日喀则特提斯弧—盆构造演化关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雅鲁藏布缝合带将印度-欧业板块分为南北两块,乃新特提斯缝合带在西藏的延伸,并以该带中段日喀则蛇绿岩及相关岩石单元代表的构造带最为典型。日喀则特提斯构造演化存在单一俯冲和两期俯冲的争论,关键问题在于缺乏洋内岛弧和大洋盆印记。为解决此关键问题,选择日喀则相对完整的吉定蛇绿岩剖面和仁布蛇绿混杂带进行详细解剖,并在前人基础上提出了藏南新特提斯弧盆构造演化的新模式。
     对日喀则西侧吉定蛇绿岩辉长岩中锆石的SHRIMP U-Pb定年确定其形成于128±2Ma。仁布蛇绿岩地幔橄榄岩和堆积岩全岩地球化学特征(如Ta、Nb和/或Ti(TNT)负异常,轻稀土亏损)表明蛇绿岩形成于SSZ构造环境,也说明日喀则蛇绿岩洋壳和洋下地幔是熔体和残留体的成因关系。
     仁布地区新厘定出一套洋岛碱性玄武岩和辉绿岩,Ti、P含量较高,轻稀土强烈富集,大离子亲石元素和高场强元素也明显富集,蛛网图显示随元素不相容性降低,其原始地幔标准化值逐渐降低,具较高的~(87)Sr/~(86)Sr比值,εNd(t)平均为5.4,显示DM向EMⅡ的演化趋势;这些特征表明辉绿岩少有地壳混染,可能代表了特提斯洋内热点,并类似Kerguelen洋岛碱性玄武岩(印度洋Ninety East Ridge洋岛链),暗示印度洋可能继承了特提斯洋的物质组成。仁布洋岛火山岩可能是日喀则特提斯已俯冲殆尽的老洋盆印记。
     首次发现侵入于仁布蛇绿岩地幔橄榄岩和堆积岩中的英云闪长岩具有高镁和Mg~#、Sr和Sr/Y比值,强烈亏损HREE和Y,非常类似于埃达克岩或埃达克岩交代的弧火山岩系列,可能是特提斯俯冲板片与弧下地幔相互反应的产物,标志着一次洋内俯冲事件。
     基于前人基础,本研究认为藏南日喀则特提斯洋存在向北消减的弧-盆体系。日喀则特提斯可能于中侏罗世已存在俯冲并形成了拉萨地块南缘的包括正常岛弧安山岩-英安岩-流纹岩组合的叶巴弧;在晚侏罗世,印度板块继续向北漂移,虽然受到拉萨地块的阻碍,但新特提斯洋沿着拉萨地块南缘的俯冲仍然继续,形成了叶巴弧南部的桑日岛弧。同时,特提斯中段洋内发生局部拉张,此时诱发洋内俯冲,新特提斯双俯冲的构造格局形成。于120~128Ma,一些规模较小的边缘洋盆形成,卷入陆缘碎屑和洋壳沉积的地幔楔发生熔融产生岩浆,沿着破裂的扩张脊上涌产生了具有TNT负异常的SSZ型新洋壳,期间产生了俯冲洋壳重熔作用,标志着年轻的热的洋壳俯冲形成的埃达克岩侵入于仁布SSZ蛇绿岩地幔橄榄岩中。
     印度板块继续向北漂移导致该洋内俯冲系统逐渐消亡,而沿拉萨地块南缘的俯冲并未停止,形成林子宗正常岛弧火山岩组合,日喀则蛇绿岩最终于80~90Ma左右构造侵位于拉萨地块的南缘。约45~50Ma,伴随着印度—欧亚板块碰撞,在大陆边缘产生了冈底斯花岗岩基。在雅鲁藏布蛇绿混杂带和冈底斯岩浆弧的前缘之间形成了山前磨拉石建造,缝合带及相邻构造单元被后期冲断层和伸展作用改造成现在的构造面貌。
The Yarlung Zangbo suture zone, separating the Lhasa block to the north and Indian sub-continent to the south, is marked by ophiolites, subduction zone complex, and volcanic arc terranes. Preveous modle for Xigze Tethyan evolution have controversial problemes on whether the intra-arc and the information about Sunducted Ocean preserved in Xigaze Tethys sutre zone. Detailed studies for them based on field structural geology, petrology and geochemistry have allowed us to characterize the Xigaze segment of YZS and understand its implications for tectonic history before India-Asian collision. SHRIMP zircon U-Pb dating for the west end of Tiding ophiolite yields a 128±2 Ma age for gabbros. Geochemical features of ophiolites (i.e. the Ta, Nb and/or Ti (TNT) negative anomaly, depletion of LREE) infer their supra-subduction-zone (SSZ) environment.
     The oceanic volcanic basalts and diabase associated with the Rinbung ophiolite, east end of the segment, are similar to oceanic island alkalic basalt series (OIAB) with respect to many aspects such as enrichment of Ti, P and total alkalis, the enrichment distribution patterns of LREE; and a decreasing trend of the normative value of incompatible elements to primitive mantle with their incompatibility in the spider diagram. Significantly, Sr-Nd isotopic ratios of the Rinbung OIAB display an evolution trend from DM to EMⅡwith no crustal contamination and and similar to the OIAB of Keguelen(the NinetyEast Ridge hotspots of Indian ocean). Therefore, the Rinbung OIAB probably represents the product from the hotspots in Tethys, it is believed that Indian mantle have inherited some characteristics of Tethyan ocean.
     The adakites are also fistly found in this study, and they are a suite of High magnesium tonalites intruding the Rinbung mantle peridotites with higher MgO and Mg#, Sr or Sr/Y, strongly depletion of HREE and Y, probably produced by the reaction between Tethyan subduction slab melting and sub-arc mantle and mark an intra-oceanic subduction.
     Based on the previous study, an intra-oceanic subduction with a subduction polarity directed to the north does exist in Xigaze Tethyan Ocean. The subduction of Tethys Ocean would like to subduct at least from the middle Jurassic so that they can produce Yeba-arc along the southernmost margin of Lhasa continental block. During the J3-K1 period, the subduction along the southern margin of Lhasa block continued to form a suite of ADRs (include rare adakites) in Sangri group. And then a local extension took place in the region of intra-Eastern Tethys when the India plate drifted to the north but suffered the resistance from the Lhasa block, contemporarily, the intra-oceanic subduction are triggered, subsequently, magmas derived from a partial melting of mantle wedge which suffered from the modification by subducted continental marginal clastics and oceanic sediments upwelled along the oceanic ridges, forming several small marginal basins during 120~128 Ma, and thus lead to the so-called SSZ-type oceanic crust. Adakties, the typical fingerprint of intra-oceanic subduction, intruded the Rinbung mantle peridotites.
     With the continued subduction of the India plate to the north along the southern margin of Lhasa block, forming Linzizong volcanic rocks, the intra-oceanic subduction system was gradually extinct and the ophiolite was tectonically emplaced onto the southern margin of the Lhasa block at~80~90 Ma. During~45~50Ma, the Gangdese granitic batholiths were emplaced into the southern margin of the Eurasia continent and mark the collision of India-Asia plate. In the Tertiary, mountain frontal molasses deposited between the Yarlung Zangbo ophiolitic melanges and the Gangdese granitic batholiths, and the suture zone together with adjacent tectonic units were modified by thrusting and extension to the present tectonic configuration.
引文
1.鲍佩声,王希斌.1984.西藏日喀则蛇绿岩成因的地球化学证据.喜马拉雅地质,Ⅱ,北京:地质出版社,59-82.
    2.鲍佩声,王希斌.1985.从雅鲁藏布江蛇绿岩带中的两套火山岩探讨中生代特提斯洋壳的演化.中国科学,B15:531-541.
    3.常承法,肖序常,1988.特提斯在青藏高原段的演化.In:肖序常,李廷栋,李光岑,常承法,袁学诚(Editors),喜马拉雅岩石圈构造演化总论.地质出版社,北京,pp.238,p49-58.
    4.常承法,郑锡澜.1973.中国西藏南部珠穆朗玛峰地区的构造特征.地质科学,(1):1-12.
    5.陈根文,夏斌,钟志洪,王国强,王核,赵太平,汪劲草,张莉,漆亮,李荪蓉.2003.西藏得几蛇绿岩体中玻安岩的地球化学特征及其地质意义.矿物学报,23(1):91-96
    6.邓万明,Pearce J A.1990.拉萨至格尔木(1985)和拉萨至加德曼都(1986)的蛇绿岩.见:青藏高原地质演化.北京:科学出版社.218-241.
    7.邓万明.1982a.雅鲁藏布蛇绿岩带火成岩研究.青藏高原地质论文专辑,北京:地质出版社,36-52
    8.邓万明.1982b.西藏日喀则地区蛇绿岩中微量元素地球化学.见:中国科学院地质研究所(主编):岩石学研究,(1):28-43.北京:地质出版社.
    9.邓万明.1996.青藏古特提斯蛇绿岩与“冈瓦纳古陆北界”.见:张旗主编.蛇绿岩与地球动力学研究,地质出版社,172-176.
    10.董国臣,莫宣学,赵志丹,五亮亮,陈涛.2005.印度-欧亚大陆碰撞过程中冈底斯带岩浆底侵作用的年代学限定:SHRIMP锆石U—Pb年龄证据,地质学报,79(6):756-756
    11.董彦辉,许继峰,曾庆高,王强,毛国政,李杰.2006.存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?岩石学报,22(3):661-668
    12.侯增谦,高永丰,孟祥金,曲晓明,黄卫.2004.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报,20(2):239-248
    13.侯增谦,莫宣学,等.2003.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例.矿床地质,22(1):1-12
    14.侯增谦.2004.斑岩Cu—Mo—Au矿床:新认识与新进展.地学前缘,11(1):131-144
    15.惠兰,王承书,J.C.Aitchison.2003.西藏雅鲁藏布结合带演化之新探.沉积与特提斯地质(02)
    16.简平,刘敦一,张旗,张福勤,石王若,施光海,张履桥,陶华.2003.蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年.地学前缘,10(4):439-456
    17.金性春,周祖翼,汪品先(编著).1995.大洋钻探与中国地球科学.上海:同济大学出版社.
    18.赖绍聪,张国伟,杨永成,陈家义.南秦岭勉县.略阳结合带蛇绿岩与岛弧火山岩地球化学及其大地构造意义.地球化学,1998,27(3):283~293.
    19.李达周,张旗,张魁武.1986.云南孟连地区火山岩的岩石化学和地球化学特征及其地质意义.见:青藏高原研究(横断山区考察专辑),(2):137-146,北京:北京科学技术出版社.
    20.李武显,李献华.2003.蛇绿岩中的花岗质岩石成因类型与构造意义.地球科学进展,18(3):392-397
    21.李武显,李献华.2004.赣东北蛇绿岩中的埃达克型花岗岩——地球化学和Nd同位素证据.高校地质学报,10(2):199-208
    22.李武显,李献华.2003.蛇绿岩中的花岗质岩石成因类型与构造意义.地球科学进展,18(3):392~397
    23.李献华,周围庆.1994.赣东北蛇绿岩的离子探针锆石U—Pb年龄及其构造意义.地球化学,23(2):125-131
    24.梁细荣,韦刚健,李献华,刘颖.利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值[J].地球化学,2003,32(1):91~96.
    25.刘敦一,简平,张旗,张福勤,石玉若,施光海,张履桥,陶华.2003.内蒙古图林凯蛇绿岩中埃达克岩Shrimp测年:早古生代汗壳消减的证据.地质学报,77(3):317-327
    26.刘良,车自成,王焰等.1999.阿尔金高压变质岩带的特征及其构造意义.岩石学报,15:57-64.
    27.罗照华,柯珊,等.2002.埃达克岩的特征、成因及构造意义.地质通报,21(7):436-440
    28.梅厚钧,林学农.1981.西藏的蛇绿岩.见:西藏岩浆活动和变质作用.北京:科学出版社.147-211
    29.曲晓明,侯增谦,国连杰,徐文艺.2004.冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染:Nd、Sr、Pb、O同位素约束.地质学报,78(6):813-821
    30.曲晓明,侯增谦,李振清.2003.冈底斯铜矿带含矿斑岩的~(40)Ar/~(39)Ar年龄及地质意义.地质学报,77(2):245-252
    31.石玉若,刘敦一,张旗,简平,张福勤,苗来成,施光海,张履桥,陶华.2005.内蒙古苏左旗白音宝力道Adakite质岩类成因探讨及其SHRIMP年代学研究.岩石学报,21(1):143-150
    32.宋彪,张玉海,刘敦一.2002.微区原位分析仪器SHRIMP的产生与锆石同位素地质年代学,质谱学报,23(1):58~62.
    33.王成善,刘志飞,李祥辉,万哓樵.西藏日喀则弧前岔地与雅鲁藏布江缝合带[M].北京:地质出版社,1999.1~237.
    34.王东安.1986.西藏南部白朗-吉定一带深海蛇绿质沉积岩系.岩石学报,2(3):38-48.
    35.王乃文.1984,青藏印度古陆及其与华夏古陆的并合、中法喜马拉雅考察成果.地质出版社,
    36.王强,许继锋,等.2001.一种新的火成岩——埃达克岩的研究综述.地球科学进展,16(2):201-208
    37.王强,赵振华,白正华,熊小林,梅厚钧,许继峰,包志伟,王一先.2003.新疆阿拉套山石炭纪埃达克岩、富Nb岛弧玄武质岩:板片熔体与地幔橄榄岩相互作用及地壳增生.科学通报,48(12):1342-1349
    38.王希斌,鲍佩声,郑海翔.1984.构造解体的藏北湖区蛇绿岩及其地球化学研究.喜马拉雅地质,Ⅱ,北京:地质出版社:115-147.
    39.王希斌,鲍佩声,邓万明,王方国.西藏蛇绿岩(喜马拉雅岩石圈构造演化)[M].北京:地质出版社,1987.
    40.王玉净,舒良树.2001.中国蛇绿岩带形成时代研究中的两个误区.古生物学报,40(4):529~532
    41.王玉净,杨群,松冈笃,小林健太,武井雅彦,曾庆高.2002.藏南泽当雅鲁藏布缝合带中的三叠纪放射虫.微体古生物学报,19(3):215~227
    42.王玉净.舒良树.中国蛇绿岩带形成时代研究中的两个误区,古生物学报,2001,40(4):529-532.
    43.韦刚健,梁细荣,李献华,刘颖.(LP)Mc-ICPMS方法精确测定液体和闹体样品的Sr同位素组成[J].地球化学,2002,31(3):295~299.
    44.韦振权,夏斌,张玉泉,王冉,杨之青,韦栋梁.2006.西藏休古嘎布蛇绿岩中辉绿岩锆石Shrimp定年及其地质意义.大地构造与成矿学,30(1):93-97
    45.吴浩若,张旗,周云生等.1981.我国西藏首次发现席状岩墙群.地质科学,(1):96.
    46.西藏地质矿产局.西藏自治区区域地质志[M].北京:地质出版社,1987.294-318.
    47.夏斌,王国庆,钟富泰,陈国结.喜马拉雅及邻区蛇绿岩和地体构造图及说明书.兰州:甘肃科学技术出版社,1993.4~26.
    48.夏斌.1990.西藏地体构造初步研究.西藏地质,(1):28-41.
    49.肖序常.1984.藏南日喀则蛇绿岩及有关的大地构造问题.见:李光岑等主编,中法喜马拉雅考察成果.北京:地质出版社,143~168
    50.肖序常.中国特提斯喜马拉雅蛇绿岩及其地质构造意义[A].见:国际地质交流学术论文集(1),构造地质和地质力学[C].北京:地质出版社,1980.143~152.
    51.熊小林,蔡志勇,牛贺才,陈义兵,王强,赵振华,吴金花.2005.东天山晚古生代埃达克岩成因及铜金成矿意义.岩石学报,21(3):967-976
    52.许继峰,王强,等.2001.宁镇地区中生代安基山中酸性侵入岩的地球化学:亏损重稀土和钇的岩浆产生的限制.岩石学报,17(4):576-584
    53.许志琴.1984.地壳变形与显微构造.北京:地质出版社.
    54.闫全人,王宗起,刘树文,李秋根,张宏远,王涛,刘敦一,石玉若,简平,王建国,张德会,赵建.2005.西南三江特提斯洋扩张与晚古生代东冈瓦纳裂解:来自甘孜蛇绿岩辉长岩的Shrimp年代学证据.科学通报,50(2):158-166
    55.张海祥,牛贺才,K.Terada,于学元,H.Sato,J.Ito.2003.新疆北部阿尔泰地区库尔提蛇绿岩中斜长花岗岩的Shrimp年代学研究.科学通报,48(12):1350-1354
    56.张旗,金惟俊,王元龙,李承东,王焰,贾秀勤.2006.大陆下地壳拆沉模式初探.岩石学报,22(2):265-276
    57.张旗,李承东,王焰,王元龙,金惟俊,贾秀勤,韩松.2005.中国东部中生代高Sr低Yb和低Sr高Yb型花岗岩:对比及其地质意义.岩石学报,21(6):1527-1537
    58.张旗,王焰,等。2001.燕山期中国东部高原下地壳组成初探:埃达克质岩Sr、Nd同位素制约.岩石学报,17(4):505-513
    59.张旗,王焰,刘红涛,王元龙,李之彤.2003.中国埃达克岩的时空分布及其形成背景附:《国內关于埃达克岩的争论》.地学前缘,10(4):385-400
    60.张旗,王焰,王元龙.2003.埃达克岩与构造环境.大地构造与成矿学,27(2):101-108
    61.张旗,许继峰,王焰,肖龙,刘红涛,王元龙.2004.埃达克岩的多样性.地质通报,23(9):959-965
    62.张旗,周云生,李达周.1982.西藏日喀则-白朗地区蛇绿岩中的席状岩墙群.见:中国科学院地质研究所(主编):.岩石学研究,(1):65-80.北京:地质出版社.
    63.张旗,周国庆.中国蛇绿岩[M].北京:科学出版社,2001.1~15.
    64.张旗.1990a.蛇绿岩的分类.地质科学.(1):54-61
    65.张旗.1990b.玻安岩和玻玄岩地球化学特征和成因的探讨.地球化学,(3):207-215
    66.张旗.中国蛇绿岩研究中的几个问题.地质科学,1992,增刊:139~146.
    67.赵文津,Nelson K D,徐中信等.雅鲁藏布江缝合带的双陆内俯冲构造与部分融熔层特征.INDEPTH项目的初步综合.地球物理学报,1997,40(3):325-336.
    68.钟立峰,夏斌,崔学军,周国庆,陈根文,韦栋梁.2006b.藏南罗布莎蛇绿岩壳层熔岩地球化学特征及成因.大地构造与成矿学,30(2):231-240
    69.钟立峰,夏斌,周国庆,王冉,韦栋梁,李建峰.2006a.藏南罗布莎蛇绿岩成因:壳层熔岩的Sr-Nd-Pb同位素制约.矿物岩石,26(1):57-63
    70.钟立峰,夏斌,周国庆,张玉泉,王冉,韦栋梁,杨之青.2006c.藏南罗布莎蛇绿岩辉绿岩中锆石SHRIMP测年.地质论计,52(2):224-229
    71.周鼎武,张成立,刘良.1997.大陆造山带古洋盆恢复的有关问题的讨论.西北大学学报 (自然科学版),27:427-430.
    72.周国庆.1996a.蛇绿岩的概念及其演变.见:张旗主编.蛇绿岩与地球动力学研究.北京:地质出版社,15-20.
    73.周围庆.1996b.蛇绿岩分类的回顾.见:张旗主编.蛇绿岩与地球动力学研究.北京:地质出版社,63-68.
    74.周国庆.蛇绿岩的概念及其演变.见:张旗主编.蛇绿岩与地球动力学研究[C].北京:地质出版社,1996.15~20.
    75.周肃,莫宣学,Mahoney J J.,张双全,郭铁鹰,赵志丹.西藏罗布莎蛇绿岩中辉长辉绿岩Sm-Nd定年及Pb,Nd同位素特征[J].科学通报,2001,46(]6):1387~1390.
    76.周详,曹佑功,朱明玉等.1989.西藏板块构造.建造图说明书(1:1 500 000).北京:地质出版社.
    77.周云生,吴浩若,郑锡澜.1982.西藏南部日喀则地区蛇绿岩地质.地质科学,(1):30-40.
    78.朱弟成,潘桂棠,莫宣学,廖忠礼,江新胜,王立全,赵志丹.特提斯喜马拉雅带中段桑秀组玄武岩的地球化学和岩石成因.地球化学,2005,34(1):7-19.
    79.朱云海,潘元明,张克信,王国灿,陈能松,侯光久.2000.蛇绿岩就位机制研究.地质科技情报,19(1):16~18
    80. Aitchison, J. C., Badengzhu, Davis, A. M., Liu, J., Luo, H., Malpas, J. G., Mcdemid, I. R. C. and Wu, H. Remnants of a cretaceous intra-oceanic subduction system within the Yarlung-zhangbu suture (Southern Tibet) [J]. Earth Planet. Sci. Lett., 2002, 183:231~234.
    81. Aitchison, J. C., Davis A. M., Abrajevitch, A. V., Ali, J. R., Badengzhu, Liu Jianbing, Luo Hui, Mcdermid, I. R. C., Ziabrev, S. Stratigraphic and sedimentological constraints on the age and tectonic evolution of the Neotethyan ophiolites along the Yarlung Tsangpo suture zone, Tibet [A]. In: Dilek, Y. & Robinsin P. T. (eds). Ophiolites in Earth History [C]. Geological Society, London, Special Publications, 2003.218:147~164.
    82. Aldiss D T. 1981. Plagiogranites from the ocean crust and ophiolites. Nature, 289:577~578
    83. Allegre C J, Courtillot V, et al. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307:17~22
    84. Atherton M P, N Petford. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144-146
    85. Barker F, J G Arth. 1976. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology, 4(10): 596-600
    86. Basaltic Volcanism Study Project. Basaltic volcanism on the terrestial planets [M]. New York: Progamon Press, 1981.1286.
    87. Black L. P., Kamo S. L., Allen C. M., Aleinikoff J. N., Davis D. W., Russell J. Korsch, Chris Foudoulis. 2003. TEMORAI: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1-2): 155~170.
    88. Bortolotti V, Kodra A, Marroni M, et al. 1996. Geology and petrology of ophiolitic sequences in the Mirdita region (Northern Albania). Ofioliti 21:3~20
    89. Bougault H., Joron J.L., and Treuil M. The primordial chondritic nature and large-scale heterogeneties in the mantle: evidence from high and low partition coefficient elements in oceanic basalts [J]. Phil. Trans. R. Soc. Lond., 1980, A297:203~313.
    90. Boynton W V. Geochemistry of the rare earth elements: meteorite studies [A]. In: Henderson P(ed.), Rare earth element geochemistry [C]. Amsterdam: Elsevier, 1984. 63~114.
    91. Burg J P, Chen G M. 1984. Tectonics and structural zonation of southern Tibet, China. Nature, 11: 219~223
    92. Castillo P R, P E Janney, R U Solidum. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134(1): 33-51
    93. Castillo P R. 2002. The origin of some of the adakite-like and Nb-enriched lavas in southern Philippines. Acta Petrologica Sinica, 18(2): 143-151
    94. Castillo P. 2006. An overview ofadakite petrogenesis. Chinese Science Bulletin, 51(3): 257-268
    95. Claesson S, Vetrin V, Bayanova T, et al. 2000. U-Pb zircon age from a Devonian carbonatite dyke, Kola Peninsula, Russia: a record of geological evolution from the Archaean to the Palaeozoic. Lithos, 51(1-2): 95~108.
    96. Clague, D. A. and Dalrymaple, G. B. The Hawaiian-Emperor volcanic clain, part Ⅰ, Geologic evolution [Z]. US Geological Survey Professional Paper 1350, 1987.5~54.
    97. Coleman R G, Donato M M. 1979. Oceanic plagiogranite revisited. In: Barker F (ed.), Trondhjemites, Dacites and Related Rocks. Amsterdam, Elsevier, 149~168
    98. Coleman R G, Peterman Z E. 1975. Oceanic plagiogranite. J. Geophysical Research, 80: 1099~1108
    99. Coleman R G. 1984. The diversity of ophiolites. Geol. Mijnbouw, 63: 141~150
    100. Coleman R.G. 1977. Ophiolites, Ancient Oceanic Lithosphere[M]? Berlin: Springer-Verlag,.
    101. Composton W, Williams I S, Meyer C. 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J.G.R., 89: 525~534.
    102. Coulon C, Maluski H, Bollinger C, et al. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar-40Ar dating, petrological characteristics and geodynamical significance. Earth Planetary Sci. Lett., 79: 281~302
    103. Crawford, A. J., Falloon, T. J., Green, D. H., 1989. Classification, petrogenesis and tectonic setting of boninites. In: Crawford, A. J. (Ed.), Boninites and Related Rocks. Unwin Hyman, New York, pp. 1-49.
    104. Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of subducted lithosphere. Nature, 347: 662~665
    105. Defant M J, L F Clark, R H Stewart, M S Drummond, J Z Deboer, R C Maury, H Bellon, T E Jackson, J F Restrepo. 1991b. Andesite and Dacite Genesis Via Contrasting Processes-the Geology and Geochemistry of El-Valle Volcano, Panama. Contributions to Mineralogy and Petrology, 106(3): 309-324
    106. Defant M J, M S Drummond. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665
    107. Defant M J, P Kepezhinskas, M J Defant, J F Xu, P Kepezhinskas, Q Wang, Q Zhang, L Xiao. 2002. Adakites: some variations on a theme. Acta Petrologica Sinica, 18(2): 129-142
    108. Defant M J, P M Richerson, J Z De Boer, R H Stewart, R C Maury, H A D M S Bellon, M D Feigenson, T E Jackson. 1991a. Dacite Genesis via both Slab Melting and Differentiation: Petrogenesis of La Yeguada Volcanic Complex, Panama. J. Petrology, 32(6): 1101-1142
    109. Defant M J, Richerson P M, DeBer J Z, et al. 1991. Dacite genesis via both slab melting and differentiation: Petrogenesis of La Yeguada Vocanic Complex, Panama. J. Petrol., 32: 1101~1142
    110. Deniel C. Geocheical and isotopic (Sr, Nd, Pb) evidence for plume-lithosphere interactions in the genesis of Grande Comore magmas (Inidan Ocean) [J]. Chem. Geol., 1998, 144(3~4): 281~303.
    111. Dewey J F, Robert F R S, Shackleton M et al. 1988. The tectonic evolution of the Tibet Pleteau. In: The Geological Evolution of Tibet(eds: Chang C, et al.). London, The Royal Society. 379-413.
    112. Dietz R. S. Alpine serpentinites as oceanic rind fragments[J]. Geol. Soc. Am. Bull., 1963, 74: 947~952.
    113. Dilek V, Furnes H, Shallo M, et al. 2001. Structure, petrology and geochronology of the Albanian ophiolites and their tectonic evolution within the Neotethyan orogenic belt. J. Conf. Abstr. (EUG X1) 6, 321
    114. Dilek, Y., Thy, P., Hacker, B., Grundvig, S., 1999. Structure and petrology of Tauride ophiolites and mafic dyke intrusions (Turkey): implications for the Neotethyan ocean. Geol. Soc. Amer. Bull. 111, 1192-1216.
    115. Drummond M S, M J Defant. 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research, 95(B 13): 21503-21521
    116. Dupuis C, R Hebert, V Dubois-Cote, C Guilmette, C S Wang, Y L Li, Z J Li. 2005b. The Yarlung Zangbo Suture Zone ophiolitic melange (southern Tibet): new insights from geochemistry of ultramafic rocks. Journal of Asian Earth Sciences, 25(6): 937-960
    117. Dupuis C, R Hebert, V Dubois-Cote, C Guilmette, C S Wang, Z J Li. 2006. Geochemistry of sedimentary rocks from melange and flysch units south of the Yarlung Zangbo suture zone, southern Tibet. Journal of Asian Earth Sciences, 26(5): 489-508
    118. Dupuis C, R Hebert, V Dubois-Cote, C S Wang, Y L Li, Z J Li. 2005a. Petrology and geochemistry of mafic rocks from melange and flysch units adjacent to the Yarlung Zangbo Suture Zone, southern Tibet. Chemical Geology, 214(3-4): 287-308
    119. Elthon D. 1991. Geochemical evidence for formation of the Bay of Islands Ophiolite above a subduction zone. Nature, 354(6349): 140-143.
    120. Ewart A. 1982. In: Andesite, R.S., Thorpe, R.L. (Eds.), The Mineralogy and Petrology of Tertiary-Recent Orogenic Volcanic Rocks with Special Reference to the Andesitic-Basaltic ompositional Range. Wiley, New York, 25~95
    121. Feigenson, m. d. Geochemistry of Kauai volcanics and a mixing model for the origin of Hawaiian alkali basalts [J]. Contrib. Mineral Petrol., 1984, 87: 109~119.
    122. Flagler P A, Spray J G. 1991. Generation of plagiogranite by amphibolite anatexis in oceanic shear zones. Geology, 19: 70~73
    123. Frey, F. A. and Weis, D. Reply to the Class et al. discussion of 'Temporal evolution of the Kerguelen plume: geochemical evidence from ~38 to 82 Ma lavas forming the Ninetyeast Ridge' [J]. Contributions to Mineralogy and Petrology, 1996, 124: 104~110.
    124. Gansser A. 1964. Geology of the Himalayas. Interscience Publ. John wiley & Sons Ltd. London.
    125. Gautier, I., Weis, D., Mennessier, J.-P., Vidal, P., Giret, A. and Loubet, M. Petrology and geochemistry of the Kerguelen Archipelago basalts (South Indian Ocean): evolution of the mantle sources from ridge to intraplate position [J]. Earth Planet. Sci. Lett., 1990, 100: 57-76.
    126. Girardeau J, Marcoux J, Fourcade E et al. 1985a. Xainxa ultramafic rocks, central Tibet, China; tectonic environment and geodynamic significance. Geology, 13: 330-333.
    127. Girardeau J, Mercier J C C, Yougong Z. 1985b. Origin of the Xigaze Ophiolite, Yarlung Zangbo suture zone, southern Tibet. Tectonophys., 119: 407-433.
    128. Girardeau J, Mercier J C, Xibin W. 1985c. Petrology of the mafic rocks of the Xigaze ophiolite, Tibet; implications for the genesis of the oceanic lithosphere. Contrib. Mineral. Petrol., 90: 309-321.
    129. Girardeau, J. and Mercier, J. C. Petrology and texture of the ultramafic rocks of the Xigaze ophiolite (Tibet): constraints for mantle structure beneath slow-spreading ridges[J]. Tectonophys, 1988, 147: 33~58.
    130. Gopel, C., Allegre, C. J. and Xu, R. H. Lead isotope study of the Xigaze ophiolite (Tibet): the problem of the relationship between magrnatites (gabbros, dolerites, lavas) and tectonites (harzburgites) [J]. Earth Planet. Sci. Lett., 1984, 69: 301~310
    131. Hall, R., 1984. Ophiolites: figments of ophiolitic lithosphere. In: Gass, I.G., Lippard, S.J., Shelton, A.W. (Eds.), Ophiolites and Oceanic Lithosphere. Geol. Soc. London, Spec. Publ., vol. 13, pp. 393-404.
    132. Harris N B W, Kelley S, Okay A I. 1994. Post-collision magmatism and tectonics in northwest Anatolia. Contrib. Mineral. Petrol., 117: 241~252
    133. Harrison T M, C Wenji, P H Leloup, F J Ryerson, P Tapponnier. 1992. An Early Miocene Transition in Deformation Regime within the Red River Fault Zone, Yunnan, and Its Significance for Indo-Asian Tectonics. Journal of Geophysical Research-Solid Earth, 97(B5): 7159-7182
    134. Hart, S. R. Heterogeneous mantle domains: Signatures, genesis and mixing chronologies [J]. Earth Planet. Sci. Lett., 1988, 90: 273~296.
    135. Haymon R M, Fornari D J, Edwards M H, et al. 1991. Hydrothermal vent distribution along the East Pacific Rise crest (9j09V-54VN) and its relationship to magmatic and tectonic processes on fast-spreading midocean ridges. Earth Planet. Sci. Lett., 104: 513~534
    136. Hofmann, A. W., Jochum, K.P., Seufert, M., White, W. M. Nb, and Pb in oceanic basalts: New constraints on mantle evolution [J]. Earth Plantet. Sci. Lett., 1986, 79: 33~45.
    137. Hou Z Q, Y F Gao, X M Qu, Z Y Rui, X X Mo. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155
    138. Irvine T.N. and Baragar W.R.A. A guide to the chemical classification of the common volcanic rocks [J]. Canada Journal of Earth Science, 1971, 8: 523~548.
    139. Ishiwatari A. 1985a. Alpine ophiolites: product of low-degree mantle melting in a Mesozoic transcurrent rift ophiolites. Earth Planey. Sci. Lett., 76: 93-108.
    140. Ishiwatari A. 1985b. Igneous petrogenesis of the Yakuno ophiolite (Japan) in the context of the diversity of ophiolites. Contr. Mineral. Petrol., 89: 155-167.
    141. Jamieson R A. 1986. PT paths from high temperature shear zones beneath ophiolites. J. Metamorphic Geology, 4: 3~22
    142. Kamei A, M Owada, T Nagao, K Shiraki. 2004. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc: evidence from clinopyroxene and whole rock compositions. Lithos, 75(3-4): 359-371
    143. Kamei A. 2004. An adakitic pluton on Kyushu Island, southwest Japan arc. Journal of Asian Earth Sciences, 24(1): 43-58
    144. Kay R W, S M Kay. 2002. Andean adakites: three ways to make them. Acta Petrologica Sinica, 18(3): 303-311
    145. Kelemen P B. 1995. Genesis of High Mg-Number Andesites and the Continental-Crust. Contributions to Mineralogy and Petrology, 120(1): 1-19
    146. Kieffer, B., Arndt, N. T. and Weis, D. A. Bimodal alkalic shield volcano on Skiff bank: its place in the evolution of the kerguelen plateau [J]. Journal of Petrology, 2002, 43: 1259~1286.
    147. Lapierre H, Ortiz L E, Abouchami W et al. 1992. A crustal section of an intra-oceanic island arc: The Late Jurassic-Early Cretaceous Guanajuato magmatic sequence, Central Mexico. Earth Planet. Sci. Lett. 108: 61-77.
    148. Le Maitre R. W., Bateman P., Dudek A., Keller J., Lameyre J., Le Bas M.J., Sabine P.A., Schmid R., Sorensen H., Streckeisen A., Wooley A.R. and Zanettin B. A Classification of igneous rocks and glossary of terms [M]. Oxford: Blackwell, 1989.
    149. Li W X, Li X H. 2003. Adakite granites within the NE Jiangxi Ophiolite, South China: Geochemical and Nd isotopic evidence. Precambrian Research, 112: 29~44
    150. Linner M, Fuchs G, Koller F, et al. 2001. The Nidar ophiolite within the Indus Suture Zone in Eastern Ladakh-a marginal basin ophiolite from the Jurassic-Cretaceous boundary. J. Asian Earth Sci., 19, 39
    151. Maheo G, Bertrand H, Guillot S, et al. 2003. The South Ladakh ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic arc origin with implicationfor the closure of the Neo-Tethys. Chemical Geology, in press
    152. Mahoney J.J., R.Frei, Ejada M.L.G., X.X.Mo.Tracing the indian ocean mantle domain through time: Isotopic results from old west indian, east tethyan, and south Pacific seafloor [J]. Journal of petrology, 1998, 39(7): 1285~1306.
    153. Mahoney, J. J., Duncan, R.A., Khan, W., Gnos, E., McCormick, G.R. Cretaceous volcanic rocks of the South Tethyan suture zone, Pakistan: implications for the Reunion hotspot and Deccan Traps [J]. Earth Planet. Sci. Lett. 2002, 203: 295~310.
    154. Mahoney, J.J., Jones, W. B., Frey, F. A., Salters, V. J. M., Pyle, D. G. and Davies, H. L. Geochemical characteristics of lavas from Broken Ridge, the Naturaliste Plateau in the southernmost Kerguelen Plateau; Cretaceous Plateau volcanism in the southeast Indian Ocean [J]. Chemical Geology, 1995, 120: 315-345.
    155. Makovsky, Y., Klemperer, S. L., Ratschbacher, L., Brown, L. D., Li, M., Zhao, W., Meng, Z., 1996, INDEPTH wide-angle reflectionobservation of P-wave-to-S-wave conversion from crustal bright spots in Tibet, Science, 274: 1690-1691.
    156. Malpas J. 1978. Magma generation in the upper mantle, field evidence from ophiolite suites, application to the generation of oceanic lithosphere. Philos. Trans. R. Soc. Lond., Ser., A, 288: 527~546
    157. Malpas J. 1979. the dynamothermal aureole of the Bay of Islands ophiolite suite. Canadian J. Earth Sciences, 16: 2086~2101
    158. Malpas J., Zhou Mei-Fu, Robinson P. T., and Reynolds P. H. Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet [A]. In: Dilek, Y. & Robinsin P. T. (eds) Ophiolites in Earth History [C]. Geological Society, London, Special Publications, 2003. 218: 147~164.
    159. Martin H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14(9): 753-756
    160. Martin H. 1999. Adakitic magmas: modem analogues of Archaean granitoids. Lithos, 46(3): 411-429
    161. McCARRON J.J,, SMELLIE J.L. 1998. Tectonic implications of fore-arc magmatism and generation of high-magnesian andesites: Alexander Island, Antarctica Journal of Geological Society, London, 155: 269-280
    162. Mcdermid, I. C. R, Aitchison, J. C., Davis, A. M., Harrison, T. M., and Grove, M. The Zedong terrane: A Late Jurassic intra-oceanic magmatic arc within Yarlung-Tsangpo zone, Southeastern Tibet[J]. Chemical Geology, 2002, 187: 267~277.
    163. McDonough W. F., Sun S. -S., Ringwood A. E., Jagoutz E. and Hofmann A. W. Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth [J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1001~1012.
    164. Menzies M A. 1973. Mineralogy, partial melt textures within an ultra-mafic body, Greece. Contrib. Mineral. Petrol., 42: 273~285
    165. Meschede M.. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram [J]. Chem. Geol., 1986, 56: 207~218.
    166. Metcalfe, I., 1996. Pre-Creteceous evolution of SE Asian terranes. In: Hall, R., Blundell, D. (Eds.): Tectonic evolution of southeast Asian. Geological Society Publication, UK, 97-122
    167. Miller C, Thoni M, Frank W, et al. 2003. Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos, 66: 155~172
    168. Miyashiro A. 1973. The Troodos ophiolitic complex was probably formed in an island arc. Earth Planet. Sci. Lett., 19: 218-224.
    169. Miyashiro A. 1974. Volcanic rocks series in island arcs and active continental margins. American Journal of Science, 274: 321-355
    170. Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science, 189: 419~426
    171. Moores E M, Vine F J. 1971. The Troodos Massif, Cyprus and other ophiolites as oceanic crust: evaluations and implications. Philos. Trans. R. Soc., A, 268: 433~466
    172. Moores E M. 1982. Origin and emplacement of ophiolites. Rev. Geophys. Space Physics, 20: 735~760
    173. Moores Eldridge M. and Louise H. Kellogg, Yildirim Dilek. 2000, Tethyan ophiolite, mantle convection, and tectonic "historical contingency": A resolution of the "ophiolite conundrum". In: Yildirim Dilek, Eldridge M. Moores, Don Elthon, and Adolphe Nicolas., eds., Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program: Boulder Colorado, Geological Society of America Special Paper 349, p.3-12.
    174. Moores, E. M., Kellog, L. K., 1999. Eastern Mediterranean ophiolites, tectonics and mantle convection. J. Conf. Abstr., EUG 10, 406.
    175. Morimoto N. Nomenclature of pyroxenes [J]. Mineralogical Magazine, 1988, 52: 535~550.
    176. Mullen E. D. MnO/TiO2/P2O5: a minor element discrimination for basaltic rocks of oceanic environments and its implications for petrogenesis [J]. Earth Planet. Sci.Lett., 1983, 62: 53~62.
    177. Neal, C. R., Mahoney, J.J. and Chazey Ⅲ, W. J. Mantle source and the Highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from ODP Leg 183 [J]. Journal of Petrology, 2002, 43: 1177~1205.
    178. Nicolas A, Le Pichon X. 1980. Thrusting of young lithosphere in subduction zones with special reference to structures in ophiolitic peridotites. Earth Planetary Sci. Lett., 46: 397~406
    179. Nicolas A. 1989. Structure of Ophiolite and Dynamics of Oceanic Lithosphere. Kluwer Acadamic Publishers
    180. Nicolas A., Girardeau J., Marcoux J. Dupre B., Wang Xibin, Cao Yougong, Zheng Haixiang & Xiao Xuchang. The Xigaze ophiolite (Tibet): a peculiar oceanic lithosphere. Nature, 1981, 294(5840): 414-417.
    181. Oskarsson N., Sigvaldson G.E. and Steinthorsson S. A dynamic model of rift zone petrogenesis and the regional petrology of Iceland [J]. J. Petrol., 1982, 23: 28~74.
    182. Palacz, Z. A. and Saunders, D. Coupled trace element and isotope enrichment in the Cook-Austral-Samoa islands, southwest Pacific [J]. Earth Planet. Sci. Lett., 1986, 79: 270~280.
    183. Patriat P, Achache J. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311: 615~621
    184. Pearce J A, Alabaster T, Shelton A W et al. 1981. The Oman ophiolite as a Cretaceous arc-basin complex: evidence and implications. Phil. Trans. R. Lond., A 300: 299-317.
    185. Pearce J A, Deng Wanming. 1988. The ophiolites of the Tibet Geotraverse, Lhasa to Golmud(1985) and Lhasa to Kathmandu(1986). in: The Geological Evolution of Tibet(eds: Chang C, et al.). London, The Royal Society. 215-238.
    186. Pearce J A, Lippard S J, Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Marginal Basin Geology. Geol. Soc. Lond. Spec. Publ. 16: 77-94.
    187. Pearce J A. 1991. Ocean floor comes ashore. Nature, 354(6349): 110-111.
    188. Pearce J.A. and Cann J. R. Tectonic settings of basic volcanic rocks determined using trace element analysis [J]. Earth Planet. Sci. Lett., 1973, 19: 290~300.
    189. Pedersen R B, Malpas J. 1984. The origin of oceanic plagiogranites from the Karmoy ophiolite, weatern Norway. Contrib. Mineral. Petrol., 88: 36~52
    190. Qi Liang, Hu, J. and Gregoire, D. C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 2000, 51: 507~513.
    191. Rapp P R. Heterogeneous source regions for Archean granitoids A. In: de Wit M J, Ashwal L D, (eds). Greenstone belts C. Oxford: Oxford University Press, 1997, 35~37. Aumento F D. 1969. Diorites from the mid-Atlantic ridge at 45° N. Science, 165: 1112~1113
    192. Rapp R P, E B Watson, C F Miller. 1991. Partial Melting of Amphibolite Eclogite and the Origin of Archean Trondhjemites and Tonalites. Precambrian Research, 51(1-4): 1-25
    193. Rapp R P, E B Watson. 1995. Dehydration Melting of Metabasalt at 8-32-Kbar-Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931
    194. Rapp R P, L Xiao, N Shimizu. 2002. Experimental constraints on the origin of potassium-rich adakites in eastern China. Acta Petrologica Sinica, 18(3): 293-302
    195. Rapp R P, N Shimizu, M D Norman, G S Applegate. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356
    196. Robertson A H F. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65(1-2): 1-67
    197. Robertson A, Shallo M. 2000. Mesozoic-Tertiary tectonic evolution of Albania in its regional Eastern Mediterranean context. Tectonophysics, 316: 197~214
    198. Robinson, P. T., Melson, W. G., O'Hearn, T., Schmincke, H.-U., 1983. Volcanic glass compositions of the Troodos ophiolite. Cyprus Geol. 11, 400—404.
    199. Rowley D B. 1998. Minimum age of initiation of collision between India and Asia North of Everest based on the subsidence history of the Zhepure Mountain section. The Journal of Geology, 106: 229~235
    200. S.-s. Sun, W.F. McDonough, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. From Saunders, M.J. Norry (Editors), Magmatism in the Ocean Basins. Geoloical Society Special Publication, pp. 313-345.
    201. Sajona F G, R C Maury, H Bellon, J Cotten, M J Defant, M Pubellier. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, 21(11): 1007-1010
    202. Saunders A.D. and Tarney J. 1984. Geochemistry characteristics of basaltic volcanism within back-arc basins [A]. In: Kokelaar B.R and Howells M.F. Marginal basin geology [C], Spec. Publ. Geol. Sco. London, 16: 59~76.
    203. Scarrow J H, V Pease, C Fleutelot, V Dushin. 2001. The late Neoproterozoic Enganepe ophiolite, Polar Urals, Russia: An extension of the Cadomian arc? Precambrian Research, 110(1-4): 255-275
    204. Scharer Urs, Xu Ronghua, Allegre Claude J. 1984. U-Pb geochronology of Gangdese (Transhimataya) plutonism in the Lhasa-Xigaze region, Tibet. Earth and Planetary Science Letters, 69: 311-320.
    205. Schilling, J.G. Iceland mantle plume: Geochemical study of Reykjanes Ridge [J]. Nature, 1973, 242: 565~72.
    206. Schilling, J.-G., Zajac M., Evans R., Johnston T., White W., Devine J. D., Kingsley R. 1983. Petrologic and geochemical variations along the Mid-Atlantic Rigde from 27°N to 73°~N [J]. Am. J. Sci., 283: 510~86.
    207. Searle M P, Cox J. 1999. Tectonic setting, origin and obduction of the Oman ophiolite. Geol. Soc. Amer. Bull., 111: 104~122
    208. Searle M P, Khan M A, Fraser J E, et al. 1999. The tectonic evolution of the Kohistan-Karakoram collision belt along the Karakoram Highway transect, north Pakistan. Tectonics, 18: 929~949
    209. Searle M P, Malpas J. 1980. The structure and metamorphism of sub-ophiolitic metamorphic rocks in the Oman Mountains. J. Geol. Soc. London, 139: 235~248
    210. Searle, M. P., Cox, J., 1999. Tectonic setting, origin and obduction of the Oman ophiolite. Geol. Soc. Amer. Bull. 111, 104-122.
    211. Shervais J.W. 1980. Ti-V plots and the petrogenesis of modern and ophiolitic lavas [J]. Earth Planet. Sci. Lett., 59: 101~118.
    212. Shervais, J.W. 2001, Birth death, and resurrection: The life cycle of suprasubduction zone ophiolites. Geochemistry Geophysics Geosystems,, 2.
    213. Smith A G. 1993. Tectonic significance of the Hellenic-Dinaric ophiolites. In: Prichard H M, Alabaster T, Harris N B W, Neary C R (eds.), Magmatic Processes and Plate Tectonics. Geol. Soc. London, Spec. Publ., 76: 213~243
    214. Spray J G, Bebien J, Rex D C, Roddick J C. 1984. Age constraints on the igneous and metamorphic evolution of the Hellenic-Dinaric ophiolites. In: Dixon J E, Robertson A H F (eds.), The Geological Evolution of the Eastern Mediterranean. Geological Society of London Special Publication, 17: 619~627
    215. Spray J G. 1984. Possible causes and consequences of upper mantle decoupling and ophiolite displacement. In: Gass I G, Lippard S J, Shelton A W (eds.), Ophiolites and Oceanic Lithosphere. Geological Society of London Special Publication, 13: 255~268
    216. Stern C R, R Kilian. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation ofadakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263-281
    217. Storey, M., Saunders, A. D., Tarney, J., Gibson, I. L., Norry, M. J., Thirwall, M., Leat, P., Thompson, R. N., Menzies, M. A. 1989. Contamination of Indian ocean asthenosphere by the Kerguelen-Heard mantle plume [J]. Nature, 338: 574~576.
    218. Sun S. -S. and McDonough W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [A]. In: Saunders A.D. and Norry M.J. Magmatism in ocean basins [C]. Geol. Sco. London. Spec. Publ., 42: 313~345.
    219. Sun S. -S. 1980. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs [J]. Phil. Trans. R. Soc. Lond., A, 297: 409~445.
    220. Tarney, J., Wood, D.A., Saunders, A.D., Cann, J. R. & Varet, J. Nature of mantle heterogeneity in the North Atlantic: evidence from deep sea drilling [J]. Philos. Trans. R. Soc. London, 1980, A297: 179~202.
    221. Upadhyay H D, E R W Neale. 1979. On the tectonic regimes of ophiolite genesis. Earth and Planetary Science Letters, 43(1): 93-102
    222. Wakabayashi J, Dilek Y. 2000. Spatial and temporal relationships between ophiolites and their metamorphic soles: A test of models of forearc ophiolite genesis. In: Dilek Y, Moores E M, Elthon D, Nicolas A (eds.), Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. Boulder, Colorado, Geological Society of America Special Paper, 349: 53~64
    223. Wallace Paul J., Frederick A. Frey, Dominique Weis, Millard F. Coffin. Origin and evolution of the Kerguelen plateau, Broken Ridge and Kerguelen Archipelago: editorial [J]. J. Petrology, 2002, 43: 1105~1108.
    224. Wang C S, Liu Z F, Hebert R. 2000. The Yarlung-Zangbo paleo-ophiolite, southern Tibet: implications for the dynamic evolution of the Yarlung-Zangbo Suture Zone. Journal of Asian Earth Sciences, 18: 651~661
    225. Wang Q, D A Wyman, J-F Xu, Z-H Zhao, P Jian, X-L Xiong, Z-W Bao, C-F Li, Z-H Bai. 2006c. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos, 89(3-4): 424-446
    226. Wang Q, D A Wyman, J-F Xu, Z-H Zhao, P Jian, X-L Xiong, Z-W Bao, C-F Li, Z-H Bai. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos, 89(3-4): 424-446
    227. Wang Q, J F Xu, P Jian, Z W Bao, Z H Zhao, C F Li, X L Xiong, J L Ma. 2006b. Petrogenesis of adakitic porphyries in an extensional tectonic setting, dexing, South China: Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1): 119-144
    228. Wang Q, Z H Zhao, J F Xu, D A Wyman, X L Xiong, F Zi, Z H Bai. 2006a. Carboniferous adakite-high-Mg andesite-Nb-enriched basaltic rock suites in the Northern Tianshan area: Implications for Phanerozoic crustal growth in the Central Asia Orogenic Belt and Cu-Au mineralization. Acta Petrologica Sinica, 22(1): 11-30
    229. Weaver, B. L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints [J]. Earth Planet. Sci. Lett., 1991, 104: 381~397.
    230. Weis, D. and Frey, F. A. Role of the Kergeulen plume in generating the eastern Indian oceanseafloor [J]. J. Geophys. Res., 1996, 101: 13841~13849.
    231. White W.M. and Hofmann A.W. Sr and Nd isotope geochemistry of oceanic baslalts and mantle evolution [J]. Nature, 1982, 296: 821~825.
    232. Whitehead J, Dunning G R, Spray J G. 2000. U-Pb geochronology and origin of granitoid rocks in the Thetford Mines ophiolite, Canadian Appalachians. Geological Society of American Bulletin, 112: 915~928
    233. Wilkinson J. F. G. The genesis of mid-ocean ridge basalt [J]. Earth Sci. Rev. 1982, 18: 1~57.
    234. Williams H, S Turner, S Kelley, N Harris. 2001. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29(4): 339-342
    235. Williams H, Smyth R. 1973. Metamorphic aureoles beneath ophiolite suites and Alpins peridotites: Tectonic implications with weat Newfoundland examples. American J. Sci., 273: 594~621
    236. Williams I. S. 1998. U-Th-Pb geochronology by ion microprobe, M. A. Mckibben, Shanks, W. C., and Ridley, W. I., eds., applications of microanalytical techniques to understanding mineralizing processes. Review of Economic Geology, 7: 1~35.
    237. Wilson, J.T. A possible origin of the Hawaiian islands [J]. Can. J. Phys. 1963, 41: 863~70.
    238. Wilson, M. Igneous Petrogenesis [M]. London: Unwin Hyman, 1989.
    239. Wood D.A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province [J]. Earth Planet. Sci. Lett., 1980, 50: 11~30.
    240. Wu Haoruo, Deng Wanming. 1980. Basic geological features of the Yalung Zangbo ophiolite belt, Xizang, China. In: Ophiolites (ed A Panayiotou), Nicosia, Cyprus Geol. Sur. 462-472
    241. Xia B, H X Yu, G W Chen, L Qi, T P Zhao, M F Zhou. 2003b. Geochemistry and tectonic environment of the Dagzhuka ophiolite in the Yarlung-Zangbo suture zone, Tibet. Geochemical Journal, 37(3): 311-324
    242. Xia B, H X Yu, H J Mei, G W Chen, L Qi. 2003a. Geochemistry of basalts: Evidence for formation of Dazhu ophiolite, Tibet (China), in a supra-subduction zone environment. Journal of the Geological Society of India, 61(1): 7-15
    243. Xiong X L, B Xia, J F Xu, H C Niu, W S Xiao. 2006. Na depletion in modern adakites via melt/rock reaction within the sub-arc mantle. Chemical Geology, 229(4): 273-292
    244. Xizang (Tibet) Bureau of Geology and Mineral Resources. The field geological records of Xizang
    245. XU Ji-feng, Qiang Wang and Xue-yuan Yu, 2000 Geochemistry of high-Mg andesites and adakitic andesite from the Sanchazi block of the Mian-Lue ophiolitic melange in the Qinling Mountains, central China: Evidence of partial melting of the subducted Paleo-Tethyan crust, Geochemical Journal, 34: 359-377
    246. Xu, J.-F. and Castillo, P. R. Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere: implications for the origin of the Indian ocean mantle domain [J]. Tectonophysics, 2004, 393: 9~27.
    247. Xu, J.-F., Castillo, P. R., Li, X. H., Yu, X. Y., Zhang, B. R. and Han, Y. W. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, Central China: implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle compount in the Indian ocean [J]. Earth Planet. Sci. Lett., 2002, 198: 323~337.
    248. Yin, A, Harrison, T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280
    249. Yin A, Harrison T M, Kyerson F J, et al. 1994. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet. Journal of Geophysical Research, 99 (B9): 18175~18201
    250. Yogodzinski G M, O N Volynets, A V Koloskov, N I Seliverstov, V V Matvenkov. 1994. Magnesian Andesites and the Subduction Component in a Strongly Calc-Alkaline Series at Piip Volcano, Far Western Aleutians. Journal of Petrology, 35(1): 163-204
    251. Yogodzinski G M, P B Kelemen. 1998. Slab melting in the Aleutians: implications of an ion probe study of clinopyroxene in primitive adakite and basalt. Earth and Planetary Science Letters, 158(1-2): 53-65
    252. Yogodzinski G M, R W Kay, O N Volynets, A V Koloskov, S M Kay. 1995. Magnesian Andesite in the Western Aleutian Komandorsky Region-Implications for Slab Melting and Processes in the Mantle Wedge. Geological Society of America Bulletin, 107(5): 505-519
    253. Zhang Q, W J Jin, Y L Wang, C D Li, Y Wang, X Q Jia. 2006. A model of delamination of continental lower crust. Acta Petrologica Sinica, 22(2): 265-276
    254. Zhao, W., Nelson, K. D., Project INDEPTH team, 1993, Deep seismic reflection evidence for continental underthrusting benearth southernTibet, Nautre, 366: 557-559.
    255. Zhou M. F., Robinson P.T., Malpas J., Li Z.J. Podiform chromitites in the Luobusa ophiolite (Southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle[J]. Journal of Petrology, 1996, 37(1): 3~21.
    256. Zhou Su, Mo Xuan-xue, Mahoney J J., Zhang Shuang-quan, Guo Tie-ying, Zhao Zhi-dan. 2001. Sm-Nd dating and Pb, Nd isotopic characteristics of diabase of Luobusha ophiolite in Tibet [J]. 46(16): 1387~1390(in Chinese).
    257. Ziabrev S V, J C Aitchison, A V Abrajevitch, Badengzhu, A M Davis, H Luo. 2003. Precise radiolarian age constraints on the timing of ophiolite generation and sedimentation in the Dazhuqu terrane, Yarlung-Tsangpo suture zone, Tibet. Journal of the Geological Society, 160: 591-599
    258. Zindler A. and Hart S.R. 1986. chemical geodynamics [J]. Ann. Rev. Earth Planet. Sci., 14: 493~571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700