatment,combined of experiment results of using microbial adsorption method to deal with wastewater and the environmental evaluation of that.
     The resource of manganese ore is rich in Zunyi region,and the distribution of ore is extensive, but the pollution is serious,urgent need of treatment.Apparently,study on Microbiological method to deal with wastewater of manganese mineral has broad application prospects.
引文
[1]马尧,孙占学.矿山废水的危害及其治理中的微生物作用[J].科技情报开发与经济,2006,16(10):166-167.
    [2]王运敏.中国的锰矿资源和电解金属锰的发展[J].中国锰业,2004,22(3):26-30.
    [3]王运敏.我国金属矿产资源开发循环经济的发展方向[J].金属矿山,2005,351(9):1-22.
    [4]王钧扬.矿山废水的治理与利用[J].中国资源综合利用,2000,(3):4-7.
    [5]王亚平,鲍征宇.尾矿库周围土壤中重金属存在形态特征研究[J].岩矿测试,2000,19(1):7-13.
    [6]中国预防医学科学院营养与食品卫生研究所编著.食物成分表[M].人民卫生出版社,北京,2001.
    [7]中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990,330-382.
    [8]中华人民共和国国土资源部.国土资源公报[R].2003.
    [9]付善明,周永章,张澄博,杨小强,丁健,赵宇(安鸟).河流沿岸环境对粤北大宝山矿废水锰污染的环境响应[J].中山大学学报,2007,46(2):92-96.
    [10]孙永强,李富平.应用生物修复技术治理矿区生态环境[J].矿业快报,2006,3:39-42.
    [11]田翱宇,陈吉春.氧化亚铁硫杆菌及其在环境工程中的应用[J].环境技术,2003,4(16):16-18.
    [12]冯颖,康勇,范福洲,孔琦.酸性矿山废水形成与处理中的微生物作用[J].有色金属,2005,57(3):103-108.
    [13]田建民.生物吸附法在含重金属废水处理中的应用[J].太原理工大学学报,2000,31(1):74-44.
    [14]叶文虎,栾胜基.环境质量评价学[M].北京:高等教育出版社,1994.
    [15]石兰.锌与人体健康[J].太原城市职业技术学院学报,2005,(6):142-143.
    [16]朱国才,李赋屏,肖明贵.采用硫酸铵培烧方法从低品味碳酸锰矿中富集回收锰[J].桂林工学院学报,2005,25(4):534-537.
    [17]刘国华,舒洪岚.矿区废弃地生态恢复研究进展[J].江西林业科技,2003,2:21-25.
    [18]刘成.生物法处理矿山酸性废水技术的应用[J].有色金属:矿山部分,2001,(4):39-44.
    [19]任子平,杨赞中.矿物的环保功能及其应用研究进展[J].矿产保护与利用,2001,(3): 44-49.
    [20]刘宜树,孟力.二氧化硫的制取与性质密闭式实验设计[J].化学教学,2000,(12):10.
    [21]刘巽锋,王庆生,高兴基.贵州锰矿地质[M].贵州:贵州人民出版社,1989.
    [22]张龙连,李国君,卢玲,吴萍,郭文瑞,邓一夫.锰电焊作业工人血清中5种微量元素变化的探讨[J].中国公共卫生,2001,17(9):783-784.
    [23]张新华.氧气与二氧化碳的制取[J].中学生理科月报,2006,(4).
    [24]张建梅,韩志萍,王亚军.重金属废水的生物处理技术[J].环境污染治理技术与设备,2003,4(4):75-78.
    [25]李法云,曲向荣,吴龙华.污染土壤生物修复理论基础与技术[M].北京:化学工业出版社,2006:152-154.
    [26]李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004,24(1):95-99.
    [27]宋书巧.矿山开发的环境响应与资源环境一体化研究[D].广州:中山大学(博士学位论文),2004.
    [28]吴启堂,蒋成爱,林毅,劳伟雄.利用剩余活性污泥的生物吸附降低城市污水污泥重金属含量[J].环境科学学报,2000,70(5):651-653.
    [29]余涛,杨忠芳,唐金荣,宗思锋,朱翠娟,张娇,张建新,申志军.湖南洞庭湖区土壤酸化及其对土壤质量的影响[J].地学前缘,2006,13(1):98-104.
    [30]陈仁义,柏琴.中国锰矿资源现状及锰矿勘查设想[J].中国锰业,2004,22(2):1-4.
    [31]陈同斌.重金属对土壤的污染[J].金属世界,1999,3:10-11.
    [32]陈怀满.土壤—植物系统中的重金属污染[M].北京:科学出版社,1996:71-85.
    [33]陈烨,连宾.微生物絮凝剂研究和应用进展[J].矿物岩石地球化学通报,2004,23(1):83-89.
    [34]连宾.硅酸盐细菌的解钾作用研究[M].贵州:贵州科技出版社,1998,55-65.
    [35]连宾,陈烨,袁生,刘丛强.硅酸盐细菌GY03菌株的絮凝特性[J].矿物学报,2003,23(4):303-307.
    [36]沈渭寿,曹学章,金燕.矿区生态破环与生态重建[M].北京:中国环境科学出版社,2004.
    [37]周梅素,林培华,郭东龙.食物微量元素与人体微量元素疾病[J].食品科技,2001,(3):64-67.
    [38]周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态,1999,10(3): 21-27.
    [39]林贵生,李赘.遵义锰矿地质特征及找矿潜力分析[J].中国锰业,2006,24(3):26-29.
    [40]国家环境保护局,国家统计局,地质矿产部.全国矿山开发生态环境破坏与重建调查报告.1996.
    [41]国土资源部规划司等.西部地区矿产资源勘查与开发潜力与规划研究[M].北京:地质出版社,2001.
    [42]胡稳奇,张志光.微生物方法在重金属污染处理中的应用现状及展望[J].大自然探索,1995,14(52):58-62.
    [43]饶俊,张锦瑞,徐晖.酸性矿山废水处理技术及其发展前景[J].矿业工程,2005,3(3):47-49.
    [44]祝玉学.矿山酸性水的处理[J].安全与环保,,1998,(5):62-68.
    [45]祝玉学,桂誉漓.硫酸盐还原菌示范工程概述[J].国外金属矿山,2000,(4):62-68.
    [46]贵州省地质矿产局.贵州省区域矿产志[R].1986.
    [47]姚春霞,陈振楼,张菊,侯进.上海浦东部分蔬菜重金属污染评价[J].农业环境科学学报,2005,24(4):761-765.
    [48]姚运先,王艺娟.人工湿地在酸性矿山废水处理中的应用[J].湖南有色金属,2005,21(4):26-29.
    [49]赵海霞,连宾,谢作晃,陈烨,朱立军.贵州凯里煤矿地区水质分析与微生物处理实验研究[J].矿物学报,2008,28(1):71-76.
    [50]赵海霞.凯里地区煤矿废水污染分析及微生物处理试验研究[D].贵州:贵州大学(硕士学位论文),2008.
    [51]谈辉明,杨启文.重金属废水处理技术的现状与展望[J].环境科学与技术,1997,(1):35-36.
    [52]曾琦斐.微量元素与人体健康[J].健康与生物医药,2008,(3):158-159.
    [53]曾伟.浅析电解金属锰出口存在的问题及对策[J].中国锰业,2006,24(3):19-20.
    [54]锰合金冶金学[西德]G.福尔克特主编.喻辉译,上海科技出版社,1978年.
    [55]魏德洲.资源微生物技术[M].北京:冶金工业出版社,1996.
    [56]魏榕,黄健.酸性矿山废水的污染与处理研究[J].能源与环境,2006,(2):31-33.
    [57]GB6920—86,水质—pH值的测定—玻璃电极法[S].中华人民共和国国家标准.
    [58]GB11901—89,水质—悬浮物的测定—重量法[S].中华人民共和国国家标准.
    [59]GB11911—89,水质—铁、锰的测定—火焰原子吸收分光光度法[S].中华人民共和国国家标准.
    [60]GB15618—1995,中华人民共和国国家标准.
    [61]GB8978—1996,污水综合排放标准[S].中华人民共和国国家标准.
    [62]GB13106—1991,食品中锌限量卫生标准[S].中华人民共和国国家标准.
    [63]GB15200—1994,食品中铁限量卫生标准[S].中华人民共和国国家标准.
    [64]GB15199-1994,食品中铜限量卫生标准[S].中华人民共和国国家标准.
    [65]GB14935—1994,食品中铅限量卫生标准[S].中华人民共和国国家标准.
    [66]GB15201—1994,食品中镉限量卫生标准[S].中华人民共和国国家标准.
    [67]HJ/T166—2004,中华人民共和国环境保护行业标准.
    [68]HJ322—2006,中华人民共和国国家标准.
    [69]HJ/T166—2004,中华人民共和国环境保护行业标准.
    [70]HJ/T166—2004,中华人民共和国环境保护行业标准.
    [71]A.M.D.van Rotterdam-Los,S.P.Vriend,M.J.van Bergen,P.F.M.van Gaans.The effect of naturally acidified irrigation water on agricultural volcanic soils[J].Journal of Geochemical Exploration,2007,available online.
    [72]Berg KL.Kinetics of manganese ore reduction by carbon mon-oxide[J].Metallurgical and Materials Transactions B,2000,31(3):477.
    [73]B.S.Panov,A.M.Dudik,O.A.Shevchenko,E.S.Matlak.On pollution of the biosphere in industrial areas:the example of the Donets coal Basin[J].International Journal of Coal Geology,1999,40(2-3):199-210.
    [74]Cieslinski G,Van Rees K.C.J.,Szmigielska A.M.,etal.Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation[J].Plant and Soil,1998,203:109-117.
    [75]Chen Ye,Lian Bin.Ability of bacillus mucilaginosus GY03 strain to adsorb chromium irons[J].Pedosphere,2005,15(2):225-231.
    [76]Dinesh Mohan,Subhash Chander.Removal and recovery of metal ions from acid mine drainage using lignite—A low cost sorbent[J].Journal of Hazardous Materials,2006,(137):1545-1553.
    [77]Dudka S. Adriano DC.Environmental impacts of mental ore mining and processing a review.Journal of Environmental Qualify, 1997:590-602.
    [78]Elsherief AE. Study of the electroleaching of manganese ore[J]. Hydrometallurgy, 2000, 55(3): 311.
    [79]Harrison, P.M, Hoare, R.J., Hoy, T.G, et al. Iron in Biochemistry and Medicine [M].Academic press, New York, 1974, 73-114.
    [80]K.R.Pak, O.Y.Lim, H.K.Leel, S.C.Choi. Aerobic reduction of manganese oxide by Salmonella sp. strain MR4[J]. Biotechnology Letters, 2002, 24: 1181-1184.
    [81]Kashem M.A., Singh B. R. Heavy metal contamination of soil and vegetation in the vicinity of industries in Bangladesh [J]. Water,Air,and Soil Pollution, 1999, 115: 347-361.
    [82]Loi Dinh Chinh, Shabbir H. Gheewala, S(?)bastien Bonnet. Integrated environmental assessment and pollution prevention in Vietnam: the case of anthracite production [J]. Journal of Cleaner Production, 2007, 15(18): 1768-1777.
    [83]Margarete Kalin, Andrew Fyson, William N.Wheeler. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage [J]. Science of the Total Environment, 2006, (366): 395-408.
    [84] Sutyrin Y.E. Carbonate ores The raw materials base for manganese in Russia[J].Metallurgist , 2002 , 46 (9-10): 297.
    [85]Wallace A, Berry, W.L. Dose response curves for zinc cadmium and nickel in combinations of one two or three [J]. Soil Science, 1989, 147(6): 401-410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700