超分子含能化合物的制备及其钝感性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钝感炸药是目前含能材料发展的方向之一。论文首次提出超分子含能化合物来实现弹药钝感的目的。合成了5个未见文献报道的氮杂杯芳烃及其衍生物,制备了15个未见文献报道的超分子含能化合物。论文首次提出采用超分子化学的手段来降低含能化合物的机械感度。
     合成了对硝基杯[8]芳烃,采用量子化学半经验AM1和密度泛函B3LYP/6-31G*方法,分别对主、客体及其超分子体系进行了结构优化和理论计算,计算结果表明对硝基杯[8]芳烃分别与RDX、HMX通过一系列氢键综合作用形成了超分子体系。采用发射光谱与紫外光谱法对超分子体系中主客体的化学计量比进行了确定,结果表明:对硝基杯[8]芳烃与RDX在DMF溶液中和HMX在氯仿溶液中均能形成化学计量比为1:1的配合物,稳定常数分别为20803和3119.90。采用溶剂扩散技术制备了超分子含能化合物,通过X-射线衍射对其进行了表征。
     合成了间苯二胺[2]-一氯均三嗪[2]氮杂杯芳烃和未见文献报道的对苯二胺[2]-一氯均三嗪[2]氮杂杯芳烃,通过叠氮化和胺解反应合成了4个未见文献报道的氮杂杯芳烃衍生物,并进行了结构表征。通过量子化学计算探讨了氮杂杯芳烃与含能化合物黑索今、奥克托今之间的相互作用,结果表明黑索今与氮杂杯[4]芳烃及其衍生物之间通过氢键作用可以形成超分子体系;而奥克托今不能与氮杂杯[4]芳烃及其衍生物形成稳定的超分子体系。采用荧光光谱法研究了黑索今、奥克托今与氮杂杯[4]芳烃及其衍生物在溶液中的配合性能,结果表明只有对苯二胺[2]-(6-叠氮基)均三嗪[2]氮杂杯芳烃可以与黑索今形成较为稳定的超分子体系。采用溶剂扩散技术制备了超分子含能化合物,通过X-射线衍射进行了表征。
     分别以混酸和浓硝酸为硝化剂合成了β-环糊精硝酸酯,通过柱层析得到了5种不同硝化度的产物。以β-环糊精及其5种硝酸酯为主体,含能化合物黑索今、奥克托今为客体,采用共沉淀法制备了12种超分子含能化合物,通过红外光谱、DSC与XRD对其进行了表征,采用Job连续滴定法确定了该类超分子化合物中主客体的化学计量比为1:1。
     采用卡斯特落锤法考察了15种超分子含能化合物的撞击感度。结果表明对硝基杯[8]芳烃、氮杂杯芳烃、环糊精、环糊精硝酸酯-7和环糊精硝酸酯-9这几种化合物通过与黑索今、奥克托今配合,都能够对黑索今和奥克托今起到显著的降低感度的作用。
It is one of the research and development focus on energetic materials to study insensitive explosive. Five new N-azo calixarene derivatives were synthesized and fifteen novel energetic supramolecule compounds were prepared and the new idea, i.e to depress the sensitive of the energetic material through supramolecule chemistry, was put forward for the first time in this thesis.
     p-Nitro-calix[8]arene was synthesized using p-t-butylphenol and formaldehyde as starting materials, the structural optimization and theoretical analysis of host, guest and supramolecule system were operated by quantum chemistry half-empirical AM1 and DFT-B3LYP/6-31G* methods. The result showed that the complex be obtained between p-nitro-calix[8]arene and RDX, HMX through a series of hydrogen bonds. The molar ratio between host and guest of the complex was determined via UV and Fluroscence spectrum. Results revealed that p-nitro-calix[8]arene can complex with RDX in DMF and HMX in CHCl3, and the molar ratio of host and guest is 1:1. The stability constant of these two complexes are 20803 and 3119.90, respectively. Two superamoleculs were prepared via solvent diffusion method and charactered by XRD.
     Two aza-bridged calix[2]arene[2]triazines were synthesized by using cyanuric chloride, m-phenylenediamine and p-phenylenediamine as starting materials, and four novel derivatives were prepared through azotization and amination reactions. Their structures were charactered. Interactions between tetraazacalix[2]arene[2]triazines and RDX, HMX were discussed through quatum chemistry. The result showed RDX can just be embedded by tetraaza-p-phenyldiaminecalix[2]arene-[2]-(6-azido)triazine to make a complex through a series of hydrogen bonds, whereas HMX can’t. One superamolecule that tetraazacalix[2]arene[2]triazines as host and RDX as guest was prepared via solvent diffusion method and charactered by XRD.
     β-Cyclodextrin nitric esters(NCD) were synthesized by using HNO3 and mix acid, respectively. Five pure NCD with different nitration degree were obtained through column chromatography. Twelve superamolecule energetic compounds were prepared via co-deposition method using five NCD with different nitration degree as host and RDX, HMX as guest. Their structures were identified through XRD and IR. The molar ratio of host to guest is 1:1 which was determined by Job’s method.
     Impact sensitivity of fifteen supramolecule energetic compounds prepared above were measured by using Kust drop hammer. Results showed that the impact sensitivity of RDX and HMX were decreased remarkably after they were embeded by p-nitro-calix[8]arene, tetraazacalix[2]arene[2]triazines, cyclodextrin, NCD-7, and NCD-9, respectively.
引文
[1]J P Agrawal. Recent trends in high-energy materials[J]. Prog. in Energy and Comb. Sci.,1998, 24(1):1~30
    [2]欧育湘,徐永江,刘利华.六硝基六氨杂异伍兹烷合成与应用研究最新进展[C].高能推进剂及新材料研讨会论文集,1998.湖北襄樊
    [3]A K Sikder, Nirmala Sikder. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications[J]. J. Hazardous Mater,2004, 112(1-2):1~15
    [4]D M Badgujar, M B Talawar, S N Asthana, et al. Advances in science and technology of modern energetic materials: An overview[J]. J. Hazardous Mater,2008, 151(2-3): 289~305
    [5]欧育湘,孟征,刘进全.高能量密度化合物CL-20应用研究进展[J].化工进展, 2007,26(12):1690~1694
    [6]P A Buchan, J F Chen. Blast resistance of FRP composites and polymer strengthened concrete and masonry structures–A state-of-the-art review[J]. Composites Part B: Engineering,2007,38(5-6):509~522
    [7]松全才,杨崇惠,金韶华.炸药理论[M].北京:兵器工业出版社, 1997
    [8]吕春绪.工业炸药理论[M].北京:兵器工业出版社, 2003
    [9]徐永江,金韶华.三种粒度-ε-六硝基六氮杂异伍兹烷热分解及撞击感度的研究[J].火炸药学报,2001,24(1):47~48,46
    [10]王申,谭惠民等.含CL-20NEPE固体推进剂能量特性及低特征信号的研究[J].含能材料,2001,9(4):145~149
    [11] F M Foltz, C L Coon, F Gacia, et al. The thermal stability of the polymorphs of HNIW. Part I [J]. Props Explos Pyrotech,1994,19:19~25
    [12] F M Foltz, C L Coon, F Gacia,et al. The thermal stability of the polymorphs of HNIW.Part II[J]. Props Explos Pyrotech,1994,19:63~69
    [13]华北工学院工业炸药培训教材编审委员会.工业炸药工艺学[M].太原:华北工学院出版社, 1988:79~80
    [14]任特生.硝胺及硝酸酯炸药化学与工艺学.北京:兵器工业出版社, 1994: 27~165
    [15]斯蒂德,J.W.阿特伍德, J.L.(赵耀鹏等译).超分子化学[M].北京:化学工业出版社, 2006:1~5
    [16]刘育,尤长城,张衡益.超分子化学—合成受体的分子识别与组装[M].天津:南开大学出版社, 2002:306~384
    [17] D Philp, J F Stoddart. Self-Assembly in Natural and Unnatural Systems [J]. Angew. Chem., 1996, 35:1154~1196
    [18] C D Gutsche, B Dhawam. Calixarenes. 4. The Synthesis Characterization and Properties of the Calixarene from p-tert-Butylphenol [J]. J.Am.Chem.Soc.,1981, 103:3782~3792
    [19]王键吉,刘文彬,卓克垒等.杯芳烃应用研究的新进展[J].化学通报,1996, (2):11~17
    [20]S Shinkai. Calixarene—the third generation of supramolcules[J]. Terahedron, 1999, 55(40):8933~8968
    [21]张来新,高均科,李少勤等.杯芳烃的产生发展和应用[J].宝鸡文理学院学报(自然科学版),1998,18(3):32~36
    [22]C D Gutsche. Calixarene [M]. Cambridge, England: The Royal Society of Chemistry, 1989:2325~2330
    [23]C D Gutsche,L G Lin. Clixarenes 12:The synthesis of functionalized calixarenes[J].Tetrahedron, 1986,42(6):1633~1640
    [24]E Paulus, V B?hmer, H Goldmann,et al. The crystal and molecular structure of two calix[4]arenes bridged at opposite para positions [J]. J. Chem. Soc., Perkin Trans. 2, 1987, (11):1609~1615
    [25]P D Beer, M G Drew.Synthesis and anion coordination chemistry of new calix[4]arene Pyridinium receptors[J].J. Chem. Soc., Perkin Trans.2, 2000,3(5):11~51
    [26]N Placido, G Corrada, P Mario. Alternate Alkylation of p-tert-Butyl calix[8]arene in the Presence of Weak Bases[J] . J. Org. Chem. ,1995, 60(13):4126~4135
    [27]F Cunsolo,G Consoli.Methylation of p-tert-Butylcalix[8]arene. Products Obtained in the Presence of Strong Bases[J]. J. Org. Chem., 1998, 63(20):6852~6858
    [28] C D Gutsche, J A Levine, P K Sujeeth. Calixarenes.17.Functionalized calixarenes: the Claisen rearrangement route[J]. J. Org. Chem., 1985, 50(26): 5802~5806
    [29]D Petr, J Vaclav, L Steven. Regen Porous surfactants from cone conformers of calix-[5]arenas[J]. J.Org.Chem. ,1993, 58(24):6553~6555
    [30]J Wang, C D Gutsche. Complexation of Fullerenes with Bis-calix[n]arenes Synthesized by Tandem Claisen Rearrangement[J]. J. Am. Chem. Soc., 1998, 120(47): 12226~12231
    [31]Arimura, T. Nagsaki, T. Shinkai, S. Host-guest properties of new water-soluble calixarenes derived from p-(chloromethyl) calixarenes[J].J.Org.Chem., 1989,54(16):3766~3768
    [32]Miroslav Dudic, Alberto Colombo, Francesco Sansone. A general synthesis of water soluble upper rim calix[n]arene guanidinium derivatives which bind to plasmid DNA[J]. Tetrahedron ,2004,60(50):11613~11618
    [33] J L Atwood, D L Clark, R K Juneja, et al. Double partial cone conformation for Na6{calix[6]arene sulfonate}.cntdot.20.5 H2O and its parent acid[J]. J. Am. Chem. Soc., 1992, 114(19): 7558~7559
    [34]V Willem, J Paul, G Bodewes, et al. A novel approach to inherently chiral calix[4]aenes by direct introduction substituent at the meta position[J].Tetrahedron, 1995,51(2):499~512
    [35]于付江,杨海军,李勇.杯芳烃与NO2硝化反应的研究[J].有机化学,2006,26 (4):482~486
    [36]N Kwanghyun, N Yeougjo. The Synthesis of p-Nitrocailx[4]arene[J]. Bull. Korean Chem. Soc. ,1986, 7(4):314~316
    [37]S Shinkai, K Araki, T Tsubaki, et al. New syntheses of calixarene-p- sulphonates and p-nitrocalixarenes [J]. J. Chem. Soc., Perkin Trans. 1, 1987: 2297~2299
    [38]S Shinkai, T Tsubaki, T Sone, O Manabe. A new synthesis of p- nitrocalix[6]arene [J]. Tetrahedron Lett. ,1985, 26(28):3343~3344
    [39]S Kumar, R Varadarajan, H M Chawla, et al. Preparation of p-nitrocalix[n]arene methyl ethers via ipso-nitration and crystal structure of tetramethoxytetra-p-nitrocalix[4]arene [J]. Tetrahedron. 2004,60(4):1001~1005
    [40]C D Gutsche. Calixarenes[J]. Aldrichimica Acta, 1995,28(1):3~9
    [41]T Sone, Y Ohba, K Moriya, et al. Synthesis and properties of sulfur-bridged analogs of p-tert-butylcalix[4]arene[J].Tetrahedron,1997,53:10689~10692
    [42]H Kumagai, M Hasegawa, S Miyanari, et al. Facile synthesis of p-tert-butylthiacalix[4]arene by the reaction of p-tert-butylphenol with elemental sulfur in the presence of a base[J].Tetrahedron lett.,1997,38(22):3971~3972
    [43] N Iki, F Narumi, T Fujimoto, et al. Selective synthesis of three conformational isomers of tetrakis[(ethoxycarbonyl)methoxy]thiacalix[4]arene and their complexation properties towards alkali metal ions [J]. J. Chem. Soc., Perkin Trans. 2, 1998, (12):2745~2750
    [44]X Delaigue, M W Hossini.Multicavitandsⅲ:Synthesis and NMR studies of a tri-directional koiland composed of three p-tert butylcalix[4]arenes units fused by two silicon atoms[J].Chem.Soc.1994:1579~1580
    [45]H Kumagai, M Hasegawa.Surface orientation and complex formation of new calixarene derivative containing sulfur ligands[J].Tetrahedron lett.,1997,38,3971.
    [46]J L Katz, M B Feldman, R R Conry. Synthesis of Functionalized Oxacalix[4]arenes [J].Org.Lett.,2005,7(1):91~94
    [47]N T Komatsu. New synthetic route to homooxacalix[n]arenas via reductive coupling of diformylphenols [J].Tetra. Lett., 2001,42(9):1733~1736
    [48]刘世岚,李海兵,钟振林.氧杂同杯芳烃的研究进展[J].有机化学,2004,4(24): 386~395
    [49]E E Boros, C W Andrews, A O Davis. Degenerate Racemization of Chiral Saddle Conformations in a Cyclic Dioxadithia Aryl Polyether [J].J. Org.Chem., 1996,61(7): 2553~2555
    [50]J L Katz, M B Feldman, R R Conry. Synthesis of Functionalized Oxacalix[4]arenes [J].Org.Lett.,2005,7(1):91~94
    [51]A Toth, C Floriani, A Chiesi-villa, et al. Dinuclear copper(I) benzoate complexes binding isocyanides and azocompounds[J].Org. Chem.,1987,26:236~241
    [52]Floriant C .Transitionm. Complexes as bifunctional carriers of polar organo metallic:their application To large molecule modifications and to hydrocardona ctivationc arbon[J].Puer and applied chemistry,1998,28:1376~1381
    [53]B R Cameron,F C J Van Veggel,D .N .R einhoudt.Transitionm etalcomplexes Of lower rim 1,3-diphos phinite and 1 ,3- diphosphino calix[4]arenas[J].J. Org. Chem., 1995, 60 :2802~2805
    [54] F Hajek,E Graf,M W Hosseini, et al. Synthesis and X-ray analysis of unsymmetrical linear koiland baesd on double fusion of two difeernt calix[4]arene by two silicon atoms[J].Tetra. Lett, 1997,38 :4555~4559
    [55] L Giannini, E Solari. Ethylene rearrangements to MC, M=C, and M C functiona lities over a tungsten- Oxo surface illustrated by the W (Ⅳ)calix[4]aerne fragment[J].J. Am. Chem.Soc.,1998,120(4):823~824
    [56]P D Beer,P A Gale.Anion precognition and sensing:the state of the art and future perspectives[J].Angew Chem .Int .E D.Eng.l,2001,40 (3):486~516
    [57]P D Beer,M G Drew .Synthesis and anion coordination chemistry of new calix[4]arene Pyridinium receptors[J].J. Chem.Soc.Perkin.Trans.2, 2000,3(5):11~51
    [58]P Thuery,M Nierlich.Synthesis and cation complexation studies of a new tetra(2-pyridylmethyl)amide calix[4]arene[J].Chem.,2001:637~643
    [59]H Takemura,Y Kozima,T Inazu.Synthesis and disproportionation of ABAC-type oxavalixarenes[J].Tetrahed.Lett.,1999,40:6431~6434
    [60]M X Wang, X H Zhang, Q Y Zheng.Synthesis, Structure, and[60]Fullerene Complexation Properties of Azacalix[m]arene[n]pyridines[J].Angew.Chem.Int.Ed., 2004,43(7):838~842
    [61]M X Wang,H B Yang.A geral and high yielding fragment coupling synthesis of heteroatom-bridged calixarenes and the unprecedented examples of calixarenes cavity fine-tuned by bridg[J].Jam.Chem.Soc,2004,126:15412~15422
    [62]P A Gale,V Kral.Synthesis,Steucture,and [60]Fullerene complexation properties of azacalix[m]arene[n] pyridines[J].Chem.Commun.,1998:1~8
    [63]Turner B,Eichen Y,Angew.Synthesis of heteroatom-bridged calixarenes[J]. Chem. IntEd, 1998,37:2475~2479
    [64]Sessler J L,Gale P A.Synthesis and properties of Me2Ge-bridgedarenes[J].Pure&Appl Chem,1998,70:2401~2408
    [65]Miyaji H,Jr P A,Sessler J L.Heteroatom-bridged calixarenes[J].Chem. Commun., 1999:1723~1724
    [66]Anellip L, Lunazzi L,Montanari F,et al.Dou-bly and triply bridged polyoxa-poly -azaheterophanes derived from 2,4,6-trichloro-s-triazine [J].J. Org. Chem., 1984,49: 4197~4203
    [67] Dennis W. P. M. L?wik, Christopher R. Lowe. Synthesis of Macrocyclic, Triazine-Based Receptor Molecules [J].Eur. J. Org. Chem., 2001, 2001(15): 2825~2839
    [68]Graubaum H,Lutze G,Titfelbach F,et al.New ayacyclophanes form cyanuric chloride and diamines[J]. J Prakt Chem/Chem-ztg,1995,337(5):401~404
    [69]戈蔓,花成文,苟小锋等.四氮杂杯[2]芳烃[4]三嗪的合成和表征[J].西北大学学报:自然科学版,2007,37(2):228~230
    [70]詹威强,胡幼元.三聚氯氰衍生物在精细化工中的应用现状及发展趋势[J].化学工业与工程技术,2001, 2(22):5~9
    [72] M A McKervey, E M Seward, G Ferguson, B L Ruhl. Molecular receptors. Synthesis and x-ray crystal structure of a calix[4]arene tetra carbonate-acetonitrile(1:1) clathrate[J]. J.Org.Chem. 1986, 51(19):3581~3584
    [73] G D Andreetti, A Pochini, R Ungaro. Molecular inclusion in functionalized macrocle.Part6.The crystal and molecular structures of the calix[4]arene from p- (1,1,3,3-Tetramethylbutyl)phenol and its 1:1 complex with toluene[J]. J. Chem. Soc., Perkin Trans. 2, 1983, (9):1773~1779
    [74] J Schatz, F Schildbach, A Lentz, S Rast?tter. Thermal gravimetry, mass spectrometry and solid-state 13CNMR spectroscopy—simple and efficient methods to characterize the inclusion behaviour of p-tert-butylcalix[n]arenes [J]. J. Chem. Soc., Perkin Trans. 2, 1998, (1):75~78
    [75]Konstan A, Vdachin J. t-Butylcalix[4]arene compounds with long chain guests:structures and host–guest interactions[J]. Supramol.Chem, 2001,1:97~100
    [76]Giuseppe Arena, Annalinda Contino, Fabio Giuseppe Gulino,et al.. Complexation of small neutral organic molecules by water soluble calix[4]arenas[J].Tetrahedron Lett., 2000,41(48):9327~9330
    [77]Sándor Kunsági-Máté, István Bitter, Alajos Grün. Cavity shaped host-guest interaction of distally dialkylatedcalix[4]arenes with 1-chloro-4- (trifluoromethyl) benzene[J].Analytica Chimica Acta, 2001, 443: 227~234
    [78]Sándor Kunsági-Máté, Kornélia Szabó, Beáta Lemli,et al.Host–guest interaction between water-soluble calix[6]arene hexasulfonate and p-nitrophenol[J]. Thermochimica Acta , 2005,425:121~126
    [79] Sándor Kunsági-Máté, Géza Nagy, LászlóKollár.Investigation of the interaction ofcalixarene(host) and nentral benzotrifluoride(guest)[J]. Sensors and Actuators B: chemical, 2001, 76: 545~550
    [80]Sándor Kunsági-Máté, Géza Nagy, LászlóKollár. Host-guest interaction of calixarene molecules with neutral benzotrifluorides.Comparison of luminescence spectral data with results of model calculations relating to complex formation[J]. Analytica Chimica Acta, 2001,428(2):301~307
    [81]Sándor Kunsági-Máté, István Bitter, Alajos Grün,et al. Anisotropy decay study on the host–guest interaction of distally dialkylated calix[4]arenes with 1-chloro-4-(trifluoro- methyl)benzene[J].J.Biochem. and Biophys.Methods,2002,53:101~108
    [82]Yuji Kawabata, Takahiro Yamashiro, Yuichi Kizataki. Optode for 2-phenethyl -amine using calixarene as host molecule[J]. Sensors and Actuators B: chemical,1995, 29:135~139
    [83]Masaki Hirakata, Kosaku Yoshimura, Shuji Usui. Binding of guest with monodeoxycalix[4]arene host in solid state[J]. Tetrahedron Lett.,2002, 43(10): 1859~1861
    [84]Haino T, Mitsuhashi H, Fukazawa Y. On-beads screening of solid-attached diketopiper-azines for calix[5]arene-based receptor[J].Tetrahedron lett.,2003, 44(20): 3889~3892
    [85]韩宝航,刘育.水溶性杯芳烃对染料客体分子的包结配位作用[J].化学学报,2001,59(4):550~555
    [86]高博,冯亚青,周立山.杯芳烃包合作用的研究进展[J].有机化学,2004, 24(7): 713~721
    [87]李新红,方鹏飞.富勒烯的杯芳烃包合物的研究现状与展望[J].有机化学, 2001,21 (10):721~727
    [88]R Fiammengo, P Timmerman, J Huskens,et al. Non-covalent synthesis of calyx[4] arene-capped porphyrins in polar solvents via ionic interactions[J]. Tetrahedron, 2002,58(4):757~764
    [89]夏琳,邱桂学.化学科学的研究新领域——超分子化学[J].化学推进剂与高分子材料,2007,5(1):33~37
    [90]陈龙然,袁唐培,王雅芬等.环糊精的性能、生产及其在食品工业中的应用[J].食品科学,2003,24(8):268~271
    [91]卢昌盛,张越,孟庆金等.环糊精与聚合物的包合作用[J].无机化学学报,2000, 16(6): 853~861
    [92]张莉,罗来辉.环糊精包合物的研究进展[J].华北工学院学报,2003,24(4): 278~281
    [93]黄齐林.环糊精的研究进展及其在医药中的应用[J].玉溪师范学院学报,2004, 20(12):12~17
    [94]沈学优,戚志红,邹焕金等.修饰基团的结构对β-环糊精衍生物的分析特性的影响Ⅰ可离解基团的影响[J].浙江大学学报(理学版),1999,26(3):77~81
    [95]刘育,尤长城等.超分子化学[M].天津:南开大学出版社,2001:193
    [96]姚虹.超分子体系识别作用的研究与应用[D].西北师范大学硕士学位论文,2005,6:2
    [97]张奕,高翔.环糊精/富勒烯[60]超分子包合物研究进展[J].应用化学,2007, 24(1):1~7
    [98]闫有旺.环糊精包合物[J].化学世界,2006,47(4):252~254
    [99]朱晓薇,陈志娟.环糊精在中药制剂中的研究进展[J].天津医学,1997,9(2):38~41
    [100]Carine Bertolla, Stéphanie Rolin, Brigitte Evrard, et al.Synthesis and pharmacologi -cal evaluation of a new targeted drug carrier system:β-Cyclodextrin coupled to oxytocin[J]. Bioorganic & Medicinal Chemistry Letters,2008,18(6): 1855~1858
    [101]Junhua Wang, Zaisheng Cai. Incorporation of the antibacterial agent, conazole nitrate into a cellulosic fabric grafted withβ-cyclodextrin[J]. Carbohydrate Polymers, 2008, 72:695~700
    [102]姚广滨,崔殿波,邢少锋等.硝酸甘油β-环糊精包合物的研究[J].中国医药工业杂志,1993,24(10):445~447
    [103]邰启明,李鸿云,汤长庚等.β-环糊精及其硝酸酯与黑索今等包结物的研究[J].太原机械学院学报,1989,10(3): 1~12
    [104]江洪芳.β-环糊精包合物在中药药剂中的研究进展及应用状况分析[J].江西中医学院学报,2000,(2):93~94
    [105]姚波.蟾酥-β-环糊精包结物制备工艺的研究[J].中成药,1989,11(1):4~6
    [106]于青.超分子化合物的量子化学计算、合成、表征及晶体结构研究[D].青岛科技大学, 2005: 9~11
    [107]Andrzej ?apiński, Andrzej Graja, Iwona Olejniczak,et al. Supramolecular porphyrin /fullerene interactions studied by spectral methods [J]. Chemical Physics, 2004, 305(3): 277~284
    [108]张钢,周新,刘智.内含C60的环状卟啉锌双体超分子的结构、电子光谱及三阶非线性光学性质的理论研究[J].化学学报,2003, 61(12): 1911~1915
    [109]Sándor Kunsági-Máté, Kornélia Szabó, István Bitter, et al.Complex formation between water-soluble sulfonated calixarenes and C60 fullerene [J]. Tetra. Lett., 2004,45(7): 1387~1390
    [110]Alexander B. Rozhenko, Wolfgang W. Schoeller, Matthias C. Letzel, et al.Conformational features of calix[4]arene with alkali metal cations: A quantum chemical investigation with density functional theory[J]. J. Molecular Struct.: THEOCHEM, 2005, 732(1): 7~20
    [111]Katsyuba, S.A. Grunenbergba, J. Schmutzlerc, R. Vibrational spectra andconformational isomerism of calixarene building blocks.Part I. Diphenylmethane[J]. J Molecul. Struct., 2001, 559(1-3): 315~320
    [112]Katsyuba, S.A. Schmutzlerb, R. Kunze, C. Vibrational spectra and conformational isomerism of calixarene building blocks. III. 2,6-Dimethylanisole and n-propyl-2,6- dimethylphenyl ether[J]. J Molecul Struct. ,2002, 610(1-3): 113~125
    [113]Peter D. J. Grootenhuis, Peter A. Kollman, Leo C. Groenen, et al. Computational Study of the Structural, Energetical, and Acid- Base Properties of Calix[4]arenas[J]. J. Am. Chem. Soc., 1990,112(11): 4165~4176
    [114]K.M. Sándor, I. Bitter, A. Grünb, G. Nagy, L. Kollár. Cavity shaped host–guest interaction of distally dialkylated calix[4]arenas with 1-chloro-4-(trifluoromethyl) benzene[J]. Anal. Chim. Acta , 2001,443(2):227~234
    [115]T. Bender. Solvent Cage [DB/OL]. Excel Macros to HyperChem, Hypercube, www.hyper.com, 2000
    [116]W.L. Jorgensen, et al. ab Initio Study of the Structures and Binding Energies of Aluminum Monocation Complexes[J]. J. Chem. Phys., 1983,87:902
    [117]M. Penca. Computer Software Review. Asystant GPIB[J]. J. Chem. Int. Comput. Sci., 1989,29:288.
    [118]M. Penca, Computer Software Review. Lahey FORTRAN 77 Language System[J]. J. Chem. Int. Comput. Sci., 1989, 29: 288
    [119]S.R. Heller, Computer Software Review. TRC Databases for Chemistry and Engineering - Vapor Pressures [J]. J. Chem. Int. Comput. Sci.,1989, 29:289
    [120]T Rispens, M F Lensink, H J C Berendsen, et al.Molecular Dynamics Simulation of the Effect of Hydrophobic Cosolutes on the Neutral Hydrolysis of an Activated Ester[J]. J Phys Chem B, 2004,108(17):5483~5488
    [121]M Karplus. Three-dimensional "Pople diagram"[J]. J Phys Chem,1990,94(14): 5435~5436.
    [122]吴师,滕启文,陈肖飞,周荣辉,杯[4]芳烃对单糖及嘧啶衍生物的分子识别和分子开关[J].高等学校化学学报,2003,24(7):1271~1273
    [123]A Ghoufi, J P Morel, N Morel-Desrosiers, et al. MD Simulations of the Binding of Alcohols and Diols by a Calixarene in Water: Connections between Microscopic and Macroscopic Properties[J]. J. Phys. Chem. B, 2005,109( 49): 23579~23587
    [124]陈东辉,等.二酰胺吡啶修饰杯[4]芳烃与脂肪二羧酸主客体相互作用的理论研究[J].高等学校化学学报,2006,27(1):153~155
    [125]吕春绪,刘祖亮,倪欧琪.工业炸药[M].北京:兵器工业出版社, 1994
    [126]卢华,万山红.硝铵炸药[M].北京:国防工业出版社,1970.
    [127]J H Munch, C D Gutsche. p-tert-Butylcalix[8]arene[J]. Org. Synth., CV8: 80
    [128]Ridd, J.H. Some unconventional pathways in aromatic nitration[J].Acta Chem.Scand., 1998.52:11~22
    [129]吕春绪.硝酰阳离子理论[M].北京:兵器工业出版社,2006
    [130]童林荟,申宝剑.超分子化学中的物理方法[M].北京:科学出版社,2004: 15~41
    [131]刘冬青.离子识别型杯芳烃的合成及性能研究[D].天津大学博士论文, 2006
    [132]郑孟菊,俞统昌,张银亮.炸药的性能及测试技术[M].北京:兵器工业出版社, 1990:52
    [133]钟一鹏,胡雅达.国外炸药性能手册[M].北京:兵器工业出版社, 1990:75,79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700