螺环化合物环应力、生成热及重排机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用密度泛函方法对所选螺环化合物环应力、生成热及重排机理进行了理论研究。研究主要针对1-亚甲基-2-乙烯基环丙烷、3-亚甲基环戊烯、1-亚环丙基-2-乙烯基环丙烷和4-亚甲基螺[2,4]庚-5-烯体系进行了探讨。采用键反应模型对相关体系的环应力进行了计算,结果表明,在B3LYP/6-311G(d,p)水平下采用超同键模型,所计算出来的环应力值与实验值吻合较好。可以预测螺环化合物的结构中若含有环烯烃结构,环应力则随着环的数目增多而减小,稳定性也随之增强。采用了12种方法对相关体系的生成热进行计算,通过与实验值作对比,结果表明,在所选的12种方法中B3LYP/6-311 G(d,p)、B3LYP/6-311++G(d,p)和B3LYP/6-311++ G(2df,2p)这三种方法计算出来生成热值接近于实验值,其中采用B3LYP/6-311++G( 2df,2p)方法计算出来生成热值与实验值吻合最好。通过对目标体系重排机理的计算,结果表明,反应1-亚甲基-2-乙烯基环丙烷到3-亚甲基环戊烯,反应1-亚环丙基-2-乙烯基环丙烷到4-亚甲基螺[2,4]庚-5-烯的重排均是一步完成的。
The ring strain energies, heats of formation and rearrangement mechanism of the selected spiro-compounds were investigated by using DFT methods. In this thesis, we systematically studied the 1-Methylene-2-vinylcyclopropane,3-methylenecyclopentene, 1-cyclopropylidene-2-vinylcyclopropane and 4-methylenespiro[2,4]hept-5-ene systems. The reaction models were employed to calculate the ring strain energies of the selected systems. The computational results indicated that the ring strain energies of the systems which were computed at the B3LYP/6-311G(d,p) level by using the Hyperhomodesmotic model have good agreements with the experimental values. We have a prediction that if the structure of the spiro-compounds contains the cycloalkene, the ring strain energy declines with increasing ring number, and while the stability of the system also increases. Twelve methods were used to compute the formation heat of the system. By comparison with the experimental values, among the 12 methods, the computational results indicated that the formation heat of the system calculated by the B3LYP/6-311G(d,p), B3LYP/6-311++G(d,p), and B3LYP/6-311++G(2df,2p) methods are more close to the experimental values, and the computational results coming from the B3LYP/6-311++G(2df,2p) method has the best agreement with the experimental values among the three methods. According to the results, we can also know that the rearrangements of 1-Methylene-2-vinylcyclopropane to 3-methylenecyclopentene, 1-cyclopropylidene-2-vinylcyclopropane to 4-methylenespiro[2,4]hept-5-ene are single-step channels.
引文
[1]R. B. Wei, W. X. Ruan. Advanced Organic Chemistry[M]. Beijing:National Defence Industry Press,2006,56-71.
    [2]R. B. Wei, Chemistry of Spiro Compound[M]. Beijing:Chemical Industry Press, 2007,82-89.
    [3]J. C. Yang, J. G Diao. Recent Research Advances on Pyridine Pesticides[J]. Agrochemicals,2007,46(1):1-7.
    [4]K. Friedrich, H. P. Buser, G. Ramos. Methyldioxolan[P]. US 5280041,1994.
    [5]W. Schaper, R. Preus, P. Braun, M. Kern. Substituierte Spiro alkylamino-und alkoxy-Heterocyclen, Verfahren zu ihrer Herstellung und ihre Verwendung als Schadlingsbekampfungsmittel und Fungizide[P]. DE 4436509,1999.
    [6]J. Cassayre, L. P. Molleyres. (3-(1-(3-Phenyl-Propenyl)-Piperidin-4-Yl)-2, 3-Dihydro-Indol-1-Yl)-(Pyridin-4-Yl)-Methanone Derivatives and Related Novel Compounds As Insecticides[P]. WO 2005/058035,2005.
    [7]L. P. Molleyres, J. Cassayres, F. Cederbaum. Spiropiperidine Derivatives For Controlling Pests[P]. WO 2006/061500,2006.
    [8]O. Ryuta, M. Nagaoka, K. Hirai. Synthesis and insecticidal activity of novel 1-alkyl-3-sulfonyloxypyrazole-4-carboxamide derivatives[J]. J. Pestic. Sci.,2010, 35(1):15-22.
    [9]R. R. Kumar. Discovery of Antimycobacterial Spiro-piperidin-4-ones:An Atom Economic, Stereoselective Synthesis, and Biological Intervention[J]. J. Med. Chem,2008,51(18):5731-5735.
    [10]S. Kesharwani, N. K. Sahu, D. V. Kohli. Synthesis and biological evaluation of some new spiro derivatives of barbituric acid[J]. Pharm. Chem. J.,2009,43(6): 315-319.
    [11]A. Dandia, R. Singh, S. Bhaskaran. Ultrasound promoted greener synthesis of spiro[indole-3,5'-[1,3]oxathiolanes in water[J]. J. Org. Chem.,2010,17(2): 399-402.
    [12]N. Kolocouris, G Zoidis, G B. Foscolos. Design and synthesis of bioactive adamantane spiro heterocycles[J]. Bioorg. Med. Chem. Lett.,2007,17(15): 4358-4362.
    [13]J. Wang, S. D. Cady. Discovery of Spiro-Piperidine Inhibitors and Their Modulation of the Dynamics of the M2 Proton Channel from Influenza A Virus [J]. J. Am. Chem. Soc.,2009,131(23):8067-8076.
    [14]A. Svennebring, P. Nilsson, M. Larhed. Microwave-Accelerated Spiro-Cyclizations of o-Halobenzyl Cyclohexenyl Ethers by Palladium(0) Catalysis[J]. J. Org. Chem.,2007,72(15):5851-5854.
    [15]R. Tatsumi, M. Fujio, S. Takanashi, A. Numata, J. Katayama, H. Satoh, Y. Shigi. (R)-3'-(3-methylbenzo[b]thiophen-5-yl)spiro[1-azabicyclo[2,2,2]octane-3,5'-oxaz olidin]-2'-one, a novel and potent alpha7 nicotinic acetylcholine receptor partial agonist displays cognitive enhancing properties [J]. J. Med. Chem.,2006, 49(14):4374-4383.
    [16]N. Tanaka. Acylphloroglucinol, Biyouyanagiol, Biyouyanagin B, and Related Spiro-lactones from Hypericum chinense[J]. J. Nat. Prod.,2009,72(8): 1447-1452.
    [17]H. L. Yale.5,11-Dihydrodibenz[b,e][1,4]oxazepine-5-carboxamides. Compounds potentially useful in the treatment of epilepsy and trigeminal neuralgia[J]. J. Med. Chem.,1968,11(2):396-397.
    [18]O. B. Wallace, K. S. Lauwers, S. A. May. A Selective Estrogen Receptor Modulator for the Treatment of Hot Flushes[J]. J. Med. Chem.,2006,49(3): 843-846.
    [19]A. M. Palmer. Spiro(imidazo[1,2-a]pyrano[2,3-c]pyridine-9-indenes) as inhibitors of gastric acid secretion[J]. Bioorg. Med. Chem.,2009,17(1):368-384.
    [20]M. V. Kvach, I. A. Stepanova. Practical Synthesis of Isomerically Pure 5-and 6-Carboxytetramethylrhodamines, Useful Dyes for DNA Probes[J]. Bioconjugate Chem.,2009,20(8):1673-1682.
    [21]V. A. Vishwanath, J. M. McIntosh. Synthesis of Fluorescent Analogs of α-Conotoxin MⅡ[J]. Bioconjugate Chem.,2006,17(6):1612-1617.
    [22]G. Muccioli, A. Baragli, R. Granata. Heterogeneity of Ghrelin/Growth Hormone Secretagogue Receptors[J]. Neuroendocrinology,2007,86(3):147-164.
    [23]O. Okamoto, K. Kobayashi, H. Kawamoto. Identification of novel benzimidazole series of potent and selective ORL1 antagonists[J]. Bioorg. Med. Chem. Lett., 2008,18(11):3278-3281.
    [24]M. K. Lee, H. Y. Jeon. Inhibitory Constituents of Euscaphis japonica on Lipopolysaccharide-Induced Nitric Oxide Production in BV2 Microglia[J]. Planta Med.2007; 73(8):782-786.
    [25]T. O. Olomola, D. A. Bada, C. A. Obafemi. Synthesis and antibacterial activity of two spiro [indole] thiadiazole derivatives[J]. Toxicol. Environ. Chem.,2009, 91(5):941-946.
    [26]T. Takahashi, Y. Haga, T. Sakamoto. Aryl urea derivatives of spiropiperidines as NPY Y5 receptor antagonists [J]. Bioorg. Med. Chem. Lett.,2009,19(13): 3511-3516.
    [27]T. P. I. Saragi, R. Pudzich. Light responsive amorphous organic field-effect transistor based on spiro-linked compound[J]. Opt. Mater.,2007,29(7):879-884.
    [28]T. P. Saragi, T. Spehr, A. Siebert, J. Salbeck. Spiro Compounds for Organic Optoelectronics[J]. Chem. Rev.,2007,107(4):1011-1065.
    [29]A. Baba, K. Seki, H. Matsuda. Stereocontrolled oxazolidinone formation by the addition of 4,5-disubstituted iminodioxolane to oxirane via a spiro compound[J]. J. Org. Chem.,1991,56(8):2684-2688.
    [30]S. H. Kim, S. H. Sung, S. Y. Choi. Idesolide:A New Spiro Compound from Idesia polycarpa[J]. Org. Lett.,2005,7(15):3275-3277.
    [31]T. P. I. Saragi, R. Pudzich, T. Fuhrmann, J. Salbeck. Organic phototransistor based on intramolecular charge transfer in a bifunctional spiro compound[J]. Appl. Phys. Lett.,2004,84(13):2334-2336.
    [32]G. Berkovic, V. Krongauz. Spiropyrans and Spirooxazines for Memories and Switches[J]. Chem. Rev.,2000,100(5):1741-1754.
    [33]R. Pradhan, M. Patra, A. K. Behera. A synthon approach to spiro compounds[J]. Tetrahedron,2006,62(5):779-828.
    [34]D. C. Shin, Y. H. Kim, H. You. Sterically Hindered and Highly Thermal Stable Spirobifluorenyl-Substituted Poly(p-phenylenevinylene) for Light-Emitting Diodes[J]. Macromolecules,2003,36(9):3222-3227.
    [35]G. Rajni, P. G Satya, H. Gao. Comparative quantitative structure-activity relationshipstudies on anti-HIV drugs[J]. Chem. Rev.,1999,99(12):3525-3602.
    [36]A. Baeyer. Ueber Polyacetylenverbindungen[J]. Ber. Dtsch. Chem. Ges.,1885, 18(2):2269-2281.
    [37]E. S. Lewis.Steric Effects in Organic Chemistry[J]. J. Am. Chem. Soc.,1957, 79(4):1014-1014.
    [38]K. S. Pitzer. Thermodynamic Functions for Molecules Having Restricted Internal Rotations[J]. J. Chem. Phys.,1937,5(6):469-473.
    [39]K. S. Pitzer. Strain Energies of Cyclic Hydrocarbons[J]. Science,1945, 101(2635):672-672.
    [40]J. D. Dunitz, V. Schomaker. The Molecular Structure of Cyclobutane[J]. J. Chem. Phys.,1952,20(11):1703-1708.
    [41]J. Howell, J. D. Goddard, W. Tam. A relative approach for determining ring strain energies of heterobicyclic alkenes[J]. Tetrahedron,2009,65(23): 4562-4568.
    [42]D. B. Robert. Ring Strain Energy in the Cyclooctyl System. The Effect of Strain Energy on [3+2] Cycloaddition Reactions with Azides[J]. J. Am. Chem. Soc., 2009,131(14):5233-5243.
    [43]F. H. Westheimer. Studies Of The Solvolysis Of Some Phosphate Esters[M]. Special Publication No.8, The Chemical Society, London,1957, P1-P10.
    [44]M. S. Gordon. Ring strain in cyclopropane, cyclopropene, silacyclopropane, and silacyclopropene[J]. J. Am. Chem. Soc.,1980,102(25):7419-7422.
    [45]B. M. Gimarc, M. Zhao. Strain Energies in Cyclic On, n=3-8[J]. J. Phys. Chem., 1993,97(16):4023-4030.
    [46]S. M. Bachrach. Ring strain energy and inversion barrier of phospha[3]radialene and aza[3]radialene[J]. J. Phys. Chem.,1993,97(19):4996-5000.
    [47]B. M. Gimarc, M. Zhao. Strain Energies of (NH)n Rings, n=3-8[J]. J. Phys. Chem.,1994,98(31):7497-7503.
    [48]C. Lim, T. Dudev. Ring Strain Energies from ab initio Calculations[J]. J. Am. Chem. Soc.,1998,120(18):4450-4458.
    [49]D. H. Magers, S. R. Davis. Ring strain in the oxazetidines[J]. J. Mol. Struct., 1999,487(1-2):205-210.
    [50]K. J. Daoust, S. M. Hernandez, K. M. Konrad. Strain Estimates for Small-Ring Cyclic Allenes and Butatrienes[J]. J. Org. Chem.,2006,71(15):5708-5714.
    [51]J. Beckmann, D. Dakternieks, K. Jurkschat. Understanding ring strain and ring flexibility in six-and eight-membered cyclic organometallic group 14 oxides[J]. J. Mol. Struct.,2006,761(1-3):177-193.
    [52]Y. Y. Li, J. W. Zhao. Theoretical Investigations of the Geometric and Electronic Structures of Phenylene-Acetylene Macrocycles[J]. ChemPhysChem.,2006, 7(12):2593-2600.
    [53]I. Novak. Ring Strain in [n]ladderanes[J]. J. Phys. Chem. A.,2008,112(40): 10059-10063.
    [54]S. W. Benson, F. R. Cruickshank, D. M. Golden. Additivity rules for the estimation of thermochemical properties[J]. Chem. Rev.,1969,69(3):279-324.
    [55]M. J. S. Dewar, E. G Zoebisch, E. F. Healy. Development and use of quantum mechanical molecular models.76. AMI:a new general purpose quantum mechanical molecular model [J]. J. Am. Chem. Soc.,1985,107(13):3902-3909.
    [56]E. Thiriot, G. Monard. Combining a genetic algorithm with a linear scaling semiempirical method for protein-ligand docking[J]. J. Mol. Struct.,2009, 898(1-3):31-41.
    [57]X. M. Duan, G L. Song, Z. H. Li. Accurate prediction of heat of formation by combining Hartree-Fock/density functional theory calculation with linear regression correction approach[J]. J. Chem. Phys.,2004,121(15):7086-7095.
    [58]M. H. Keshavarz, H. Sadeghi. A new approach to predict the condensed phase heat of formation in acyclic and cyclic nitramines, nitrate esters and nitroaliphatic energetic compounds[J]. J. Hazard. Mater.,2009,171(1-3):140-146.
    [59]M. H. Keshavarz. Predicting condensed phase heat of formation of nitroaromatic compounds[J]. J. Hazard. Mater.,2009,169(1-3):890-900.
    [60]A. D. French, A.-M. Kelterer, G. P. Johnson, M. K. Dowd. B3LYP/6-31G*, RHF/6-31G* and MM3 heats of formation of disaccharide analogs[J]. J. Mol. Struct,2000,556(1-3):303-313.
    [61]K. H. Chen, N. L. Allinger. Molecular mechanics (MM4) study of saturated four-membered ring hydrocarbons[J]. J. Mol. Struct.,2002,581(1-3):215-237.
    [62]M. Jaidann, S. Roy, H. A. Rachid. A DFT theoretical study of heats of formation and detonation properties of nitrogen-rich explosives[J]. J. Hazard. Mater.,2010, 176(1-3):165-173.
    [63]Y. Yang, M. N. Weaver, K. M. Merz, Jr. Assessment of the "6-31+G**+ LANL2DZ" Mixed Basis Set Coupled with Density Functional Theory Methods and the Effective Core Potential:Prediction of Heats of Formation and Ionization Potentials for First-Row-Transition-Metal Complexes[J]. J. Phys. Chem. A,2009, 113(36):9843-9851.
    [64]M. M. Meyer, S. R. Kass. Experimental and Theoretical Gas-Phase Acidities, Bond Dissociation Energies, and Heats of Formation of HClOx, x= 1-4[J]. J. Phys. Chem. A,2010,114(12):4086-4092.
    [65]D. J. Grant, D. A. Dixon. Heats of Formation and Bond Dissociation Energies of the Halosilanes, Methylhalosilanes, and Halomethylsilanes[J]. J. Phys. Chem. A, 2009,113 (15):3656-3661.
    [66]L. A. Curtiss, K. Raghavachari, P. C. Redfern. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation[J]. J. Chem. Phys.1997,106(3):1063-1079.
    [67]W. S. Ohlinger, P. E. Klunzinger, B. J. Deppmeier. Efficient Calculation of Heats of Formation[J]. J. Phys. Chem. A,2009,113(10):2165-2175.
    [68]M. T. Nguyen, M. H. Matus, W. A. Lester, Jr., D. A. Dixon. Heats of Formation of Triplet Ethylene, Ethylidene, and Acetylene[J]. J. Phys. Chem. A,2008,112 (10):2082-2087.
    [69]M. M. Meyer, S. R. Kass. Experimental and Theoretical Gas-Phase Acidities, Bond Dissociation Energies, and Heats of Formation of HClOx, x= 1-4[J]. J. Phys. Chem. A,2010,114(12):4086-4092.
    [70]E. F. Byrd, B. M. Rice. Improved Prediction of Heats of Formation of Energetic Materials Using Quantum Mechanical Calculations[J]. J. Phys. Chem. A,2009, 113(19):5813-5814.
    [71]D. J. Grant, D. A. Dixon, J. S. Francisco. Heats of Formation of the H1,2OmSn (m, n= 0-3) Molecules from Electronic Structure Calculations[J]. J. Phys. Chem. A,2009,113(42):11343-11353.
    [72]H. Eyring. The Activated Complex and the Absolute Rate of Chemical Reactions[J]. Chem. Rev.,1935,17(1):65-77.
    [73]C. J. Cerjan, W. H. Miller. On finding transition states[J]. J. Chem. Phys.,1981, 75(6):2800-2806.
    [74]J. Simons, P. Joergensen, H. Taylor, J. Ozment. Walking on potential energy surfaces[J]. J. Phys. Chem.,1983,87(15):2745-2753.
    [75]A. Banerjee, N. Adams, J. Simons, R. Shepard. Search for stationary points on surfaces[J]. J. Phys. Chem.,1985,89(1):52-57.
    [76]J. Baker. An Algorithm for the Location of Transition States[J]. J. Comput. Chem., 1986,7(4):385-395.
    [77]P. O. Lowdin. Correlation Problem in many-electronic quantum mechanics. I. review of different approaches and discussion of some current ideas[J]. Adv. Chem. Phys.,1959,2(3):207-322.
    [78]J. A. Pople, R. Seeger, R. Krishnan. Variational configuration interaction Methods and comparison with Perturbation Theory[J]. Int. J. Quantum Chem., 1977,12(11):149-163.
    [79]B. Foresman, M. Head-Gordon, J. A. Pople, M. J. Frisch. Toward a systematic molecular orbital theory for excited states[J]. J. Phys. Chem.,1992,96(1): 135-149.
    [80]R. Krishnan, H. B. Schlegel, J. A. Pople. Derivative Studies in Configuration-interaction Theory [J]. J. Chem. Phys.,1980,72(8):4654-4655.
    [81]B. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi, H. F. Schaefer. Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach[J]. J. Chem. Phys.,1980,72(8): 4652-4653.
    [82]E. A. Salter, G. W. Trucks, R. J. Bartlett. Analytic energy derivatives in many-body methods. I. First derivatives[J]. J. Chem. Phys.,1989,90(3): 1752-1766.
    [83]M. R. Nyden, G. A. Petersson. Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions[J]. J. Chem. Phys., 1981,75(4):1843-1862.
    [84]J. A. Pople, M. Head-Gordon, K. Raghavachari. Quadratic configuration interaction. A general technique for determining electron correlation energies [J]. J. Chem. Phys.,1987,87(10):5968-5975.
    [85]J. Cioslowski. A new robust algorithm for fully automated determination of attractor interaction lines in molecules[J]. Chem. Phys. Lett.,1994,219(1-2): 151-154.
    [86]H. B. Schlegel, M. A. Robb. MCSCF gradient optimization of the H2CO→H2+ CO transition structure[J]. Chem. Phys. Lett.,1982,93(1):43-46.
    [87]R. H. Eade, M. A. Robb. Direct minimization in me scf theory.the quasi-newton method[J]. Chem. Phys. Lett.,1981,83(2):362-368.
    [88]D. Hegarty, M. A. Robb. Principles of direct 4-component relativistic SCF: application to caesium auride[J]. Mol. Phys.,1979,38(8):1795-1798.
    [89]J. A. Pople, R. Krishnan, H. B. Schlegel, J. S. Binkley. Electron Correlation Theories and Their Application to the Study of Simple Reaction Potential Surfaces[J]. Int. J. Quant. Chem.,1978(5):545-560.
    [90]J. Cizek. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods[J]. J. Chem. Phys.,1966,45(11):4256-4266.
    [91]G E. Scuseria, H. F. Schaefer. Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)?[J]. J. Chem. Phys.,1989,90(7):3700-3703.
    [92]G. D. Purvis, Ⅲ, R. J. Bartlett. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples[J]. J. Chem. Phys.,1982,76(4):1910-1918.
    [93]G. E. Scuseria, C. L. Janssen, H. F. Schaefer. An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations[J]. J. Chem. Phys.,1988,89(12):7382-7387.
    [94]P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas[J]. Phys. Rev.,1964, 136(3B):B864-B871.
    [95]W. Kohn, L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects[J]. J. Phys. Rev.,1965,140(4A):A1133-A1138.
    [96]J. C. Slater. Quantum Theory of Molecular and Solids.4:The Self-Consistent Field for Molecular and solids McGraw-Hill[M]. New York,1974.
    [97]D. E. Salahub, M. C. Zerner, Eds. The Challenge of d and f Electrons[M]. ACS: Washington D.C.1989.
    [98]R. G Parr, W. Yang. Density-functional theory of atoms and molecules[M]. Oxford Univ. Press:Oxford,1989.
    [99]J. A. Pople, P. W. M. Gill, B. G. Johnson. Kohn-Sham density-functional theory within a finite basis set[J]. Chem. Phys. Lett.,1992,199(6):557-560.
    [100]B. G Johnson, M. J. Fisch. An implementation of analytic second derivatives of the gradient-corrected density functional energy[J]. J. Chem. Phys.,1994, 100(10):7429-7442.
    [101]J. K. Labanowski, J. W. Andzelm. Density Functional Methods in Chemistry[M]. Springer-Verlag:New York,1991.
    [102]V. G Kunde, A. C. Aikin, R. A. Hanel, D. E. Jennings, W. C. Maguire, R. E. Samuelson. C4H2,HC3N and C2N2 in Titan's atmosphere [J]. Nature,1981,292: 686-688.
    [103]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople. Gaussian 03 Revision A.I [M]. Pittsburgh PA,2003.
    [104]J. D. Dill, A.Greenberg, J. F. Liebman. Substituent Effects on Strain Energies[J]. J. Am. Chem. Soc.,1979,101(23):6814-6826.
    [105]P. George, M. Trachtman, C. W. Bock, A. M. Brett. An alternative approach to the problem of assessing destabilization energies (strain energies) in cyclic hydrocarbons[J]. Tetrahedron,1976,32(3):317-323.
    [106]B. H. Jrack, L. Schaad. Ab Initio Calculation of Resonance Energies. Benzene and Cyclobutadiene[J]. J. Am. Chem. Soc.,1983,105(26):7500-7505.
    [107]C. P. Blahous Ⅲ, H. F. Schaefer Ⅲ. Geometrical Structure and Vibrational Frequencies for the Oxygen Analogue of Hexasulfur[J]. J. Phys. Chem.,1988, 92(4):959-962.
    [108]K. B. Wiberg. The Concept of Strain in Organic Chemistry [J]. Angew. Chem. Int. Ed.,1986,25(4):312-322.
    [109]W. Schotte. Prediction of heats of formation[J]. J. Phys. Chem.,1968,72(7): 2422-2431.
    [110]N. Cohen, S. W. Benson. Estimation of heats of formation of organic compounds by additivity methods[J]. Chem. Rev.,1993,93(7):2419-2438.
    [111]魏运洋,李建.化学反应机理导论[M].北京:科学出版社,2004,1-2.
    [112]荣国滨.高等有机化学基础[M].上海:华东理工大学出版社,2001,145-146.
    [113]陈乐培,董玉环.中级有机化学[M].北京:中国环境科学出版社,2004,4-5.
    [114]陈慧兰,余宝源.理论无机化学[M].上海:高等教育出版社,1989,335-337.
    [115]杜灿屏,刘鲁生,张恒.21世纪有机化学发展战略[M].北京:化学工业出版社,2002,291-297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700