含能晶体力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含能晶体的力学性能(如弹性模量、断裂强度等)和力学行为(如位错滑移、塑性屈服、断裂破坏等)对含能材料的设计、制备,以及起爆性能和安全性能都具有重要的影响。本论文从含能晶体力学性能的宏观和微观两个方面出发,分别对晶体颗粒集合体和单晶体的力学性能进行了研究。
     基于含能晶体颗粒集合体力学性能与晶体品质的相关性,选用不同品质的RDX和HMX晶体进行压制试验,采用Kawakita和Heckel方程对压制曲线进行拟合,从拟合常数来评价晶体颗粒的力学性能和品质,并进一步对压制过程进行了分段分析,探讨了压制实验参数对实验结果的影响,研究了压制过程产生的声发射信号的规律。结果表明:Kawakita和Heckel压制方程的以模量倒数为量纲的拟合常数具有系综统计平均意义,可以用来表征晶体颗粒的力学性能;拟合常数越小,晶体品质越好;重结晶RDX和HMX晶体所得到的拟合常数明显小于工业级晶体颗粒,判断重结晶晶体品质比工业级颗粒高,与其它评价方法的结果一致;基于压制曲线曲率变化特点并结合压制实验过程,将晶体颗粒压制过程分为重排、破碎和压实三个阶段,破碎阶段的拟合常数结果最能真实反映含能晶体的力学性能;压制实验各参数中,模具尺寸和单位面积装粉量对实验结果的影响非常明显,样品的初始高度(密度)只有在差别较大时才会产生较大的影响,而粒径分布和加载速率的影响均非常有限;压制过程产生的声发射信号的幅度、波击计数(率)和上升时间等特征参数呈现出明显的与压制行为对应的规律。
     用纳米压痕方法对高品质大尺寸的β-HMX单晶体进行实验,首次测得其在(010)和(001)两个晶面上的弹性模量(分别为22.88GPa和26.05GPa)和硬度(分别为1.11GPa和0.95GPa),并采用各向异性弹塑性本构模型和文献的HMX晶体弹性常数对压痕实验进行有限元数值模拟,初步探讨了模拟和实验曲线的差别并分析了其中的原因。研究结果表明:Zaug和Sewell等人的弹性模量值均比压痕实验结果要小;采用Zaug数据的模拟曲线与实验曲线存在很大差别,与Zaug的数据计算得到的剪切模量很小有关;采用Sewell数据的模拟卸载曲线与实验曲线比较接近,表明实际上Sewell的弹性模量与压痕实验值比较接近,但二者因为测量原理不同而在数值上存在较大差异,分析认为作为三维加载方式的压痕方法获得的材料弹性参量更接近工程实际应用意义的弹性参量。
     本研究定量表征了RDX和HMX晶体集合体的统计平均力学性能,确定了HMX单晶体的纳米压痕方法的微观力学性能,对预测含能材料的力学行为和起爆行为具有重要的应用价值。
Abstract:The mechanical properties(such as elastic modulus or fracture strength) and mechanical behaviors(for instance,dislocation slipping,plastic yielding,cracking failure and so on) of energetic crystals are crucial to the designing,preparing,detonation as well as security performances of energetic materials.In this paper,the mechanical properties of energetic crystals were investigated both from the perspectives of crystalline particle aggregates and single crystals.
     Owing to the high correlation of mechanical properties and crystalline qualities,RDX and HMX crystalline aggregates of different qualities were selected to be compressed so as to obtain compaction curves,which then were fit by the Kawakita and Heckel equations.The fitting constants were used to evaluate the mechanical properties and qualities of the crystals. Further studies were executed on segmentation of the compaction process and influences of the test parameters.What's more,the rules of the acoustic emission signals,which were produced in the compression,were investigated,too.The results show that the constants of the Kawakita and Heckel equations,which are of dimension of the reciprocal of modulus and bear the meanings of ensemble average,can be employed effectively to describe the mechanical properties of the crystalline aggregates.The constant is lower and the quality is better.While the recrystalline particles have lower constant values,which approves that their qualities are better than the commercial grade ones.The evaluation results are consistent with other means,which validates the effectiveness of the method by mechanical properties. Basing on the traits of the curvature of compaction curves and the process of compressing,the compression process is divided into three regimes,i.e.rearrangement,fragmentation and compaction stages.It is the best and true reflection to the mechanical properties and interactions of aggregates to fit with the mere data of fragmentation regime.The parameter settings of compression experiment were also discussed,and the conclusion is that:the size of the mould and the charge amount per unit area straightly contribute to the results;the initial height or density acts only when the charge manners vary greatly;while the particle size distribution and loading rate have little influence.The acoustic emission(AE) signals were detected when pressing the crystalline granules.The maximum amplitude,hit count(rate) and rise time present regularly in the procedure,which corresponds to the mechanical behaviors of the granules.
     Theβ-HMX single crystals with high quality and large dimension were loaded by instrumented nano-indenter in the(010) and(001) plane,respectively.The modulus and hardness were acquired for the first.The elastic moduli are 22.88GPa and 26.05GPa of(010) and(001) plane respectively,while the hardness values are 1.11GPa and 0.95GPa.Finite element simulations were performed for indentation experiment,in which the anisotropic elastic-plastic constitutive model and HMX constants published in papers were used.And the differences between experimental and simulation curves were discussed preliminarily.The results show that both the modulus derived by Zaug and Sewell are markedly lower to the indentation results.The simulation curves of Zaug are very different from the experimental curves,which may be caused by its very low shear modulus.While the unloading curves of Sewell are quite close to the indentation curves,indicating that the elastic modulus by Sewell approach to the real modulus in indentation experiment,yet they are different in the numerical values just because of their differences in the principles.In this paper,the pilot studies show that the elastic properties obtained by indentation,in respect that it is three-dimensional stress statue during the loading process,are much close to the properties the engineering practice.
引文
[1]张泰华.微/纳米力学测试技术及其应用[M].北京:机械工业出版社,2004.
    [2]Carl-Otto Leiber.Assessment of safety and risk with a microscopic model of detonation[J].Elsevier Science B.V.,2003.
    [3]Carl-Otto Leiber.Aspects of the mesoscale of crystalline explosives[J].Propellants,Explosives,Pyrotechnics,2000,25:288-301.
    [4]U.Teipel,J.K.Bremser.Particle Characterization,in Ulrich Teipel(EDs),Energetic Materials[M].Weinheim,Wiley-VCH Verlag GmbH&Co.KGaA,2005,p.293.
    [5]吴成义,张丽英.粉体成形力学原理[M].北京:冶金工业出版社,2003.
    [6]李明,温茂萍,黄明,等.压缩刚度法评价含能晶体颗粒的凝聚强度[J].含能材料,2007,15(3):244-247.
    [7]王盘鑫.粉末冶金学[M].北京:冶金工业出版社.1997.
    [8]R.W.Armstrong,W.L.Elban.Materials science and technology aspects of energetic(explosive)materias[J].Materials Science and Technology,2006,22(4):381-393.
    [9]S.J.Jacobs,H.W.Sandusky,W.L.Elban.Quasi-static compaction of porous propellant beds.Ⅰ.Modeling ball powder experiments with deformed spheres in a regular lattice[J].Powder Technology,1996,89:209-217.
    [10]H.W.Sandusky,W.L.Elban.Quasi-static compaction of porous propellant beds.Ⅱ.Experiments and application of lattice compaction model to cannon propellants[J].Powder Technology,1996,89:219-229.
    [11]J.M.Zaug.Elastic constants of β-HMX and tantalum,equations of state of supercritical fluids and fluid mixtures and thermal transport determinations[C].Proc.11th International Detonation Symposium.Snowmass,1998:498-509.
    [12]T.D.Sewell,Ralph Menikoff,Dmitry Bedrov,Grant D.Smith.A molecular dynamics simulation study of elastic properties of HMX[J].Journal of Chemical Physics,2003,119(14):7417-7426.
    (13]舒远杰,龙新平.含能材料:辉煌的20世纪极其前途[C].四川省中青年专家大会,2003.
    [14]L.Borne,M.Herrmann and C.B.Skidmore.Microstructure and Morphology,in:Ulrich Teipel(ED.),Energetic Materials:Particle and Characterization[M].Weinheim,Wiley-VCH Verlag GmbH&Co.KGaA,2005,p.333.
    [15]R.M.Doherty,L.A.Nock,D.S.Watt.Reduced Sensitivity RDX Round Robin Programme-Update [C].37th International Annual Conference of ICT.Karlsruhe:ICT,2006.
    [16]张宝(钅平),张庆明,黄风雷.爆轰物理学[M].北京:兵器工业出版社,2001.
    [17]A.Freche,J.Aviles,L.Donnio,C.Spyckerelle.Insensitive RDX(I-RDX)[C].Insensitive Munitions and Energetic Materials Symposium-Technology Implementation in the 21st Century.Texas,2000.
    [18]Ian J.Lochert,Mark D.Franson,Brian L.Hamshere.Reduced Sensitivity RDX(RS-RDX) Part Ⅰ:Literature Review and DSTO Evaluation[A].DSTO-TR-1447:DSTO,2003.
    [19]Duncan Watt,Frederic Peugeot,Ruth Doherty,Michael Sharp,Darko Topler,David Tucker.Reduced sensitivity RDX-Where are we?[C].35th Annual Conference of ICT.Karlsruhe:ICT,2004.
    [20]Reduced sensitivity RDX Round Robin(R4) Programme -an example programme for successful collaboration and data sharing between MSIAC and NATO nations.Lettre MSIAC Newsletter.2006(2).
    [21]S.Lecume,C.Boutry,C.Spyckerelle.Structure of nitramines crystal defects relation with shock sensitivity[C].35th Annual Conference of ICT.Karlsruhe:ICT,2004.
    [22]Stanley M.Caulder,Michael L.Buess,Lori A.Nock.NQR spectroscopy study of the crystal quality of e-Hexanitrohexaazaisowurtzitane(CL-20) synthesized using several different intermediate precursors[C].36th Annual Conference of ICT.Karlsruhe:ICT,2005.
    [23]Von H.Whitley.Optical absorption measurements of defects in crystalline RDX[C].36th Annual Conference of ICT.Karlsruhe:ICT,2005.
    [24]Michael Herrmann.Microstructure of RDX investigated by means of Powder X-ray Diffraction[C].Insensitive Munitions & Energetic Materials Technology Symposium(IMEMTS).Bristol,2006.
    [25]Roger L.Swanson,B.Thomas,M.Sherlock,L.Nock,R.Behrens Jr.Reduced sensitivity RDX &RS-RDX PBXN-109 aging study[C].37th Annual Conference of ICT.Karlsruhe:ICT,2006.
    [26]C.Spyckerelle,A.Freche,G.Eck.Ageing of reduced sensitivity RDX and compositions based on reduced sensitivity RDX,an update[C].Insensitive Munitions & Energetic Materials Technology Symposium(IMEMTS).Bristol,2006.
    [27]C.Spyckerelle,A.Freche,G.Eck,C.Boutry.Ageing of I-RDX(?) and of compositions based on I-RDX(?)[C].35th Annual Conference of ICT.Karlsruhe:ICT,2004.
    [28]G.Bunte,J.Deimling,H.Neumann,H.Krause.Analytical charaterization of different insensitive RDX-samples[C].35th Annual Conference of ICT.Karlsruhe:ICT,2004.
    [29]Ulrich Teipel.Energetic Materials:Particle and Characterization[M].Weinheim:Wiley-VCH Verlag GmbH & Co.KGaA,2005.
    [30]LIMing,HUANG Ming,KANG Bin,et al.Quality evaluation of RDX crystalline particles by confined quasi-static compression method[J].Propellant,Explosive,Pyrotechnics,2007,32(5):401-405.
    [31]田丽燕,徐更光,王廷增.散粒体炸药压装成型过程分析[J].火炸药学报,2002,(2):23-24.
    [32]Ali Osman KURT,Tom J.DAVIES.A study of compaction of metal powders[C].1.Ulusal Toz Metalurjisi Konferansi.Ankara,1996:Gazi(U|¨)niversitesi,493-506.
    [33]K.Kawakita,K.H.Ludde.Some considerations on powder compression equations[J].Powder Technology,1970,4:61-68.
    [34]R.W.Heckel.Density-pressure relationships in powder compaction[J].Trans.Metall.Soc.AIME,1961,221:671-675.
    [35]M.Yu.Balshin.Theory of compacting[J].Vestnik Metalloprom,1938,18(16):124-137.
    [36]L.F.Athy.Density,porosity,and compaction of sedimentary rocks.Am.Assoc.Pet.Geol.Bull.,1930,14:1-24.
    [37]黄培云.粉末冶金原理[M].北京:粉末冶金工业出版社,1982.
    [38]P.J.Denny.Compaction equations:a comparison of the Heckel and Kawakita equations[J].Powder Technology,2002,127:162-172.
    [39]耿荣生.声发射技术发展现状——学会成立20周年回顾[J].无损检测,1998,20(6):151-154.
    [40]李光海.声发射检验技术进展[J].南昌航空工业学院学报,2001,15(2):39-43.
    [41]刘国光,程青蟾.声发射技术及其在金属材料领域的应用[J].上海金属,2001,23(6):35-41.
    [42]孙建平,王逢瑚,朱晓东,等.声发射检测技术及其在木质材料无损检测中应用的展望[J].世界林业研究,2006,19(02):55-60.
    [43]耿荣生,沈功田,刘时风.声发射信号处理和分析技术[J].无损检测,2002,24(1):23-28.
    [44]高登攀,郑家贵,田勇,张伟斌.浅谈声发射技术在含能材料研究中的应用[J].含能材料,2004,12(04):252-255.
    [45]蒋帅锋.声发射信号处理与模式识别的研究[D].硕士学位论文.上海:上海理工大学,2006.
    [46]沈功田,耿荣生,刘时风.声发射信号的参数分析方法[J].无损检测,2002,24(2):72-77.
    [47]纪洪广,张天森,张志勇,等.无损检测中常用声发射参数的分析与评价[J].无损检测,2001,23(7):289-291.
    [48]耿荣生,沈功田,刘时风.基于波形分析的声发射信号处理技术[J].无损检测,2002,24(6):257-261.
    [49]陈玉华,刘时风,耿荣生,沈功田.声发射信号的谱分析和相关分析[J].无损检测,2002,24(9):395-399.
    [50]王余刚,骆英,柳祖亭.全波形声发射技术用于混凝土材料损伤监测研究[J].岩石力学与工程学报,2005,24(5):803-807.
    [51]赵方芳,罗景润,田常津.利用声发射技术监测颗粒填充聚合物材料的裂纹扩展过程[J].高压物理学报,2000,14(3):235-240.
    [52]王恩元,何学秋,刘贞堂,等.煤体破裂声发射的频谱特征研究[J].煤炭学报,2004,29(3):289-292.
    [53]张泰华,杨业敏.纳米硬度技术的发展和应用[J].力学进展,2002,32(3):349-363.
    [54]W.C.Oliver.Measurement of hardness and elastic modulus by instrumented indentaion:Advances in understanding and refinements to methodology[J].J.Mater.Res.,2004,19(1):3-20.
    [55]Oliver WC.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation[J].J.Mater.Res.,1992,7(6):1564-1583.
    [56]刘扬,陈定方.基于纳米压痕技术和有限元仿真的材料力学性能分析[J].武汉理工大学学报(交通科学与工程版),2003,27(5):690-693.
    [57]Hysitron Inc..Tribolndenter~(?) users manual.NRL-M-011 v3.0,2003.
    [58]Biswajit Banerjee,Daniel O.Adams.Micromechanics-based determination of effective elastic properties of polymer bonded explosives[J].Physica B,2003,338:8-15.
    [59]Biswajit Banerjee.Micromechanics-based prediction of thermoelastic properties of high energy materials[D].PhD thesis.US:The University of Utah,2002.
    [60]刘国勋.金属学原理[M].北京:冶金工业出版社,1980.
    [61]崔忠圻,刘北兴.金属学与热处理原理[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [62]W.Voigt.Lehrbuch der Kristallphysik[M].Leipzig:Teubner,1910.
    [63]A.Reuss.Berechnung der Fliebgrenze von Mischkristallen auf Grund der Plastizitatsbedinggung fur Einkristalle[J].Z.Angew.Math.Mech.,1929,9:49-58.
    [64]H.Neerfeld.Trade Techn.Inform.Doc.Unit Libr.1947:1281/47.
    [65]R.Hill.The elastic behavior of a crystalline aggregate[J].Proc.Phys.Soc.,London,Sect.A 65,1952:349-354.
    [66]T.D.Sewell,D.Bedrov,R.Menikoff,G.D.Smith.Elastic properties of HMX[A].In:Shock compression of Condensed Matter[C],AIP,New York,2001,AlP Conf.Proc.No.620,Part 1:399-.AIP Proceedings,2002.
    [67]Dmitry Bedrov,Chakravarthy Ayyagari,Grant D.Smith,et al.Molecular dynamics simulations of HMX crystal polymorphs using a flexible molecule force field[J].Journal of Computer-Aided Materials Design,2001,8:77-85.
    [68]Lewis L.Stevens,Craig J.Eckhardt.The elastic constants and related properties of β-HMX determined by Brillouin scattering[J].The Journal of Chemical Physics,2005,122:174701-174708.
    [69]陈纲,廖理儿.晶体物理学基础[M].北匕京:科学出版社,1992.
    [70]张克从.近代晶体学基础(下册)[M].北京:科学出版社,1998.
    [71]李敏,梁乃刚,张泰华,王林栋.纳米压痕过程中的三维有限元数值实验研究[J].力学学报,2003,35(3):257-264.
    [72]林江,牛晓燕,树学锋.方沸石大单晶及多晶粉饼力学性能的实验研究[J].应用力学学报,2005,22(3):400-403.
    [73]牛晓燕,林江,树学锋.镁碱沸石FER单晶弹塑性双线性本构关系的实验研究与有限元确定[J].太原理工大学学报,2005,36(6):682-685.
    [74]Release 10.0 documentation for ANSYS:ANSYS,Inc.theory reference.ANSYS,Inc.,2005.
    [75]中华人民共和国国家标准:仪器化纳米压入试验方法通则(征求意见稿).北京:国家质量技术监督 局,2007.
    [76]宋维锡.金属学[M].北京:冶金工业出版社,1980.
    [77]胡赓祥,蔡珣.材料科学基础[M].上海:上海交通大学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700