高灵敏功能化荧光核酸探针在生化分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准确和灵敏地获取生物样品中小分子、核酸、蛋白质和细胞的相关信息对生物医学研究以及临床诊断和治疗都具有十分重要的意义。功能化荧光核酸探针,其功能超出了核酸传统的基因角色,受到广大研究者越来越多的关注,但是,如何获得更高的灵敏度,如何提高抗复杂环境干扰的能力,如何实时、动态、灵敏、准确地获取生命活动相关信息,仍然是分析化学工作者所面临的重大挑战。
     本论文瞄准上述挑战进行研究,基于分子识别和信号放大技术发展了一系列分别以小分子、核酸、蛋白质和癌细胞为检测对象的新型功能化荧光核酸探针,主要内容包括:
     (1)发展了一种基于荧光共振能量转移和链置换放大技术的核酸适体探针用于小分子可卡因的高灵敏检测。在此,含有核酸适体的发夹探针的3’端标记荧光受体Cy5,而引物的5’端标记荧光供体FAM,当核酸适体与可卡因结合会导致其构型发生变化从而打开发夹结构,引物便可以与打开的发夹探针杂交,在聚合酶作用下引物延伸成与发夹探针序列完全互补,产生新的双链使得供体和受体靠近发生荧光共振能量转移,同时可卡因被引物延伸的链竞争下来变成自由的可卡因分子,又可以与另外一条核酸适体结合,不断循环实现信号放大。该方法可以在16min内达到200nM的检测下限,选择性良好。
     (2)发展了一种基于芘激发态二聚体和杂交链式放大技术的核酸探针用于DNA的高灵敏检测。首先对两个发夹探针两端分别进行芘分子标记,由于发夹探针粘性末端的长度使得两端的芘分子以单体形式存在,当目标DNA触发杂交链式反应发生后,会形成一条长的带缺口的双链,使大量的芘分子以二聚体的形式存在。通过稳态荧光分析和时间分辨荧光测量技术可以实现缓冲溶液和复杂生物样品中DNA的高灵敏检测。利用该方法在缓冲溶液中对DNA的检测下限可以达到250 fM。
     (3)发展了一种基于芘激发态二聚体和竞争反应的核酸适体探针用于人血清中溶菌酶的高灵敏检测。该体系中含有一条两端标记芘分子的发夹探针和一条未标记的核酸适体:当没有目标分子时,两条链部分杂交可以使发夹探针打开,芘分子以单体形式存在;而当存在目标分子时,目标分子结合核酸适体并以竞争的方式将芘分子双标探针挤开,被挤开的探针呈发夹构型,使得芘分子以二聚体形式存在。我们结合稳态和时间分辨荧光测量技术可对缓冲溶液或血清中的溶菌酶进行检测。该方法在缓冲溶液中对溶菌酶的检测下限可以达到200 pM。利用该方法还实现了ATP的检测,说明这是一种通用的检测方法。
     (4)发展了一种基于分子信标和缺刻酶信号放大技术的核酸适体探针用于目标细胞的高灵敏检测。一段能打开分子信标的单链DNA与核酸适体杂交形成核酸适体/单链DNA复合物。当没有靶细胞存在时,单链DNA不能打开分子信标;当有靶细胞存在时,核酸适体与其结合形成核酸适体/靶细胞复合物,导致原来的双链结构分散并将单链DNA释放出来。被释放的单链DNA序列含有缺刻酶的识别位点,当其与分子信标结合以后,缺刻酶会将分子信标切开,单链DNA随即又可以与新的分子信标杂交。以这种方式,每条单链DNA可以多次循环使多个分子信标被切开,从而实现信号放大。利用该方法检测Ramos细胞可以达到200 cells/mL的检测下限,且特异性良好。
     (5)发展了一种基于人血管生成素介导进入细胞的核酸适体探针用于增强光动力学治疗的效果。合成并表征了光敏剂Ce6标记的血管生成素核酸适体,与血管生成素特异结合以后,在目标细胞膜表面受体蛋白的介导下进入目标细胞,经过特定波长光照后,Ce6激活周围的氧分子变成单态氧将目标细胞杀死。结果显示该方法具有较高的光动力学的治疗效果。
The essential information on small molecules, nucleic acids, proteins and cells obtained accurately and sensitively has great significance for biological medicine study, clinical diagnosis and therapy. Functional fluorescent nucleic acid probe,whose functions are beyond the conventional genetic roles of nucleic acids, had attracted researchers’increasing attention. However, how to get higher sensitivity, increase its ability to tolerate any interference from complex environment, get the dynamic data of these life processes sensitively and accurately in real time are still great challenges to analysts.
     In this dissertation, a series of functional fluorescent nucleic acid probes based on molecule recognization and signal amplification technique have been developed for small molecule, nucleic acid, protein and cancer cell detection, respectively. The main researches of this dissertation are summarized as follows.
     (1) An aptasensor for cocaine amplified detection based on a strand-displacement polymerization reaction and fluorescence resonance energy transfer (FRET) has been developed. Herein, the acceptor fluorophore (Cy5) is labelled at the 3’end of the hairpin probe, which contains the cocaine aptamer; and the donor fluorophore (FAM) is labelled at the 5’end of the primer. When the aptamer binds to cocaine and undergoes a conformational change, the hairpin structure opened. Then the primer anneals with the exposed stem of the hairpin probe. Following this, the primer will extend to form a complementary DNA of the hairpin probe in the presence of dNTPs/polymerase. The newly duplex will push the donor and acceptor in close proximity, resulting in FRET. Meanwhile, the target cocaine is displaced by the primer extension. To renew the cycle, the displaced free cocaine binds to another aptamer, making the signal amplification realized. The detection limit of this method is 200 nM in about 16 min and the specificity of this approach is excellent.
     (2) A nucleic acid probe for highly sensitive DNA detection based on pyrene excimer and hybridization chain reaction (HCR) amplification has been developed. Two hairpin probes have been labeled two pyrene molecules at both ends, where the pyrene molecules are separated each other because of the sticky end. When the target DNA triggers HCR, there will be produce a long nicked duplex, allowing the formation of numerous pyrene excimers. Sensitive detection of target DNA in buffer and complex biological sample is achieved through steady-state fluorescence assay and time-resolved fluorescence measurement. The limit of detection for DNA is 250 fM in buffer.
     (3) An aptasensor for sensitive lysozyme detection in human serum based on pyrene excimer and competition reaction has been developed. Herein, a dual-pyrene labeled hairpin probe and label-free lysozyme aptamer coexist in solution. In the absence of target, the aptamer hybridizes with part of the hairpin probe to form a duplex, resulting in two pyrene molecules spatially separated. However,in the presence of target, the dual-pyrene labeled probe is gradually displaced from the aptamer by the target, subsequently forming a hairpin structure, this brings the two pyrene moieties into close proximity and allows the formation of an excimer. Detection of target lysozyme in buffer and human serum is achieved through steady-state fluorescence assay and time-resolved fluorescence measurement. The detection limit of this method for lysozyme is 200 pM in buffer. Finally, the success of ATP detection suggests the generality of the strategy.
     (4) A nucleic acid probe for highly sensitive target cell detection based on molecular beacon and nicking endonuclease signal amplification has been developed. A ssDNA , which can open the molecular beacon, is hybridized with aptamer to form a duplex. The formation of the aptamer/ssDNA complex inhibits the competitive hybridization of molecular beacon/ssDNA unless triggered by target cells. In the presence of the specific target cancer cells, the aptamer binds to the target cell and forms an aptamer/cell complex, resulting in the disassembly of the original duplex and release of the ssDNA. The released ssDNA sequence contains the nick endonuclease recognition site. One ssDNA hybridizes with one molecular beacon and then the nick endonuclease makes a nick in the beacon strand. After nicking, the molecular beacon is cleaved and the ssDNA can be reused for next cycle of cleavage. In this way, each ssDNA can go through many cycles, resulting in cleavage of many beacons, achieving a signal amplification. The detection limit of this method is 200 cells/mL and the specificity of this approach is excellent.
     (5) An angiogenin-mediated cell-internalized aptamer probe for improve the efficiency of photodynamic therapy (PDT) has been developed. A Ce6-conjugated, angiogenin aptamer was sythesized and characterized, which can deliver the photosensitizer into target cells mediated by angiogenin. After irradiation by an appropriate light, the Ce6 active the surrounding oxygen molecules to form reactive oxygen species, that ultimately leads to tumor cell death. The results showed high efficiency of PDT.
引文
[1] Watson J D, Crick F H C. Genetical implications of the structure of deoxyribonucleic acid. Nature, 1953, 171(4361): 964-967
    [2] Watson J D, Crick F H C. Genetic-implications of the structure of deoxyribonucleic-acid. The Journal of the Medical Association, 1993, 269(15): 1967-1969
    [3] Jayasena S D. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clinical Chemistry, 1999, 45(9): 1628-1650
    [4] Brody E N, Gold L. Aptamer as therapeutic and diagnostic agents. Reviews in Molecular Biotechnology, 2000, 74(1): 5-13
    [5] Ban C, Chung S, Park D. Detection of protein–DNA interaction with a DNA probe: distinction between single-strand and double-strand DNA–protein interaction. Nucleic Acids Research, 2004, 32, (13): e110
    [6] Cuthberston G, Grose C. Biotinylated and radioactive DNA probes for detection of viricella-zoster virus genome I infected human-cells. Molecular and Cellular Probes, 1988, 2(3): 197-207
    [7] Panke E S, Yang L I, Leist P A, et al. Comparison of gen-probe DNA probe test and culture for the detection of neisseria gonorrhoeae in endocervical specimens. Journal of Clinical Microbiology, 1991, 29(5): 883-888
    [8] Vlodavsky I, Friedmann Y, Elkin M,et al. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nature Medicine, 1999, 5(7): 793-802
    [9] Iwasaki M, Okumura K, Kondo Y, et al. cDNA cloning of a novel heterogeneous nuclear ribonucleoprotein gene homologue in caenorhabditis elegans using hamster prion protein cDNA as a hybridization probe. Nucleic Acids Research, 1992, 20(15): 4001– 4007
    [10] Mattos C, Mattos C, Osburn BI. Recombinant cDNA probe from bluetongue virus genome segment 10 for identification of bluetongue virus. Journal of Veterinary Diagnostic Investigation, 1989, 1(3): 237-241
    [11] Bale A E, Usala S, Weinberger C, et al. A cDNA probe (PheA12) from the hc-(ERBA) gene on chromosome 3 detects a high frequency RFLP. Nucleic Acids Research, 1988, 16(11): 7756-7762
    [12] Hoffman L M., Ma Y, Barker R F. Molecular cloning of Phaseolus vulgaris lectin mRNA and use of cDNA as a probe to estimate lectin transcript levels in various tissues. Nucleic Acids Research, 1982, 10(23): 7819–7828
    [13] Vaughn E M, Halbur P G, Paul P S. Use of nonradioactive cDNA probes to differentiate porcine respiratory coronavirus and transmissible gastroenteritis virus isolates. Journal of Veterinary Diagnostic Investigation, 1996, 8(2): 241-244
    [14] Wesley R D, Wesley I V, Woods R D. Differentiation between transmissible gastroenteritis virus and porcine respiratory coronavirus using a cDNA probe. Journal of Veterinary Diagnostic Investigation, 1991, 3(1): 29-32
    [15] Izant J G. Antisense RNA as a molecular probe of eukaryyotic cell organization. Journal of Cell Biology, 1986, 103(5): A436
    [16] Vary C, Vournakis J. RNA structure analysis using methidiumpropyl-EDTA Fe(II): a base-pair-specific RNA structure probe. Proceedings of the National Academy of Sciences of the United States of America, 1984,81(22): 6978-6982
    [17] Raju R, Subraman S V. Multivalent RNA probes and their use in the quantitation of multiple and non-homologous RNA species immobilized onto nylon membranes. Nucleic Acids Research, 1994, 22(15): 3249-3250
    [18] Boyer J C, Zaccomer B, Haenni A L. Electrotransfection of turnip yellow mosaic virus RNA into brassica leaf protoplasts and detection of viral RNA products with a non- radioactive probe. Journal of General Virology, 1993, 74(9): 1911-1917
    [19] He B, Riggs D L, Hanna M M. Preparation of probe-modified RNA with 5-mercapto-UTP for analysis of protein-RNA interactions. Nucleic Acids Research, 1995, 23(7): 1231 - 1238
    [20] Cummings T J, Brown N M, Stenzel T T. TaqMan junction probes and the reverse transcriptase polymerase chain reaction: detection of alveolar rhabdomyosarcoma, synovial sarcoma, and desmoplastic small round cell tumor. Annals of Clinical and Laboratory Science, 2002, 32(3): 219-224
    [21] Yip S P, To S T, Leung P H M, et al. Use of dual taqman probes to increase the sensitivity of 1-step quantitative reverse transcription-PCR: application to the detection of SARS coronavirus. Clinical Chemistry, 2005, 51(10): 1885-1888
    [22] Liu H P, Wang H, Tan W H, et al. TaqMan probe array for quantitative detection of DNA targets. Nucleic Acids Research, 2006, 34(1): e4
    [23] Uematsu C, Makino I, Okano K. Real-time detection of PCR products forcomparative analysis of expressed genes using module-shuffling taqman probes (MTPs). Nucleic Acids Symposium Series, 2002, 2(1): 211– 212
    [24] Wang J K, Li T X, Guo X Y, et al. Exonuclease III protection assay with FRET probe for detecting DNA-binding proteins. Nucleic Acids Research, 2005, 33(2): e23
    [25] Abe H, Kool E T. Flow cytometric detection of specific RNAs in native human cells with quenched autoligating FRET probes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(2): 263-268
    [26] Karadag A, Riminucci M, Bianco P, et al. A novel technique based on a PNA hybridization probe and FRET principle for quantification of mutant genotype in fibrous dysplasia/McCune–albright syndrome. Nucleic Acids Research, 2004, 32(7): e63
    [27] Yamane A. MagiProbe: a novel fluorescence quenching-based oligonucleotide probe carrying a fluorophore and an intercalator. Nucleic Acids Research, 2002, 30(19): e97
    [28] Ishiguro T, Saito J, Yawata H, et al. Fluorescence detection of specific sequence of nucleic acids by oxazole yellow-linked oligonucleotides, homogeneous quantitative monitoring of in vitro transcription. Nucleic Acids Research, 1996, 24(24):4992-4997
    [29] Svanvik N, Westman G, Wang D, et al. Light-up probes: thiazole orange-conjugated peptide nucleic acid for detection of target nucleic acid in homogeneous solution. Analytical Biochemistry, 2000, 281(1):26-35
    [30] Nazarenko I, Lowe B, Darfler M, et al. Multiplex quantitative PCR using self-quenched primers labeled with a single fluorophore. Nucleic Acids Research, 2002, 30(9): e37
    [31] Nazarenko I, Pires R, Lowe B, et al. Effect of primary and secondary structure of oligodeoxyribonucleotides in the fluorescent properties of conjugated dyes. Nucleic Acids Research, 2002, 30(3): 2089-2095
    [32] Shaposhnikov S, Larsson C, Henriksson S, et al. Detection of alu sequences and mtDNA in comets using padlock probes. Mutagenesis, 2006, 21(4): 243– 247
    [33] Jonstrup S P, Koch J, Kjems J. A microRNA detection system based on padlock probes and rolling circle amplification. RNA, 2006, 12(9): 1747– 1752
    [34] Szemes M, Bonants P, Weerdt M, J,et al. Diagnostic application of padlockprobes-multiplex detection of plant pathogens using universal microarrays. Nucleic Acids Research, 2005, 33(18): e70
    [35] Nilsson M, Malmgren H, Samiotaki M, et al. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science, 1994, 265(5181): 2085– 2088
    [36] Li Q Q, Luan G Y, Guo Q P, et al. A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Research, 2002, 30(2): e5
    [37] Tyagi S, Kramer F R. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnology, 1996, 14(3): 303-308
    [38] Tyagi S, Bratu D P, Kramer F R. Muticolor molecular beacon for allele discrimination. Nature Biotechnology, 1998, 16(1): 49-53
    [39] Tyagi S, Marras S A, Kramer F R. Wavelength-shifted molecular beacons. Nature Biotechnology, 2000, 18(11): 1191-1196
    [40] Tan W, Wang K, Drake T. Molecular beacons. Current Opinion in Chemical Biology, 2004, 8(5): 547-553
    [41] Tsourkas A, Behlke M A, Bao G. Structure–function relationships of shared-stem and conventional molecular beacons. Nucleic Acids Research, 2002, 30(19): 4208– 4215
    [42] Yamamoto R, Baba T, Kumar P K. Molecular beacon aptamer fluoresces in the presence of tat protein of HIV-1. Genes to Cells, 2000, 5(5): 389– 396
    [43] Wang K, Tang Z, Yang C, et al. Molecular engineering of DNA: molecular beacons. Angewandte Chemie International Edition, 2009, 48(5): 845-870
    [44] Liu J, Cao Z, Lu Y. Functional Nucleic Acid Sensors. Chemical Review, 2009, 109(50): 1948-1998
    [45] Li Y, Lu Y(edited). Functional nucleic acids for analytical applications. Springer, New York, 2009
    [46] Kruger K, Grabowski P J, Zaug A J, et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell, 1982, 31(1): 147-157
    [47] Guerrier-Takada C, Gardiner K, Marsh T, et al. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 1983, 35(3): 849-857
    [48] Symons R H. Small catalytic RNAs. Annual Review of Biochemistry, 1992, 61: 641-671
    [49] Pan T, Uhlenbeck O C. In vitro selection of RNAs that undergo autolytic cleavage with Pb2+. Biochemistry, 1992, 31(16): 3887-3895
    [50] Pan T, Uhlenbeck O C. A small metalloribozyme with a two-step mechanism. Nature, 1992, 358: 560-563
    [51] Bartel D P, Szostak J W. Isolation of a new ribozymes from a large pool of random sequences. Science, 1993, 261(5127): 1411-1418
    [52] Ekland E H, Szostak J W, Bartel D P. Structurally complex and highly active RNA ligases derived from random RNA sequences. Science, 1995, 269(5222): 364-370
    [53] Ekland E H, Bartel D P. RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature, 1996, 382(6589): 373-376
    [54] Zhang B, Cech T R. Peptide bond formation by in vitro selected ribozymes. Nature, 1997, 390(6655): 96-100
    [55] Tarasow T M, Tarasow S L, Eaton B E. RNA-catalysed carbon-carbon bond formation. Nature, 1997, 389(6646): 54-57
    [56] Illangasekare M. Yarus M. Specific, rapid synthesis of Phe-RNA by RNA. Proceedings of National Academy of Sciences of the United States of America, 1999, 96(10): 5470-5475
    [57] Chapple K E, Bartel D P, Unrau P J. Combinatorial minimization and secondary structure determination of a nucleotide synthase ribozyme. RNA, 2003, 9(10): 1208-1220
    [58] Lau M W L, Cadieux K E C, Unrau P J. Isolation of fast purine nucleotide synthase ribozymes. Journal of the American Chemical Society, 2004, 126(48): 15686-15693
    [59] Li J, Lu Y. A highly sensitive and selective catalytic DNA biosensor for lead ions. Journal of the American Chemical Society, 2000, 122: 10466-10467
    [60] Liu J, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. Journal of the American Chemical Society, 2003, 125(22): 6642-6643
    [61] Liu J, Lu Y. Improving fluorescent DNAzyme biosensors by combining inter- and intramolecular quenchers. Analytical Chemistry, 2003, 75(23): 6666-6672
    [62] Liu J, Lu Y. Colorimetric biosensors based on DNAzyme-assembled gold nanoparticles. Journal of Fluorescence, 2004, 14(4): 343-354
    [63] Liu J, Lu Y. Optimization of a Pb2+-directed gold nanoparticle/DNAzyme assembly and its application as a colorimetric biosensor for Pb2+. Chemistry ofMaterials, 2004, 16(17): 3231-3238
    [64] Liu J, Lu Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. Journal of the American Chemical Society, 2004, 126(39): 12298-12305
    [65] Liu J, Lu Y. Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. Journal of the American Chemical Society, 2005, 127(36): 12677-12683
    [66] Liu J, Lu Y. Fluorescent DNAzyme biosensors for metal ions based on catalytic molecular beacons. Methods in Molecular Biology, 2006, 335: 275-288
    [67] Liu J, Lu Y. Design of asymmetric DNAzymes for dynamic control of nanoparticle aggregation states in response to chemical stimuli. Organic & Biomolecular Chemistry, 2006, 4(18): 3435-3441
    [68] Shen Y, Mackey G, Rupcich N, et al. Entrapment of fluorescence signaling DNA enzymes in sol-gel-derived materials for metal ion sensing. Analytical Chemistry, 2007, 79(9): 3494-3503
    [69] Wang H, Kim Y, Liu H, et al. Engineering a unimolecular DNA-catalytic probe for single lead ion monitoring. Journal of the American Chemical Society, 2009, 131(23): 8221-8226
    [70] Jenne A, Hartig J S, Piganeau N, et al. Rapid identification and characterization of hammerhead-ribozyme inhibitors using fluorescence-based technology. Nature Biotechnology, 2001, 19(1): 56-61
    [71] Stojanovic M N, De Prada P, Landry D W. Homogeneous assays based on deoxyribozyme catalysis. Nucleic Acids Research, 2000, 28(15): 2915-2918
    [72] Ferguson A, Boomer R M, Kurz M, et al. A novel strategy for selection of allosteric ribozymes yields riboreporter sensors for caffeine and aspartame. Nucleic Acids Research, 2004, 32(5): 1756-1766
    [73] Srinivasan J, Cload S T, Hamaguchi N, et al. ADP-specific sensors enable universal assay of protein kinase activity. Chemistry & Biology, 2004, 11(4): 499-508
    [74] Chiuman W, Li Y. Efficient signaling platforms built from a small catalytic DNA and doubly labeled fluorogenic substrates. Nucleic Acids Research, 2007, 35(2): 401-406
    [75] Swearingen C B, Wernette D P, Cropek D M, et al. Immobilization of a catalytic DNA molecular beacon on Au for Pb(II) detection. AnalyticalChemistry, 2005, 77(2): 442-448
    [76] Wernette D P, Swearingen C B, Cropek D M et al. Incorporation of a DNAzyme into Au-coated nanocapillary array membranes with an internal atandard for Pb(II) sensing. Analyst, 2006, 131(1): 41-47
    [77] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818-822
    [78] Robertson D L, Joyce G F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 1990, 344(6265): 467-468
    [79] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249(4968): 505-510
    [80] Wilson D S, Szostak J W. In vitro selection of functional nucleic acids. Annual Reviews of Biochemistry, 1999, 68(1): 611-647
    [81] Mann D, Reinemann C, Stoltenburg R, et al. In vitro selection of DNA aptamers binding ethanolamine. Biochemical and Biophysical Ressearch Communications, 2005, 338(4): 1928-1934
    [82] Stoltenburg R, Reinemann C, Strehlitz B. FluMag-SELEX as an advantageous method for DNA aptamer selection. Analytical and Bioanalytical Chemistry, 2005, 383(1): 83-91
    [83] Berezovski M, Drabovich A, Krylova S M, et al. Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. Journal of the American Chemical Society, 2005, 127(9): 3165-3171
    [84] Musheev M U, Krylov S N. Selection of aptamers by systematic evolution of ligands by exponential enrichmen: addressing the polymerase chain reaction issue. Analytica Chimica Acta, 2006, 564(1): 91-96
    [85] Drabovich A P, Berezovski M, Okhonin V, et al. Selection of smart aptamers by methods of kinetics capillary electrophoresis. Analytical Chemistry, 2006, 78(9): 3171-3178
    [86] Berezovski M, Musheev M, Drabovich A, et al. Non-SELEX selection of aptamer. Journal of the American Chemical Society, 2006, 128, 1410-1411
    [87] Drabovich A, Berezovski M, Krylov S N. Selection of smart aptamers by equilibrium capillary electrophoresis of equilibrium mixtures(ECEEM). Journal of the American Chemical Society, 2005, 127(32): 11224-11225
    [88] Berezovski M, Krylov S N. Thermochemistry of protein-DNA interaction studied with temperature controlled nonequilibrium capillary electrophoresisof equilibrium mixtures. Analytical Chemistry, 2005, 77(5): 1526-1529
    [89] Misono T S, Kumar P K R. Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Analytical Biochemistry, 2005, 342(2): 312-317
    [90] Peng L, Stephens B J, Bonin K, et al. A combined atomic force/fluorescence microscopy technique to select aptamers in a single cycle from a small pool of random oligonucleotides. Microscopy Research and Techenique, 2007, 70(4): 372-381
    [91] Cox J C, Ellington A D. Automated selection of anti-protein aptamers. Bioorganic & Medicinal Chemistry, 2001, 9(10): 2525-2531
    [92] Cox J C, Hayhurst A, Hesselberth J, et al. Automated selection of aptamers against protein targets translated in vitro from gene to aptamer. Nucleic Acids Research, 2002, 30(20): e108
    [93] Cox J C, Rajendran M, Riedel T, et al. Automated acquisition of aptamer sequences. Combinatorial Chemistry & High Throughput Screening, 2002, 5(4): 289-299
    [94] Hybarger G, Bynum J, Williams R F, et al. A microfluidic SELEX prototype. Analytical and Bioanalytical Chemistry, 2006, 384(1): 191-198
    [95] Jhaveri D, Kirby R, Conrad R, et al. Designed signaling aptamers thattransduce molecular recognition to changes in ?uorescence intensity. Journal of the American Chemical Society, 2000, 122(11): 2469–2473
    [96] Huizenga D E, Szostak J W. A DNA aptamer that binds adenosine and ATP. Biochemistry, 1995, 34(2): 656–665
    [97] Sassanfar M, Szostak J W. An RNA motif that binds ATP. Nature, 1993, 364(6437): 550–553
    [98] Yamana K, Iwai T, Ohtani Y, et al. Bis-pyrene-labeled oligonucleotides: sequence specificity of excimer and monomer ?uorescence changes upon hybridization with DNA. Bioconjugate Chemistry, 2002, 13(6): 1266–1273
    [99] Fang X, Cao Z, Beck T, et al. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by ?uorescence anisotropy. Analytical Chemistry, 2001, 73(23): 5752–5757
    [100] Li W, Wang K, Tan W, et al. Aptamer-Based analysis of angiogenin by fluorescence anisotropy. Analyst, 2007, 132(2): 107-113
    [101] Choi J H, Chen K H, Strano M S. Aptamer-capped nanocrystal quantum dots: a new method for label free protein detection. Journal of the American ChemicalSociety, 2006, 128(49): 15584–15585
    [102] Sassolas A, Blum L J, Leca-Bouvier B D. Homogeneous assays using aptamers. Analyst, 2010, 136(2): 257-274
    [103] Cho E J, Lee J-W, Ellington A D. Applications of aptamers as sensors. Annual Review of Analytical Chemistry, 2009, 2(1): 241-264
    [104] Ozaki H, Nishihira A, Wakabayashi M, et al. Biomolecular sensor based on fluorescence-labeled aptamer. Bioorganic & Medicinal Chemistry Letters, 2006, 16(16): 4381-4384
    [105] Fang X, Sen A, Vicens M,et al. Synthetic DNA aptamers to detect protein molecular variants in a high-throughput ?uorescence quenching assay. ChemBioChem, 2003, 4(9): 829–834
    [106] Li J J, Fang X, Tan W. Molecular aptamer beacons for real-time protein recognition. Biochemical and Biophysical Research Communication, 2002, 292(1): 31–40
    [107] Li W, Yang X, Wang K, et al. FRET-based aptamer probe for rapid angiogenin detection. Talanta, 2008, 75(3): 770–774
    [108] Freeman R, Li Y, Tel-Vered R, et al. Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing. Analyst. 2009, 134(4): 653-656
    [109] Wu C, Yan L, Wang C, et al. A general excimer signaling approach for aptamer sensors. Biosensors and Bioelectronics, 2010, 25(10): 2232-2237
    [110] Stojanovic M N, de Prada P, Landry D W. Fluorescent sensors based on aptamer self-assembly. Journal of the American Chemical Society, 2000, 122(46): 11547–11548
    [111] Nutiu R, Li Y. Structure-switching signaling aptamers. Journal of the American Chemical Society, 2003, 125(16): 4771–4778
    [112] Zhao W, Chiuman W, Brook M A, et al. 2007. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. ChemBioChem, 2007, 8(7): 727–731
    [113] Medley C D, Smith J E, Tang Z, et al. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Analytical Chemistry, 2008, 80(4): 1067–1072
    [114] Liu J, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angewandte Chemie International Edition, 2006, 45(1): 90–94
    [115] Liu J, Lu Y. Smart nanomaterials responsive to multiple chemical stimuli with controllable cooperativity. Advanced Materials, 2006, 18(13): 1667–1671
    [116] Liu J, Lu Y. Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Biosensors & Bioelectronics, 2001,16(9): 799–809
    [117] Farokhzad O C, Cheng J, Teply B A, et al.Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proceedings of National Academy of Sciences of the United States of America, 2006, 103(16): 6315–6320
    [118] Huang Y, Shangguan D, Liu H et al. Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. ChemBioChem. 2009, 10(5): 862–868.
    [119] Mallikaratchy P, Tang Z, Tan W. Cell specific aptamer-photosensitizer conjugates as a molecular tool in photodynamic therapy. ChemMedChem, 2008, 3(3): 425-428
    [120] Zhu Z, Tang Z, Phillips J, et al. Regulation of singlet oxygen generation using single-walled carbon nanotubes. Journal of the American Chemical Society, 2008, 130(33): 10856-10857
    [121] Tang Z, Zhu Z, Mallikaratchy P, et al. Aptamer-triggered molecular mediation using singlet oxygen generation. Chemistry - An Asian Journal, 2010, 5(4): 783-786
    [122] Ferreira C S M, Cheung M C, Missailidia S, et al. Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Research, 2009, 37(3): 866-876
    [123] Shieh Y A, Yang S J, Wei M F, et al. Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano, 2010, 4(3): 1433-1442
    [124] Smith J, Medley C, Tang Z, et al. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal. Chem. 2007, 79(8): 3075–3082.
    [125] Shi H, He X, Wang K, et al. Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proceedings of National Academy of Sciences of the United States of America, 2011, 108(10): 3900-3905
    [126] Mei S H J, Liu Z, Brennan J D, et al. An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. Journal of theAmerican Chemical Society, 2003, 125(2): 412-420
    [127] Kandadai S A, Li Y. Characterization of a catalytically efficient acidic RNA-cleaving deoxyribozyme. Nucleic Acids Research, 2005, 33(22): 7164-7175
    [128] Hartig J S, Najafi-Shoushtari S H, Gruene I, et al. Protein-dependent ribozymes report molecular interactions in real time. Nature Biotechnology, 2002, 20(7): 717-722
    [129] Sekella P T, Rueda D, Walter N G. A biosensor for theophylline based on fluorescence detection of ligand-induced hammerhead ribozyme cleavage. RNA, 2002, 8(10): 1242-1252
    [130] Liu J, Lu Y. Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Analytical Chemistry, 2004, 76(6): 1627-1632
    [131] Wang D Y, Lai B H, Sen D. A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes. Journal of Molecular Biology, 2002, 318(1): 33-43
    [132] Bath J, Turberfield A J. DNA Nanomachines. Nature Nanotechnology, 2007, 2(5): 275-284
    [133] Hartig J S, Grune I, Najafi-Shoushtari S H, et al. Sequence-specific detection of microRNAs by signal amplifying ribozymes. Journal of the American Chemical Society, 2004, 126(3): 722-723
    [134] Weizmann Y, Cheglakov Z, Pavlov V, et al. Autonomous fueled mechanical replication of nucleic acid templates for the amplified optical detection of DNA. Angewandte Chemie International Edition, 2006, 45(14): 238-2242
    [135] Lu C, Li J, Lin M, et al. Amplified aptamer-based assay through catalytic recycling of the analyte. Angewandte Chemie International Edition, 2010, 49(45): 8454-8457
    [136] Zheleznaya L A, Kopein D S, Rogulin E A, et al. Significant enhancement of fluorescence on hybridization of a molecular beacon to a target DNA in the presence of a site-specific DNA nickase. Analytical Biochemistry, 2006, 348(1): 123-126
    [137] Kiesling T, Cox K, Davidson E A, et al. Sequence specific detection of DNA using nicking endonuclease signal amplification (NESA). Nucleic Acids Research, 2007, 35(18): e117
    [138] Li J J, Chu Y, Lee B Y, et al. Enzymematic signal amplification of molecularbeacons for sensitive DNA detection. Nucleic Acids Research, 2008, 36(6): e36
    [139] Xu W, Xue X, Li T, et al. Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angewandte Chemie International Edition, 2009, 48(37): 6849-6852.
    [140] Kong R, Zhang X, Zhang L, et al. Molecular beacon-based junction probes for efficient detection of nucleic acids via a true target-triggered enzymatic recycling amplification. Analytical Chemistry, 2011, 83(1): 14-17
    [141] Zuo X, Fan X, Xiao Y, et al. Sensitive and selective amplified fluorescence DNA detection based on exonuclease III-aided target recycling. Journal of the American Chemical Society, 2010, 132(6): 1816-1818
    [142] Cui L, Ke G, Wang C, et al. A cyclic enzymatic amplification method for sensitive and selective detection of nucleic acids. Analyst, 2010, 135(3): 2069-2073
    [143] Ahn D, Yang E G. An RNase H-assisted fluorescent biosensor for aptamers. ChemBioChem, 2007, 8(12): 1347-1350
    [144] Kleppe K, Ohtsuka E, Kleppe R, et al. Studies on polynucleotides. XCVI. Repair replications of short synthetic DNA’s as catalyzed by DNA polymerases. Journal of Molecular Biology, 1971, 56(2): 341-361
    [145] Chien A, Edgar D B, Trela J M. Deoxyribonucleic acid polymerase from the extreme thermophile thermos aquaticus. The Journal of Bacteriology, 1976, 127(3): 1550-1557
    [146] Rabinow P. Making PCR: a story of biotechnology. University of Chicago Press, 1996.
    [147] Saiki P K, Gelfand D H, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988, 239(4839): 487-491
    [148] Fire A, Xu X. Rolling replication of short DNA circles. Proceedings of National Academy of Sciences of the United States of America, 1995, 92(10): 4641-4645
    [149] Nilsson M, Krejci K, Koch J, et al. Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21. Nature Genetics, 1997, 16(3): 252-255
    [150] Lizardi P M, Huang X H, Zhu Z R, et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. NatureGenetics, 1998, 19(3): 225-232
    [151] Hardenbol P, Baner J, Jain M, et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nature Biotechnology, 2003, 21(6): 673-678
    [152] Van Ness J, Van Ness L K, Galas D J. Isothermal reactions for the amplification of oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(8): 4504-4509.
    [153] Weizmann Y, Beissenhirtz M K, Cheglakov Z, et al. A virus spotlighted by an autonomous DNA machine. Angewandte Chemie International Edition, 2006, 45(44): 7384-7388
    [154] Guo Q, Yang X, Wang K, et al. Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction. Nucleic Acids Research, 2009, 37(3): e20
    [155] Connolly A R, Trau M. Isothermal detection of DNA by beacon-assisted detection amplification. Angewandte Chemie International Edition, 2010, 122: 2780-2783
    [156] Barany F. Genetic disease detection and DNA amplification using sloned thermostable ligase. Proceedings of National Academy of Sciences of the United States of America, 1991, 88(1): 189-193
    [157] Dirks R M, Pierce N A. Triggered amplification by hybridization chain reaction. Proceedings of National Academy of Sciences of the United States of America, 2004, 101(43): 15275–15278
    [158] Venkataraman S, Dirks R M, Rothemund P W K, et al. An autonomous polymerization motor powered by DNA hybridization. Nature Nanotechnology, 2007, 2(8): 490-494
    [159] Yin P, Choi H M T, Calvert C R, et al. Programming biomolecular self-assembly pathways. Nature, 2008, 451(7176): 318-322
    [160] Choi H M T, Chang J Y, Trinh L A, et al. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nature Biotechnology, 2010, 28(11): 1208-1212
    [161] Venkataraman S, Dirks R M, Ueda C T, et al. Selective cell death mediated by small conditional RNAs. Proceedings of National Academy of Sciences of the United States of America, 2010, 107(39): 16777–16782
    [162] Bois J S, Venkataraman S, Choi H M T, et al. Topological constraints in nucleic acid hybridization kinetics. Nucleic Acids Research, 2005, 33(13):4090-4095
    [163] Zhao X, hilliard L R, Mechery S J, et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proceedings of National Academy of Sciences of the United States of America, 2004, 101(42): 15027-15032
    [164] Wang L, Yang C, Tan W. Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Letters, 2005, 5(1): 37-43
    [165] Wang L, O’Donoghue M B, Tan W. Nanoparticles for multiplex diagnostics and imaging. Nanomedicine, 2006, 1(4): 413-426
    [166] Wang L, Lofton C, Popp M, et al. Using luminescent nanoparticle as staining probes for affymetrix genechips. Bioconjugate Chemistry, 2007, 18(30): 610-613
    [167] Wang L, Zhao W, O’Donoghue M B, et al. Fluorescent nanoparticles for multiplexed bacteria monitoring. Bioconjugate Chemistry, 2007, 18(2): 297-301
    [168] Yan J, Estevez M, Carmen S, et al. Dye-doped nanoparticles for bioanalysis. Nano Today, 2007, 2(3): 44-50
    [169] Bruchez M, Moronne M, Gin P, et al. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science, 1998, 281(5385): 2013-2016
    [170] Chan W C W and Nie S M. Quantum dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science, 1998, 281(5385): 2016-2018
    [171] Zhang C Y, Ma H, Nie S M, et al. Quantum Dot-labeled Trichosanthin. Analyst, 2000, 125(6): 1029-1031
    [172] Han M Y, Gao X H, Su J Z, et al. Quantum-dot-tagged Microbeads for Multiplexed Optical Coding of Biomolecules. Nature Biotechnology, 2001, 19(7): 631-635
    [173] Song G, Chen C, Ren J, et al. A simple, universal colorimetric assay for endonuclease/methyltransferse activity and inhibition based on an enzyme-responsive nanoparticle system. ACS Nano, 2009, 3(5): 1183-1189
    [174] Qu W, Liu Y, Liu D, et al. Copper-mediated amplification allows readout of immunoassays by the naked eye. Angewandte Chemie International Edition, 2011, 50(15): 3442-3445
    [175] Nam J M, Stoeva S I, Mirkin C A. Bio-Bar-Code-Based DNA detection with PCR-like sensitivity. Journal of the American Chemical Society, 2004, 126(19): 5932-5933
    [176] Hill H D, Vega R A, Mirkin A C. Nonenzymatic detection of bacterial genomic DNA using the Bio Bar Code assay. Analytical Chemistry, 2007, 79(23): 9218-9223
    [177] Thaxton C S, Hill H D, Georganopoulou D G, et al. A Bio-Bar-Code assay based upon dithiothreitol-induced oligonucleotide release. Analytical Chemistry, 2005, 77(24): 8174-8178
    [178] Ding C, Zhang Q, Zhang S. An electrochemical immunoassay for protein based on bio bar code method. Biosensor and Bioelectronics, 2009, 24(8): 2434-2440
    [179] Barnett G, Hawks R, Resnick R. Cocaine pharmacokinetics in humans. Journal of Ethnopharmacology, 1981, 3(2-3): 353-366
    [180] Jeffcoat A R, Perez-Reyes M, Hill J M, et al. Cocaine disposition in humans after intravenous injection, nasal insufflations (snorting), or smoking. Drug Metabolism and Disposition, 1989, 17(2): 153-159
    [181] Fattinger K, Benowitz N L, Jones R T, et al. Nasal mucosal versus gastrointestinal absorption of nasally administered cocaine. European Journal of Clinical Pharmacology, 2000, 56(4): 305-310
    [182] Spiehler V, Fay J, Fogerson R, et al. Enzyme immunoassay validation for quanlitative detection for cocaine in sweat. Clinical Chemistry, 1996, 42(1): 34-38
    [183] Ziegler T, Eikenberg O, Bilitewski U, et al. Gas phase detection of cocaine by means of immunoanalysis. Analyst, 1996, 121(2): 119-125
    [184] Yu H, Kusterbeck A W, Hale M J, et al. Use of the USD flow immunosensor for quantitation of benzoylecgonine in urine. Biosensors and Bioelectronics, 1996, 11(8): 725-734
    [185] Bauer C G, Eremenko A V, Kuhn A, et al. Automated amplified flow immunoassay for cocaine. Analytical Chemistry, 1998, 70(21): 4624-4630
    [186] Stojanovic M N, Prada P, Landry D W. Aptamer-based folding fluorescent sensor for cocaine. Journal of the American Chemical Society, 2001, 123(21): 4928-4931
    [187] Stojanovic M N, Landry D W. Aptamer-based colorimetric probe for cocaine. Journal of the American Chemical Society, 2002, 124(33): 9678-9679
    [188] Zhang J, Wang L, Pan D, et al. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small, 2008, 4(8): 1196-1200
    [189] Freeman R, Sharon E, Tel-Vered R, et al. Supramolecular cocaine-aptamercomplexes activate biocatalytic cascades. Journal of the American Chemical Society, 2009, 131(14): 5028-5029
    [190] Zhu Z, Wu C, Liu H, et al. An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. Angewandte Chemie International Edition, 2010, 49(2): 1052-1056
    [191] Baker B R, Lai R Y, Wood M S, et al. An electronic, aptamer-based small-molecule sensor for rapid, label-free detection of cocaine in adulterated samples and biological fluids. Journal of the American Chemical Society, 2006, 128(10): 3138-3139
    [192] Du Y, Chen C, Yin J, et al. Solid-state probe based electrochemical aptamersensor for cocaine: a potentially convenient, sensitive, repeatable, and integrated sensing platform for drugs. Analytical Chemistry, 2010, 82(4): 1556-1563
    [193] Shlyahovsky B, Li D, Weizmann Y, et al. Spotlighting of cocaine by an autonomous aptamer-based machine. Journal of the American Chemical Society, 2007, 129(13): 3814-3815
    [194] Zhang C, Johnson L W. Single Quantum-dot-based aptameric nanosensor for cocaine. Analytical Chemistry, 2009, 81(8): 3051-3055
    [195] He J, Wu Z, Zhou H, et al. Fluorescence aptameric sensor for strand displacement amplification detection of cocaine. Analytical Chemistry, 2010, 82(4): 1358-1364
    [196] Lakowicz J R, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, New York, 1999, pp. 367–394
    [197] Zhang C, Yeh H C, Kuroki M, et al. Single-quantum-dot-based DNA nonosensor. Nature Materials, 2005, 4(11): 826-831
    [198] Yang C, Martinez K, Lin H, et al. Hybrid Molecular Probe for Nucleic Acid Analysis in Biological Samples. Journal of the American Chemical Society, 2006, 128(31): 9986-9987
    [199] Stojanovic M N, Green E G, Semova S, et al. Cross-reactive arrays based on three-way junctions. Journal of the American Chemical Society, 2003, 125(20): 6085-6089
    [200] Taylor S K, Pei R, Moon B C, et al. Triggered release of an active peptide conjugate from a DNA device by an orally administrable small molecule. Angewandte Chemie International Edition, 2009, 48(24): 4394-4397
    [201] Willner I, Willner B. Biomaterials integrated with electronic elements:enroute to bioelectronics. Trends in Biotechnology, 2001, 19(6): 222–230.
    [202] Wang J. Survey and summary: from DNA biosensors to genechips. Nucleic Acids Research, 2000, 28(16): 3011–3016
    [203] Tom N G, Lars R, Oliver S. Triplex molecular beacons as modular probes for DNA detection. Angewandte Chemie International Edition, 2007, 46(27): 5223–5225
    [204] Nagatoishi S, Nojima T, Juskowiak B, et al. A pyrene-labeled G-quadruplex oligonucleotide as a fluorescent probe for potassium ion detection in biological applications. Angewandte Chemie International Edition, 2005, 44(32): 5067-5070
    [205] Marti A A, Li X, Jockusch S, et al. Pyrene binary probes for unambiguous detection of mRNA using time-resolved fluorescence spectroscopy. Nucleic Acids Research, 2006, 34(10): 3161-3168
    [206] Masuko M, Ohtani H, Ebata K, et al. Optimization of excimer-forming two-probe nucleic acid hybridization method with pyrene as a fluorophore. Nucleic Acids Research, 1998, 26(23): 5409-5416
    [207] Paris P L, Langenhan J M, Kool E T. Probing DNA sequences in solution with a monomer-excimer fluorescence color change. Nucleic Acids Research, 1998, 26(16): 3789-3793
    [208] Conlon P, Yang C J, Wu Y, et al. Pyrene excimer signaling molecular beacons for probing nucleic acids. Journal of the American Chemical Society, 2008, 130(1): 336-342
    [209] Yang C J, Jockusch S, Vicens M, et al. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proceedings of National Academy of Sciences of the United States of America, 2005, 102(48): 17278-17283
    [210] Chen Y, Yang C J, Wu Y, et al. Light-switching excimer beacon assays for ribonuclease H kinetic study. ChemBioChem, 2008, 9(3): 355-359
    [211] Kuwana E, Sevick-Muraca E M. Fluorescence lifetime spectroscopy in multiply scattering media with dyes exhibiting mutiexponential decay kinetics. Biophysical Journal, 2002, 83(2): 1165-1176
    [212] Schmidt W. Optical spectroscopy in chemistry and life sciences. WILEY-VCH, Germany. 2005
    [213] http://en.wikipedia.org/wiki/Lysozyme
    [214] Levinson S S, Elin R J, Yam L. Light chain proteinuria and lysozymuria in apatient with acute monocytic leukemia. Clinical Chemistry, 2002, 48(7): 1131-1132
    [215] Akanji M A. Labilising effect of suramin on rat kidney lysomes in vivo. Toxicology Letters, 1984, 23(3): 273-277
    [216] Klockars M, Reitamo S, Weber T, et al. Cerebrospinal fluid lysozyme in bacterial and viral meningitis. Acta Medica Scandinavica, 1978, 203(1-6): 71-74
    [217] Roy S C, Singh V K, More T. Electrophoretic detection of myeloperoxidase, protease, lactoferrin and lysozyme in buffalo polymorphonuclear granular acid extracts. Veterinary Research Communications, 1997, 21(5): 325-334
    [218] Severini G, Aliberti L M. Diagnostic significance of urinary enzymes: development of a high performance liquid chromatographic method for the measurement of urinary lysozyme. Clinica Chimica Acta, 1987, 163(1): 97-103
    [219] Liao Y H, Brown M B, Martin G P. Turbidmetric and HPLC assays for the determination of formulated lysozyme activity. The Journal of Pharmacy and Pharmacology, 2001, 53(4): 549-554
    [220] Mergenhagen S E, Martin G R. Properties of a lysozyme-dissociated endotoxic fraction from Escherichia coli. Journal of Bacterial, 1964, 88(4): 1169-1174
    [221] Jin D, Zhang Y. Determination of saliva lysozyme with enzyme-linked rocket immunoelectrophoresis. Journal of Hubei College of Traditional Chinese Medicine, 2009, 11(1): 10-12
    [222] Taylor D C, Cripps A W, Clancy R L. Measurement of lysozyme by an enzyme-linked immunosorbent assay. Journal of Immunological Methods, 1992, 146(1): 55-61
    [223] Kirby R, Cho E J, Gehrke B, et al. Aptamer-based sensor arrays for the detection and quantitation of proteins. Analytical Chemistry, 2004, 76(14): 4066-4075
    [224] Rodriguez M C, Kawde A N, Wang J. Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge. Chemical Communications, 2005, 34: 4267-4269
    [225] Li D, Shlyahovsky B, Elbaz J, et al. Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates. Journal of the American Chemical Society, 2007, 129(18): 5804-5805
    [226] Cheng A K H, Ge B, Yu H Z. Aptamer-based biosensors for label-free voltammetric detection of lysozyme. Analytical Chemistry, 2007, 79(14): 5158-5164
    [227] Deng C, Chen J, Nie L, et al. Sensitive bifunctional aptamer-based electrochemical biosensor for small molecules and protein. Analytical Chemistry, 2009, 81(24): 9972-9978
    [228] Rodriguez M C, Rivas G A. Label-free electrochemical aptasensor for the detection of lysozyme. Talanta, 2009, 78(1): 212-216
    [229] Teller C, Shimron S, Willner I. Aptamer-DNAzyme hairpins for amplified biosensing. Analytical Chemistry, 2009, 81(21): 9114-9119
    [230] Wang Y, Pu K Y, Liu B. Anionic conjugated polymer with aptamer-functionalized silica nanoparticle for label-free naked-eye detection of lysozyme in protein mixtures. Langmuir, 2010, 26(12): 10025-10030
    [231] Wang B, Yu C. Fluorescence turn-on detection of a protein through the reduced aggregation of a perylene probe. Angewandte Chemie International Edition, 2010, 49(8): 1485-1488
    [232] Li L, Chen Z, Zhao H, et al. An aptamer-based biosensor for the detection of lysozyme with gold nanoparticles amplification. Sensors and Actuators B: Chemical, 2010, 149(1): 110-115
    [233] Jhaveri S, Rajendran M, Ellington A D. In vitro selection of signaling aptamers. Nature Biotechnology, 2000, 18(12): 1293-1297
    [234] Beyer S, Dittmer W U, Simmel F C. Design variations for an aptamer-based DNA nanodevice. Journal of Biomedical Nanotechnology, 2005, 1(1): 96-101
    [235] Marras S A E, Kramer F R, Tyagi S. Genotyping SNPs with molecular beacons. Methods in Molecular Biology, 2003, 212: 111-128
    [236] Zheng J, Li J, Gao X, et al. Modulating molecular level space proximity: a simple and efficient strategy to design structure DNA probes. Analytical Chemistry, 2010, 82(9): 3914-3921
    [237] Lodha S C. Usefulness of serum lysozyme measurement in diagnosis of intrathoracic lymphadenopathy. Tubercle, 1980, 61(2): 81-85
    [238] Porstmann B, Jung K, Schmechta H, et al. Measurement of lysozyme in human body fluids: comparison of various enzyme immunoassay techniques and their diagnostic application. Clinical Biochemistry, 1989, 22(5): 349-355
    [239] Near K A, Lefford M J. Use of serum antibody and lysozyme levels for diagnosis of leprosy and tuberculosis. Journal of Clinical Microbiology, 1992,30(5): 1105-1110
    [240] Faderl S, Kantarjian H M, Talpaz M, et al. Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. Blood, 1998, 91(11): 3995-4019
    [241] Paredes-Aguilera R, Romero-Guzman L, Lopez-Santiago N, et al. Flow cytometric analysis of cell-surface and intracellular antigens in the diagnosis of acute leukemia. American Journal of Hematology, 2001, 68(2): 69-74
    [242] Belov L, de la Vega O, dos Remedios C G, et al. Immunophenotyping of leukemias using a cluster of differentiation antibody microarray. Cancer Research, 2001, 61(11): 4483-4489
    [243] Ghossein R A, Bhattacharya S. Molecular detection and characterization of circulating tumour cells and micrometastases in solid tumours. European Journal of Cancer, 2000, 36(13): 1681-1694
    [244] Linuma H, Okinaga K, Adachi M, et al. Detection of tumor cells in blood using CD45 magnetic cell separation followed by nested mutant allele-specifi amplification of p53 and k-ras genes in patients with colorectal cancer. International Journal of Cancer, 2000, 89(4): 337-344
    [245] Liu Yin J A, Grimwade D. Minimal residul disease evaluation in acute myeloid leukaemia. The Lancet, 2002, 360(9327): 160-162
    [246] Blank M, Weinschenk T, Priemer M, et al. Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. The Journal of Biological Chemistry, 2001, 276(19): 16464-16468
    [247] Daniels D A, Chen H, Hicke B J, et al. A tenascin-C aptamer identified by tumor cell SELEX: Systematic evolution of ligands by exponential enrichment. Proceedings of National Academy of Sciences of the United States of America, 2003, 100(26): 15416-15421
    [248] Shangguan D, Li Y, Tang Z, et al. Aptamer evolved from live cells as effective molecular probes for cancer study. Proceedings of National Academy of Sciences of the United States of America, 2006, 103(32): 11838-11843
    [249] Tang Z, Shangguan D, Wang K, et al. Selection of aptamer for molecular recognition and characterization of cancer cells. Analytical Chemistry, 2007, 79(13): 4900-4907
    [250] Zeng Y, Lan X, Jiang L, et al. Selection of aptamer specifically binding to inactivate pseudomonas aeruginosa. Chinese Journal of Biochemistry and Molecular Biology, 2009, 25(1): 90-97
    [251] Sefah K, Shangguan D, Xiong X, et al. Development of DNA aptamers using Cell-SELEX. Nature Protocols, 2010, 5(6): 1169-1185
    [252] Mallikaratchy P, Tang Z, Meng L, et al. Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s Lymphoma cells. Molecular and Cellular Proteomics. 2007, 6(12): 2230-2238
    [253] Herr J K, Smith J E, Medley C D, et al. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Analytical Chemistry, 2006, 78(9): 2918-2924
    [254] Wu Y, Sefah K, Liu H, et al. DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proceedings of National Academy of Sciences of the United States of America, 2010, 107(1): 5-10
    [255] Medley C D, Bamrungsap S, Tan W, et al. Aptamer-conjugated nanoparticles for cancer cell detection. Analytical Chemistry, 2011, 83(3): 727-734
    [256] Soontornworajit B, Wang Y. Nucleic acid aptamers for clinical diagnosis: cell detection and molecular imaging. Analytical and Bioanalytical Chemistry, 2011, 399(4): 1591-1599
    [257] Solban N, Rizvi I, Hasan T. Targeted photodynamic therapy. Lasers in Surgery and Medicine, 2006, 38(5): 522-531
    [258] Macdonald I J, Dougherty T J. Basic principles of photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2001, 5(2): 105-129
    [259] Ackroyd R, Kelty C, Brown M, et al. The history of photodetection and photodynamic therapy. Journal of Photochemistry and Photobiology, 2001, 74(5): 656-669
    [260] Vrouenraets M B, Visser G W M, Stigter M, et al. Targeting of aluminum (III) phthalocyanine tetrasulfonate by use of internalizing monoclonal antibodies: improved efficacy in photodynamic therapy. Cancer Research, 2001, 61(5): 1970-1975
    [261] Carmen M G, Rizvi I, Chang Y, et al. Synergism of epidermal growth factor receptor-targeted immunotherapy with photodynamic treatment of ovarian cancer in vivo. Journal of the National Cancer Institute, 2005, 97(20): 1516-1524
    [262] Choi Y, McCarthy J R, Weissleder R, et al. Conjugation of a photosensitizer to an oligoarginine-based cell-penetrating peptide increases the efficacy of photodynamic therapy. ChemMedChem, 2006, 1(4): 458-463
    [263] Zheng G, Chen J, Stefflova K, et al. Photodynamic molecular beacon as anactivatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. Proceedings of National Academy of Sciences of the United States of America, 2007, 104(21): 8989-8994
    [264] Stefflova K, Li H, Chen J, et al. Peptide-based pharmacomodulation of a cancer-targeted optical imaging and photodynamic therapy agent. Bioconjugate Chemistry, 2007, 18(2): 379-388
    [265] Roy I, Ohulchanskyy T Y, Pudavar H E, et al. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug?carrier system for photodynamic therapy. Journal of the American Chemical Society, 2003, 125(26): 7860-7865
    [266] Zheng G, Chen J, Li H, et al. Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents. Proceedings of National Academy of Sciences of the United States of America, 2005, 102(49): 17757-17762
    [267] Cinteza L O, Ohulchanskyy T Y, Sahoo Y, et al. Diacyllipid micelle-based nanocarrier for magnetically guideddelivery of drugs in photodynamic therapy. Molecular Pharmacology, 2006, 3(4): 415-423
    [268] Ohulchanskyy T Y, Roy I, Goswami L N, et al. Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Letter, 2007, 7(9): 2835-2842
    [269] Zhang R, Wu C, Tong C, et al. Multifunctional core-shell nanoparticles as highly efficient imaging and photosensitizing agents. Langmuir, 2009, 25(17): 10153-10158
    [270] Montero S, Guzman C, Cortes-Funes H, et al. Angiogenin expression and prognosis in primary breast carcinoma. Clinical Cancer Research, 1998, 4(9): 2161-2168
    [271] Chopra V, Dinh T V, Hannigan E V. Circulating serum levels of cytokines and angiogenic factors in patients with cervical cancer. Cancer Investigation, 1998, 16(3): 152-159
    [272] Hisai H, Kato J, Kaminishi M, et al. Increased expression of angiogenin in hepatocellular carcinoma in correlation with tumor vascularity. Clinical Cancer Research, 2003, 9(13): 4852-4859
    [273] Katona T M, Neubauer B L, Iversen P W, et al. Elevated expression of angiogenin in prostate cancer and its precursors. Clinical Cancer Research, 2005, 11(23): 8358-8363
    [274] Hu G F, Strydom D J, Fett J W, et al. Actin is a binding protein for angiogenin. Proceedings of National Academy of Sciences of the United States of America, 1993, 90(4): 1217-1221
    [275] Hu G F, Riordan J F, Valle B L. A putative angiogenin receptor in angiogenin-responsive human endothelial cells. Proceedings of National Academy of Sciences of the United States of America, 1997, 94(6): 2204-2209
    [276] Hu G F, Xu C J, Riordan J F. Human angiogenin is rapidly translocated to the nucleus of human umbilical vein endothelial cells and binds to DNA. Journal of Celluar Biochemistry, 2000, 76(3): 452-462
    [277] Tsuji T, Sun Y, Kishimoto K, et al. Angiogenin is translocated to the nucleus of HeLa cells and is Involved in ribosomal RNA transcription and cell proliferation. Cancer Research, 2005, 65(4): 1352-1360
    [278] Nobile V, Russo N, Hu G F, et al. Inhibition of human angiogenin by DNA aptamers: nuclear colocalization of an angiogenin-inhibitor complex. Biochemistry, 1998, 37(19): 6857-6863
    [279] Li W, Yang X, Wang K, et al. Real-time imaging of protein internalization using aptamer conjugates. Analytical Chemistry, 2008, 80(13): 5002-5008
    [280] Soukos N S, Hamblin M R, Hasan T. The effect of charge on cellular uptake and phototoxicity of polylysine chorine6 conjugates. Photochemistry and Photobiology, 1997, 65(4): 723-729
    [281] Moan J, Berg K. The photodegradation of porphyring in cells can be used to estimate the lifetime of singlet oxygen. Photochememistry and Photobiology, 1991, 53(4): 549-553

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700