乳化基质传输管路阻隔防爆样机设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳化炸药是工程爆破最常用的工业炸药,使用非常广泛。乳化炸药和乳化基质弯曲装药的爆轰问题具有很重要的研究价值,成为了近年来学术界关注的热门课题。本文对乳化炸药和乳化基质弯曲装药爆轰传播进行比较系统的实验研究,研究的主要结论如下:
     1、乳化炸药半约束弯曲装药条件下,当装药的曲率半径r=50mm时,爆速随着弯曲角度θ的增大而减小,爆速与弯曲角度的关系为线形关系。药层厚度δ越小,爆速下降越快。
     2、乳化炸药在波纹管中弯曲装药条件下,其爆轰波在弯曲初始阶段的爆速下降幅度要大于在弯管中爆速下降的幅度。
     3、在装药管径为40mm,药温范围为90℃~130℃,曲率半径r<80mm时,乳化基质弯管装药均不会发生完全稳定传播。当管径为50mm,药温为120℃,曲率半径r=80mm时,弯管之间介质为空气时,乳化基质弯管装药完全爆轰;当弯管之间的介质由空气变为钢板时,乳化基质弯管装药爆轰中断。
     4、在装药管径为40mm,药温范围为120℃,曲率半径r为60mm时,当初始压力小于0.7MPa,乳化基质均不会完全爆轰传播,但爆轰长度随着初压的增加而近似线性变大。
     5、设计了乳化基质阻爆原理样机,初步计算确定了三种阻爆原理样机结构参数。
Emulsion explosive is one of the most common industrial explosive and widely used in engineering blasting. The bending charge detonation characteristics of emulsion explosive and emulsion matrix have great research value, which is one of hots study in academia recently as well. The systemic experiments, which were mainly focused on the detonation propagation of bending charge of emulsion explosive and its matrix, were carried out in the thesis. The main conclusions are as follows:
     1、When the charge curvature radius was 50mm under the semi-constrained charge condition of emulsion explosive, detonation velocity decreased with the bending degreeθincreasing. The smaller thickness of emulsion explosive charge was, the quicker detonation velocity decreased.
     2、Detonation velocity decreased larger in initial bending part than that in the bending pipe in a corrugated tube charge.
     3、When the charge pipe diameter was 40mm, the temperature of emulsion matrix was from 90℃to 130℃and the curvature radius was less than 80mm, complete detonation wave propagation discontinued in the corrugated tube. When the pipe diameter was 50mm, the temperature of emulsion matrix was 120℃, the curvature radius was 80mm and the media was air between the bending pipe, complete detonation wave propagation of bending pipe charge occurred. While the media was steel plate, detonation wave propagation stopped.
     4、The corrugated tube diameter was 40mm, the temperature of emulsion matrix was 120℃and curvature radius was 60mm. When the initial pressure was 0.7MPa, complete detonation wave propagation discontinued and the detonation length approximately linearly increased as the initial pressure increased in the emulsion matrix.
     5、The explosion prevention prototype was designed. The structure parameters of three kinds of prototypes were determined by calculation.
引文
[1]陈积松.我国乳化炸药的新进展[J].金属矿山,1996,(1):5-7.
    [2]吕春绪.工业炸药理论[M].北京:兵器工业出版社,2003.282.
    [3]汪旭光.乳化炸药[M].北京:冶金工业出版社,1986.4.
    [4]Jones H. A Theory of The Dependence of The Rate of Detonation of Solid Explosive on The Diameter of The Tharge[J]. Proc. Roy. Soc. A,1941,189:415-427.
    [5]Powell R E, Eyring H, Duffey G H et al. The Stability of Detonation[J]. Chem. Rev, 1949,45:69-181.
    [6]Wood WW, Kirkwood J G. Diameter Effect in Condensed Explosives:The Relation Between Velocity and Radius Curvature of the Detonation Wave[J]. Chem. Phys.1954,22 (11):1920-1924.
    [7]Engelke R, Campell A W. Diameter Effect in High-Density Heterogeneous Explonation[M]. Coranado California:Office Research-Department of the Navy,1977:642.
    [8]Bdzil J B. Steady-State Two-Dimensional Detonation[J]. Fluid Mah.1981,108:95-226.
    [9]浣石.非均质炸药冲击起爆和二维稳态爆轰的研究[D].北京:北京理工大学,1988.
    [10]浣石,丁儆.二维定常爆轰波的CJ条件与流线形状[J].爆炸与冲击,1989,9(1):12-16.
    [11]Mitchel D and Paterson S. Spread of Detonation in High Explosives[J]. Nature,1947: 438-439.
    [12]Mitchel D and Jones E. Spread of Detonation in High Explosives[J]. Nature,1948: 98-99.
    [13]Herzberg G and Walker G R. Initiation of High Explosives[J]. Nature,1948:647-648.
    [14]Silvia D A and Ramay R T. Explosive Elements[P]. U S Patent:3496868,1970.
    [15]Dick R D. Insensitive Explosive Studies Using PHERMEX[J]. In:Proceedings of the Flash Radiography Symposium. Houston, Texas,1976,179.
    [16]Held M. The Effect of Strength of Initiation upon the Corner-effect[J]. In:Proceedings of the International Symposium on Intense Dynamic Loading and its Effects, Beijing China, 1986. Beijing:Sciences Press,1986:136-143.
    [17]Held M. Corner-Turning Distance and Rotation Radius[J]. Prop,1989:153.
    [18]Held M.爆轰波的拐角效应(英文)[J].含能材料,2000,(01):5-8.
    [19]谭多望,方青,张光升等.钝感炸药直径效应实验研究[J].爆炸与冲击,2003,23(04): 300~304.
    [20]刘举鹏,陈福梅.炸药中爆轰波拐角绕射现象研究[J].爆炸与冲击,1993,13(2):105-109.
    [21]赵同虎,于川.JO-9159炸药爆轰波绕射现象研究[J].爆轰波与冲击波,1991,(2):23-26.
    [22]赵同虎,于川,孙承纬等.JO-9159和硝基甲烷中爆轰波绕射的数值模拟[J].爆炸与冲击,1994,14(2):169-174.
    [23]王树山,焦清介,冯长根等.有限尺寸弯曲装药的爆速亏损[J].北京理工大学学报,1994,14(S1):36-39.
    [24]王树山,焦清介,冯长根.爆轰波转弯传播的延迟现象[J].北京理工大学学报,1994,14(4):337-340.
    [25]李生才.注装TNT中爆轰波拐角现象研究[D].北京:北京理工大学,1998.
    [26]焦清介,魏继锋,周钢等.爆轰波拐角传播三维数值模拟[J].爆炸与冲击,2003,(06):534-538.
    [27]何洋扬,龙源.B炸药爆轰波拐角传播的三维数值模拟[J].火炸药学报,2007,(02):63-66.
    [28]李晓刚,焦清介,温玉全.超细钝感HMX小尺寸拐角装药爆轰延迟时间研究[J].含能材料,2008,(05):621-624.
    [29]杨桐.从乳化炸药六起事故中吸取教训[J].爆破器材,1995,(4):27-291.
    [30]许志壮,花宝玲.乳化炸药制备安全性的探讨[J].工程爆破,1998,(03):8-11.
    [31]喻健良,毕明树,王淑兰.易燃易爆介质防爆抑爆技术研究进展[J].大连理工大学学报,2001,(04):436-440.
    [32]张成俊.螺杆泵在乳化炸药生产中的安全使用[J].煤矿爆破,2007,(02):35-37.
    [33]许志壮,关于乳化炸药工艺技术的评述[J].中国矿业,2000,9(1):16-19.
    [34]宋锦泉,汪旭光,李三红.乳化炸药圆筒实验研究[J].爆破器材,2007(4):1-5.
    [35]徐国财.对乳化炸药爆轰机理的认识[J].煤矿安全,2001,(1):28-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700