原油稳定装置黑烃事故防范研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原油是一种宝贵的一次性资源,是发展现代工农业生产不可缺少的基础性物资。但由于原油中含有一定量易于挥发的轻组分,如果油气集输与处理工艺流程不密闭,轻组分就会挥发损耗掉,造成油气资源的浪费。为了解决这一问题,我国各油田已普遍采用了油气集输密闭流程,并建设了一大批原油稳定装置。这些装置的运行大幅度地降低了原油的挥发损耗。同时,每年可回收几十万吨的轻烃,取得了很好的经济效益和社会效益。
     随着油田采油过程的日益复杂化,原油脱水难度进一步增大,致使联合站来油含水率超标,稳定塔极易出现液泛现象,导致黑烃事故发生,严重影响了油田的轻烃收率和装置的安全平稳运行。在正常产烃的过程中,烃产品为无色较透明的易挥发的易燃易爆液体,杂质较少,而在一些因素的影响下,原油的泡沫或原油跑到了烃产品里,使烃产品的颜色变深即为黑烃。经过分析对比,本文采用了分级闪蒸技术,对原油稳定装置进行改造。以SRK状态方程为基础,建立了原油稳定装置主要单元过程的工艺计算模型及系统模型,并进行稳态流程模拟。分析了闪蒸压力对脱水后原油含水率、轻烃收率及装置能耗的影响状况,得出新增闪蒸塔的最佳操作参数。
     将分级闪蒸技术应用到原油稳定装置中,可以控制黑烃事故的产生,确保原油稳定塔的正常操作,对整个原油稳定装置的正常生产具有重要意义。此黑烃控制方案,不但能降低工人劳动强度,还能提高企业经济效益,具有良好的应用前景。
Crude oil is a valuable one-time resources, and is also indispensable basic materials to the development of modern industrial and agricultural production. However, crude oil contains a certain amount of easy-to-volatile light components, if the oil and gas gathering and processing process is not closed, light components will be lost, which will cause the resources’waste of oil and gas. In order to solve this problem, China's oil fields have been widely used in oil and gas gathering confined process, and have been builded a large number of oil stability device. The operation of these devices dramatically reduces the loss of volatile oil. At the same time, we can recovery several hundred thousand tons of light hydrocarbon each year, and achieve good economic and social benefits.
     With the oil recovery process complicated increasingly, crude oil dehydration becomes more and more difficult, it will result in xcessive water cut in the oil from the joint station, stable tower prone to liquid pan and the black hydrocarbon accident, these will affect stability of the light hydrocarbon yield of the original device and smooth operation of the device seriously. In the normal course of producting hydrocarbon, hydrocarbon is colorless, transparent, volatile, inflammable, explosive liquid, impurity is less. But under the influence of some factors, the foam of oil or oil into hydrocarbon, which made the hydrocarbon darken. After analysis and comparison, this paper adopts a classification flash technology to transform crude oil stabilization device. Based on SRK equation of state, have established process calculation model of the main unit of the process of crude oil stability device and system model, and conduct steady-state process simulation. Analyzed the impact of flash pressure on the water cut of dehydrated crude oil, the recovery of light hydrocarbon and the energy consumption of devices, obtained the best operating parameters of new additional flash tower.
     Classification flash technology will be applied to crude stabilization devices, this can control the accident generation of black hydrocarbon, ensure the normal operation of crude oil stabilizing device, which will creat a great significance on holding the stability of the entire plant's normal production. This black hydrocarbon control scheme, not only can decrease wokers’labor intensity, but also can improve the economic benefit of enterprise, has a good application prospect.
引文
[1] Loyd W. Jones. Corrosion and water technology for petroleum producers[J]. OGCI Publications. Oil Gas Consultants International, Inc. Tulsa, 1988, 21(2): 30~34.
    [2]国家环境保护局.石油石化工业废水治理[M].中国环境科学出版社,1992:36~37.
    [3]Γ.C.卢托什金.油气水的收集与处理[J].北京:石油工业出版社,1987,9:28~30.
    [4]陆耀军.油水重力分离设备技术及进展[J].化工设备,2001,4:52~53.
    [5]李国珍,肖华,董守平.油水分离技术及其进展[J].油气田地面工程,2001,20(2):7~9.
    [6]蔺爱国,刘培勇,刘刚.膜分离技术在油田含油污水处理中的应用研究进展[J].工业水处理,2006,26(1):5~8.
    [7]李淑琴,程永清,张绪民.含水原油破乳脱水的声化学法研究[J].天津化工,1997,4:22~24.
    [8]孙宝江,乔文孝,付静.三次采油中水包油乳状液的超声波破乳[J].石油学报,2000,21(6):97~101.
    [9]孙宝江,付静.三次采油生产中含油污水超声波分离实验[J].石油大学学报(自然科学版),1999,23(5):115~116.
    [10] Ping-Fang H, Gao-ming Q, Ning X. Study on crude oil emulsion breaking viaultrasound[J]. Journal of Nanjing University of Technology, 2002, 24(6): 30~34.
    [11] Guo-Kun Q. Analysis on factors influencing crude oil emulsification effectiveness by ultrasonic wave[J]. Petroleum Geology and Recovery Efficiency, 2005, 12(4): 76~78.
    [12] Lloyd Lobo, Aileen Svereika, and Mridula Nair. Coalescence during emulsification[J]. Journal of Colloid and Interface Science. 2002, 253, 409~418.
    [13]张瑞生,王弘轼,宋宏宇.过程系统工程概论[M].北京:科学出版社,2001:25~47.
    [14]郭天明.多元汽—液平衡和精馏[M].北京:石油工业出版社,2002,11:80~82,200~267.
    [15]韩方煌,郑世清,荣本光.过程系统稳态模拟技术[M].北京:中国石化出版社,1999,1:69~77,257~276.
    [16]减福录,应金良.石油化工工程师必读,第一册,物性、数据处理及优化[M].北京:中国石化出版社,1998,12:135~145.
    [17]赵静妮.填料塔技术的现状与发展趋势[J].兰州石化职业技术学院学报,2002,2(3):25~28.
    [18]刘乃鸿.工业塔新型规整填料应用手册[S].天津:天津大学出版社,1993.
    [19] Onda K, Takeuchi H, Okumoto Y. Masstransfer between gas and liquid phases in packed columns[J]. J. Chem Eng. Jpn. 1968, (1): 56~62.
    [20] Bolls WL, Fair J R. Improved mass-transfer model enhance packed-column design[J]. Chem. Eng. 1982, 89(14): 109.
    [21] Wagner Ingo, Stichlmair Johannn, Fair James R. Mass transfer in beds of mordern high-efficiency random packings[J]. Ind. Eng. Chem. Res. 1997, 36(1): 227~237.
    [22] Bellit R.填料塔分析与设计[M].天津大学化工分离与新型填料开发中心,天津大学化学工程研究所,北京:化学工业出版社,1993,1:36~39.
    [23] Billet R.填料塔[M].北京:化学工业出版社,1998,5:94~96.
    [24] Billet R, Schultes. Prediction of mass transfer columns with dumped and arranged packings: updated summary of the calculation method of Billet and Schultes[J]. Trans. AIChE, 1999, 77(6): 498~504.
    [25]董谊仁,裘俊红.现代填料塔技术[J].化工生产与技术,1997,13(1):1~9.
    [26] Djebbar Y, Narbaitz RM. Mass transfer correlations for air stripping towers[J]. Environmental Progress AIChE, 1995, 14(3): 137~145.
    [27] Djebbar Y, Narbaitz RM. Improved onda correlations formass transfer in packed towers[J]. Wat. Sci. Tech. 1998, 38(6): 295~302.
    [28] Djebba, Narbaitz R M. Neural network prediction of air stripping KLa[J]. Journal of Environmental Engineering, 2002, 128(5): 451~460.
    [29]屈毅,宋伟,孙世栋.填料塔结构特点及应用[J].黑龙江医药,2003,16(3):228~229.
    [30]龙湘犁,叶永恒.板网填料液泛研究[J].化工科技,1999,7(1):51~53.
    [31] Redilich O, Kwong J N S. Thermodynamics of solution via an equation of state[J]. Chem. Rev, 1949, 44: 233~244.
    [32] Soave G.. Equilibrium constants from modified redilich-kwong equation of state[J]. Chern. Eng. Sei. 1972, 27(6): 1197~1203.
    [33] Straling K E, Han M S. Thermo data refined for LPG part 14 mixtures[J]. Hydroc. Proe, 1972, 51(5): 129~132.
    [34] Lee B I, Kesler M G.. A generalized thermodynamic correlation based on three parameter corres-ponding state[J]. AIChE. J., 1975, 21(3): 510~527.
    [35] Ploeker U, Knapp H, Prausnitz J M. Calculation of high pressure vapor liquid equilibria from a corresponding states correlation with emphasis on asymmetric mixtures[J]. Ind. Eng. Chem. Proc., 1978, 17(3): 324~332.
    [36]王利生.状态方程及应用于石油与天然气相平衡计算有关进展[J].石油与天然气化工,1996,25(5):137~142.
    [37]王松汉.石油化工设计手册.第l卷,石油化工基础数据[S].北京:化学工业出版社,2002,l:704~705,965~67.
    [38] Gabor T. Comparing methods for calculation z-factor[J]. Oil&Gas J., 1989, 87(20): 43~46.
    [39] Coker A K. Program calculates z-faetor for natural gas[J]. Oil&Gas J., 1993, 91(70): 74~75.
    [40] Awoseyin R S. Program integrates pressure loss for single and two-phase pipelines[J]. Oil & Gas J., 1986, 84(2): 33~38.
    [41]刘芙蓉,吴永春.L—K方程的快速解法[J].化学工程,1988,16(3):43~47.
    [42]谢太浩.Lee—Kesler方程快速求解法及其临界对比温度[J].天然气工业,1989,9(5):72~77.
    [43]刘芙蓉,范春生.L—K—P状态方程用于多元体系的计算[J].化学工程,1995,23(3):73~77.
    [44]郑德馨,刘芙蓉.多组分气体分离[M].西安:西安交通大学出版社,1988:70~75,108~110.
    [45]郭天明.多元汽—液平衡和精馏[M].北京:化学工业出版社,1983,374~387.
    [46]化学工程手册编辑委员会.化学工程手册,第11卷,蒸馏[S].北京:化学工业出版社,1989,10:76~79.
    [47]王松汉.石油化工设计手册,第2卷,化工单元过程[S].北京:化学工业出版社,2002,l:1141~1144,1191~1195.
    [48]曾健,胡文励.一种新的泡点计算方法[J].天然气化工,1995,20(l):52~56.
    [49]曾健,胡文励.露点温度计算的一种改进[J].天然气化工,1999,24(5):56~60.
    [50]傅吉全.特殊体系的相平衡和精馏模拟计算[M].北京:中国石化出版社,2002,12:29~58.
    [51]吴俊生,邵惠鹤.精馏设计、操作和控制[M].北京:中国石化出版社,1997,5:46~60.
    [52]陈中亮.化工计算机计算[M].北京:化学工业出版社,2000,8:177~187.
    [53]曲晓廉,邹德东.PRO/II软件在硫磺回收中的二次开发应用[J].硫磺设计与粉体工程,2004,1:28,29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700