DNA杂交信号的介质调控和酶法放大研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
序列决定了DNA分子特性,DNA序列的变化导致人类个体间的差异。约90%的DNA序列变化归因于单核苷酸多态性(SNP),即基因组水平上单个位点碱基的改变。SNP与人类进化、遗传性疾病、个体药物敏感性等困扰人类从而引起普遍关注的问题紧密相关,对SNP的研究将会对人类进化过程、基因定位、药物开发、疾病诊疗等方面产生深远影响。其中,建立适用于遗传性疾病、肿瘤的早期诊断以及诊疗过程的简便快速的SNP检测方法在临床诊疗中具有十分重要的意义。
     本论文研究目标就是采用普通的分析仪器,建立简便快速识别具有不匹配碱基的核苷酸链的方法,使之能应用于普通诊疗机构。
     一、染料放大DNA杂交信号的研究
     插入式荧光染料与DNA双链结合后产生荧光,可以放大DNA的杂交信号,但需要采用荧光光度计检测信号。花青染料在可见光区具有强吸收,如果能与DNA双链特异性结合,就可以将DNA杂交信号转化为可见光区的光吸收信号,用普通分光光度计就可进行检测。本章基于花青染料3-乙基-2-[7-(3-乙基-2-苯并噻唑啉)-1,3,5-庚三烯]碘化苯并噻唑与DNA杂交双链的特异性结合作用,将DNA的杂交信号转化为染料在可见光区的光吸收信号。实验结果表明,与DNA杂交双链结合后,该染料在760 nm处产生强吸收峰,吸光度数值及其稳定性受杂交链长度和体系温度的影响。在25℃条件下,采用24-mer探针,可以检测μg·mL-1数量级的互补DNA链,比DNA自身杂交信号灵敏度提高两个数量级。在优化条件下,利用该染料还可识别短链DNA中存在的SNP。与其它DNA片段的检测以及SNP的识别方法相比,该方法更为简便迅速,在临床诊疗中具有潜在的应用价值。
     二、反胶束介质调控DNA杂交反应的研究
     DNA杂交反应前后,在260 nm处的吸光度会有变化。杂交双链匹配度不同,吸光度的变化幅度不同。这一光吸收信号可以采用紫外分光光度计检测。但是,水溶液中进行的DNA杂交反应,浓度高至100μmol/L时,DNA分子的紫外吸光度超出仪器检测范围。浓度低至1 u mol/L,杂交前后吸光度的变化幅度小,也观测不到吸光度的变化。
     反胶束介质使局部浓集于水核中的DNA分子杂交,同时DNA的表观浓度大大降低,反胶束介质还降低了DNA的杂交反应速度和杂交双链的稳定性,使不同匹配度DNA双链的紫外吸光度产生差异,因此用紫外分光光度计即可检测SNP。但是文献研究表明反胶束中DNA杂交反应速率太慢,单个样品检测周期约4小时。
     本章采用合成的24个碱基的DNA片段,在AOT反胶束中研究了影响DNA杂交反应速度的因素。采用析相的方法,使反胶束溶液两相分离,析相后DNA仍存在于有机相(反胶束)中。析相后DNA链仍能进行杂交反应,杂交反应速度加快。根据不同匹配度DNA链杂交后紫外吸光度,可以识别存在不匹配碱基的DNA链。利用库仑滴定法测定有机相中水分含量,双链不匹配度越高,有机相中水分含量越高,根据有机相中水分含量,也可以识别具有不匹配碱基的核苷酸链。
     三、DNA杂交信号的酶放大研究
     近年来,利用酶催化反应转换和放大各种检测信号的方法越来越受到关注。2002年,Alan S.等人报道了利用生物工程修饰酶放大DNA检测信号的方法,首次将DNA的杂交反应信号转换并放大为酶催化反应信号。但是,该方法的局限性在于对酶、抑制剂和DNA的修饰连接过程太过复杂。
     核酸适配体是1990年被发现的一类特殊的寡核苷酸链,可以通过一种称之为SELEX (systematic evolution of ligands by exponential enrichment)的离体选择过程获得。1992年通过SELEX筛选出凝血酶核酸适配体,可以抑制凝血酶对纤维蛋白原的水解活力。
     本章基于凝血酶与G15D核酸适配体的特异性结合原理,在G15D核酸适配体上修饰DNA分子信标结构,修饰后的探针在溶液中形成G-四聚体和分子信标两个结构域,G-四聚体结构域与凝血酶结合,抑制了凝血酶的水解活力。当溶液中存在与分子信标环部互补的DNA链时,由于DNA的杂交反应,使分子信标结构被打开,G-四聚体结构被破坏,凝血酶复活。不同匹配度DNA链与探针链杂交后,探针的G-四聚体结构被破坏的程度不同,凝血酶的活力不同,通过测定凝血酶的活力可以识别具有不匹配碱基的目标链。凝血酶的活力用凝血酶水解纤维蛋白原的初凝时间表示。由于凝血酶凝血时间是临床诊断中一种测定人体凝血功能的常规检测方法,将SNP的识别信号转化为凝血酶凝血时间,将易于在普通的诊疗机构推广应用。
     四、核酸适配体对凝血酶的变构作用研究
     凝血酶与底物复合物结晶、凝血酶定点突变、分子模拟等方法常常用来研究凝血酶变构作用。通过对凝血酶与凝血酶调制蛋白(thrombomodulin, TM)的结晶复合物检测,发现TM与凝血酶结合并没有引起凝血酶构象改变。但又有研究表明,TM结合于凝血酶使凝血酶对蛋白质C的识别能力增强。对于外结合位点Ⅰ和Ⅱ之间是否有相互作用这一重要问题,也始终没有一致的结论,有的研究认为两个位点之间有构象相关性,即外结合位点Ⅰ与配体的结合会使外结合位点Ⅱ失去与配体的结合能力,但是有些研究又认为两个位点之间没有关联。
     G15D核酸适配体特异性结合于凝血酶外结合位点Ⅰ,抑制凝血酶对纤维蛋白原的水解活力,抑制凝血酶与TM的结合。DNA 60-18(29)核酸适配体结合于外结合位点Ⅱ,也抑制凝血酶对纤维蛋白原的水解活力。由于G15D核酸适配体和DNA 60-18(29)核酸适配体本身并不被凝血酶水解,并且凝血酶水解发色底物的反应不受核酸适配体的抑制,因此本章用核酸适配体来研究外结合位点对凝血酶的变构作用。
     本章我们选用核酸适配体研究外结合位点对凝血酶的变构作用。首先,核酸适配体可以分别结合于凝血酶的两个位点,本身不被凝血酶水解。其次,相对于TM、纤维蛋白原等大分子蛋白类底物,核酸适配体对酶构象和活力检测的干扰大大减小。此外,凝血酶水解小分子发色底物的反应不被核酸适配体抑制,可以直接检测凝血酶水解活力的变化。研究结果表明,核酸适配体与凝血酶的结合会引起凝血酶构象的轻微改变,这种改变可以促进凝血酶对发色底物的水解。这一现象似乎可以说明,大分子底物结合于凝血酶外结合位点,不仅有利于底物的酶切位点与凝血酶活性中心的接触,还可以促进凝血酶的水解活力。
     五、基于核酸适配体与凝血酶的相互作用测定凝血酶
     本章基于核酸适配体和凝血酶相互作用的研究结果,利用核酸适配体制作生物传感器来检测凝血酶。用方波电势脉冲(SWPP)法制备纳米多孔金电极,将巯基修饰的G15D核酸适配体固定在纳米多孔金电极上,之后利用核酸适配体结合溶液中的凝血酶,凝血酶的另一个结合位点连接与金纳米颗粒结合的巯基-DNA60-18[29]核酸适配体,形成三明治式结构。为了减少凝血酶与金纳米颗粒上核酸适配体的交互作用,还在金纳米颗粒表面固定了不与凝血酶结合的寡核苷酸链。利用电极外层吸附的阳离子还原剂[Ru(NH3)6]3+产生电化学信号。由于纳米多孔金和金纳米颗粒的放大作用,所形成的传感器可以非常灵敏地用于凝血酶的检测。
DNA sequence determines the characteristics of DNA molecule. The change of DNA sequence affects not only the coding for a specific polypeptide, but also the coding for RNA molecules such as ribosomal RNA and transfer RNA, thus resulting in individual differences in human being. About 90% of human DNA polymorphism is single nucleotide polymorphism (SNP). SNP is single base pair position at which different sequence alternatives (alleles) exist in normal individuals in some population(s) and has close relationship with genetic diseases and drug sensitivity. Therefore, it is very important to detect SNP in clinical diagnosis and therapy.
     Most DNA assays are based on DNA hybridization reacted in aqueous solution or solid-supported system. Compared with solid-supported DNA hybridization, homogeneous reactions are fitter for automation because no separation or purification is needed after the allele discrimination reaction. However, Most of the homogeneous SNP typing methods need the label of fluorephore or radioactive isotope, which makes them expensive, special-apparatus-depending and time-consuming, thereby often beyond the reach of clinical laboratory.
     The thesis aims to develop fast and easy SNP assays in homogeneous solution which can be used routinely in disease diagnosis and therapy in clinics.
     1. Using a Cyanine Dye to Transmit DNA Hybridization Signal to Visible Absorbance
     Intercalating fluorescent dyes have been used to transmit dsDNA signal because of their high affinity for and large fluorescence enhancement upon binding dsDNA, but special optical apparatus is needed. The cyanine dyes are also able to recognize dsDNA structures by intercalation, exterior stacking, major groove binding, and minor groove binding. With the specific binding of cyanine dyes, DNA hybridization signal can be transmitted into visible absorbance, thus realizing easy and fast assay using ordinary spectrophotometer.
     A kind of cyanine dye,3,3'-diethylthiatricarbocyanine iodide (DTTC) was used to transmit the DNA hybridization signal to visible absorbance of the cyanine dye based on the specific binding interaction of duplex DNA and DTTC. The result indicated that, when binding with DNA duplex, the cyanine dye produced two absorbing peaks, in which the absorbance peak at 760nm resulted from intercalation binding mode, while the other absorbance peak at 675 nm due to groove binding mode. The absorbance at 760nm and its stability were influenced by the length of the hybrids and the experimental temperature. When the temperature was set at 25℃and 24-mer oligonucleotide was used as the probe, target DNA with concentration being as low as 1μg·mL-1 could be detected, thus realizing a more sensitive assay with the sensitivity being two orders lower than that of DNA at 260nm. Under appropriate conditions, the cyanine dye could be used not only to detect target single stranded DNA, but also to recognize SNP in target DNA fragments. Compared with other target DNA or SNP-typing assays, the present assay had advantages in simplicity and rapidity, and had an applicable potential in clinical diagnosis.
     2. Monitoring DNA Hybridization by UV spectra in AOT reverse micelles
     DNA hybridization could be monitored by measuring UV absorbance at 260 nm. But when DNA hybridized in aqueous solution at a high concentration, the absorbance would be too high to be detected. While DNA hybridized at a low concentration, the change of the absorbance at 260 nm could not be detected either.
     Reverse micelles, which are formulated by surfactant molecules in organic solvents, provide nanostructural water pools which can dissolve DNA at rather high concentration but the whole concentration is still low. Reverse micelles decrease DNA hybridization rate and the stability of dsDNA, thus amplify the differences between fully matched and partially matched DNA targets. Goto et al reported a 20-mer DNA hybridization in reverse micelles, but results showed the assay was time consuming.
     Using a 24-mer oligonucleotide as a model, we studied the influence of AOT reverse micelles on DNA hybridization rate and the methods to amplify the signal differences among different complementary DNA fragments. In order to increase DNA hybridization rate in reverse micelles, we separated the two phases by freezing the reverse micelles.
     After the freeze of AOT reverse micelles, DNA remained in organic solvent, but the bulk of water decreased deeply. Because fully complementary dsDNA folded more closely than those partially complementary dsDNAs, after the freezing, the water content in fully complementary dsDNA system was much lower than those partially complementary dsDNAs. Thus by measuring water content, a mutation in target DNA fragment could also be recognized.
     3. Transmit DNA Hybridization Signal to Catalytic Activity of an Enzyme
     To develop a feasibly low cost SNP assay in a homogeneous solution, we designed a DNA probe, which had a thrombin-inhibiting aptamer domain and a stem-and-loop structure (like a molecular beacon). In this way, the hybridization signal produced at the loop could be switched directly to the signal of thrombin activity. The stem-and-loop structure was carefully designed so that under appropriate hybridization conditions, different target DNAs with sequences either fully or partially complementary to the loop sequence resulted in different degrees of the damage of the aptamer domain on the probe. The conformational changes of the probe after its hybridization with target DNAs were confirmed by CD spectra and FRET studies. Under selected conditions, different target DNAs resulted in obvious differences in thrombin activity toward fibrinogen, thereby, realizing an easy discrimination of SNPs using routinely clinical fibrinogen clotting assay. Compared with other SNP-typing assays, the present assay has advantages in simplicity and rapidity, and has potential application in clinical diagnosis.
     4 Binding effects of aptamers on thrombin
     On the surface of thrombin, there exist two positively charged binding sites-exosite I and exosite II. The two exosites facilitate thrombin to bind various negatively charged substrates or ligands so as to regulate the different role of thrombin. Many reports have been released on the recognition mechanism of thrombin for its natural substrates or ligands through the two exosites, but there is a controversy on the allostery of thrombin during the exositeⅠand/or exositeⅡbinding(s).
     Crystallographic study on thrombin-thrombomodulin complex indicated no change of the conformation of thrombin's active site. Study on thrombin-fibrinogen crystal did not provide any information about the allosteric effect of fibrinogen on thrombin. However, some studies showed that the binding of TM fragment, hirudin fragment or other ligands to exositeⅠand exositeⅡproduced allosteric changes. ExositesⅠandⅡwere reported to be closely linked allosterically, i.e., binding of a ligand to one exosite resulted in nearly total loss of affinity of the other exosite for ligands, but other studies supported the independence of the interactions. The contradictory results may be due to the following facts:Firstly, thrombin and its macromolecular substrates or ligands lost flexibility in crystal, so the slight allosteric change of thrombin may be undetectable. Secondly, the binding ligands used were usually from thrombin's natural substrates, inhibitors, or the fragments of the substrates or their derivatives. Their binding to one exosite may affect the binding of other ligands to another exosite.
     For thrombin, two kinds of aptamers are obtained. One binds to exositeⅠ, the other binds to exositeⅡ. Because the two aptamers are non-protein, soluble, and specific for binding exositeⅠorⅡ, the conformation of thrombin with exosites empty or occupied by one or two aptamer(s) can be observed in aqueous solution using CD spectra and intrinsic fluorescence without any modifications or marks of thrombin and/or the aptamers. In addition, the aptamers have no direct linkage with the active site of thrombin. The use of small chromogenic substrate, (3-Ala-Gly-Arg-p-nitroanilide diacetate, which is cleaved by thrombin at a slow rate, for the determination of the hydrolysis activity of thrombin also facilitated the present study, making the phenomenon straightforward and obvious.
     CD and intrinsic fluorescence spectra indicated that after binding with aptamers the secondary structure of thrombin seemed unchanged, but the whole conformation of thrombin changed. The binding of aptamers on thrombin also made the catalytic activity of thrombin toward the chromogenic substrate (β-Ala-Gly-Arg-p-nitroanilide diacetate) increased. The present study indicated that the allostery of the two exosites seemed to be independent.
     5 Sensitive thrombin detection based on the interaction between aptamers and thrombin
     Based on the interaction between aptamers and thrombin, an attempt was made to develop a nanoporous gold (NPG)-based electrochemical aptasensor for thrombin detection. The substrate electrode NPG was in situ fabricated by a facile one-step square wave potential pulse (SWPP) treatment. The treatment involved repeated gold oxidation-reduction and intensive H2 bubbles evolution. After 100 min treatment, the active surface area of Au increased greatly (34 times). The electrochemical aptasensor was fabricated using a layer-by-layer assembling strategy. A "sandwich" structure was formed via thrombin connecting the aptamer-modified NPG and the aptamer-modified gold nanoparticles (GNPs). The AuNPs was modified with two kinds of single strand DNA (ssDNA). One was aptamer of thrombin, but the other was not, reducing the crossreaction between thrombin and its aptamer on the same GNP. The electrochemical signal produced by the [Ru(NH3)6]3+ bound to ssDNA via electrostatic interaction was measured by chronocoulometry. Due to the amplification effects of both NPG and GNPs, this novel NPG-based aptasensor could detect thrombin quantitatively in the range of 0.01-22nmol/L with a detection limit as low as 30 fmol/L. The present aptasensor also exhibited excellent selectivity, stability and reusability.
引文
[1]Venter J C, Adams M D, Myers E W, et al, The sequence of the human genome, Science 291 (2001) 1304-1351.
    [2]Sachidanandam R, Weissman D, Schmidt S C, et al, A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms, Nature 409 (2001) 928-933.
    [3]Brookes A J, The essence of SNPs, Gene 234 (1999) 177-186.
    [4]Wang D G, Fan J B, Siao C J, et al, Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome, Science 280 (1998)1077-1082.
    [5]The International HapMap Consortium, A second-generation human haplotype map of over 3.1 million SNPs, Nature 449 (2007) 851-861.
    [6]The International HapMap Consortium, The international HapMap Project, Nature 426 (2003) 789-796.
    [7]The International HapMap Consortium, A haplotype map of the human genome, Nature 437 (2005) 1299-1320.
    [8]Sobrino B, Brion M, Carracedo A, SNPs in forensic genetics:a review on SNP typing methodologies, Forensic Sci. Int.154 (2005) 181-194.
    [9]Chorley B N, Wang X, Campbell M R, Pittman G S, Noureddine M A, Bell D A, Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions:Current and developing technologies, Mutat. Res.659 (2008) 147-157.
    [10]Orita M, Iwahama H, Kanazawa H, et al, Proc. Natl. Acad. Sci. USA 86 (1989) 2766-2770.
    [11]Ganguly A, Prockop D J, Detection of mismatched bases in double stranded DNA by gel electrophoresis, Electrophoresis 16 (1995) 1830-1835.
    [12]Myers R M, Maniatis T, Lerman L S, Detection and localization of single base changes by denaturing gradient gel electrophoreses, Methods Enzymol 155 (1987) 501-527.
    [13]O'Donovan M C, Oefner P J, Roberts S C, et al, Blind analysis of denaturing high performance liquid chromatography as a tool for mutation detection, Genomics 52 (1998)44-49.
    [14]Holland P M, Abramson R D, Watson R, Gelfand D H, Detection of specific polymerase chain reaction product by utilizing the 50-30 exonuclease activity of Thermus aquaticus DNA polymerase, Proc. Natl. Acad. Sci. U.S.A.88 (1991) 7276-7280.
    [15]Livak K J, Flood S J, Marmaro J, Giusti W, Deetz K, Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization, PCR Methods Appl.4 (1995) 357-362.
    [16]Livak K J, Allelic discrimination using fluorogenic probes and the 5' nuclease assay, Genetic Anal.:Biomol. Eng.14 (1999) 143-149.
    [17]Landergren U, Kaiser R, Sanders J, Hood L, A ligase-mediated gene detection technique, Science 241 (1988) 1077-1080.
    [18]V. Lyamichev, M.A. Brow, J.E. Dahlberg, Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases, Science 260 (1993) 778-783.
    [19]Cao W, Recent developments in ligase-mediated amplification and detection, Tren. Biotechnol.22 (2004) 38-44.
    [20]Lyamichev V, Mast A L, Hall J G, et al, Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes, Nat. Biotechnol.17 (1999) 292-296.
    [21]Olivier M, The Invader assay for SNP genotyping, Mutat. Res.573 (2005) 103-110.
    [22]Wallace R B, Shaffer J, Murphy R F, et al, Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA:the effect of single base pair mismatch, Nucleic Acids Res.6 (1979) 3543-3557.
    [23]Csako G, Present and future of rapid and/or high-throughput methods for nucleic acid testing, Clin. Chim. Acta 363 (2006) 6-31.
    [24]Kafatos F C, Jones C W, Efstratiadis A, Determination of nucleic acid sequence and relative concentrations by a dot hybridization peocedure, Nucleic Acids Res.7 (1979) 1541-1552.
    [25]Southern E M, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol.98 (1975) 503-517.
    [26]Thomas P S, Hybridization of denatured RNA and small fragments transferred to nitrocellulose, Proc. Natl. Acad. Sci.77 (1980) 5201-5205.
    [27]Wen S, Wang S, Principle and development of SNP genotyping technology, Letters in Biotechnology 14 (2003) 218-221.
    [28]Tyagi S, Kramer F R, Molecular beacons:probes that fluoresce upon hybridization, Nat. Biotechnol.14 (1996) 303-308.
    [29]Kostrikis L G, Tyagi S, Mhlanga M M, et al, Spectral genotyping of human alleles, Science 279 (1998) 1228-1229.
    [30]Tyagi S, Bratu D P, Kramer F R, Multicolour molecular beacons for allele discrimination, Nat. Biotechnol.16 (1998) 49-53.
    [31]McChlery S M, Clarke S C, The use of hydrolysis and hairpin probes in real-time PCR, Molecular Biotechnol.25 (2003) 267-273.
    [32]Luisi P L, Giomini M, Pileni M P, et al, Reverse micelles as hosts for proteins and small molecules, Biochimica Biophys. Acta 947 (1988) 209-246.
    [33]赵国玺,朱步瑶.表面活性剂作用原理.北京:中国轻工业出版社,2003.
    [34]Shinoda K, The signigicance and characteristics of organized solutions, J. Phys. Chem.89(1985)2429-2431.
    [35]Eastoe J, Robinson B H, Steytler D C, et al, Structuralstudies of mieroemulsions stabilized by Aerosol OT, Adv. Colloid Interface Sci.36 (1991) 1-31.
    [36]Maruyama T, Park L, Shinohara T, Goto M, DNA hybridization in nanostructural molecular assemblies enables detection of gene mutations without a fluorescent, Biomacromolecules 5 (2004) 49-53.
    [37]Jayasena S, Aptamers:an emerging class of molecules that rival antibodies in diagnostics, Clin. Chem.45 (1999) 1628-1650.
    [38]Patel D J, Suri A K, Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics, Rev. Mol. Biotechnol.74 (2000) 39-60.
    [39]Clark S L, Remcho V T, Aptamers as analytical reagents, Electrophoresis 23 (2002)1335-1340.
    [40]Luzi E, Minunni M, Tombelli S, Mascini M, New trends in affinity sensing: aptamers for ligand binding, Trends Anal. Chem.22 (2003) 810-818.
    [41]You K M, Lee S H, Im A, Lee S B, Aptamers as functional nucleic acids:in vitro selection and biotechnological applications, Biotechnol. Bioprocess. Eng.8 (2003) 64-75.
    [42]Ellington A D, Szostak J W, In vitro selection of RNA molecules that bind specific ligands, Nature 346 (1990) 818-822.
    [43]Tuerk C, Gold L, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science 249 (1990) 505-510.
    [44]Juskowiak B, Analytical potential of the quadruplex DNA-based FRET probes, Anal. Chim. Acta 568 (2006) 171-180.
    [45]Willner I, Zayats M, Electronic Aptamer-Based Sensors, Angew. Chem. Int. Ed. Engl.46 (2007) 6408-6418.
    [46]Mairal T, Ozalp V C, Sanchez P L, Mir M, Katakis I, O'Sullivan C K, Aptamers: molecular tools for analytical applications, Anal. Bioanal. Chem.390 (2008) 989-1007
    [47]Tombelli S, Minunni M, Mascini M, Analytical applications of aptamers, Biosens. Bioelectron.20 (2005) 2424-2434.
    [48]Shangguan D, Li Y, Tang Z, Cao Z C, Chen H W, Mallikaratchy P, Sefah K, Yang C J, Tan W, Aptamers evolved from live cells as effective molecular probes for cancer study, Proc. Natl. Acad. Sci. U. S. A.103 (2006) 11838-11843.
    [49]Ramos E, Pineiro D, Soto M, Abanades D R, Martin M E, Salinas M, Gonzalez V M, A DNA aptamer population specifically detects Leishmania infantum H2A antigen, Lab. Invest.87 (2007) 409-416.
    [50]Niu W, Jiang N, Hu Y, Detection of proteins based on amino acid sequences by multiple aptamers against tripeptides, Anal. Biochem.362 (2007) 126-135.
    [51]Lee S, Kim Y S, Jo M, Jin M, Lee DK, Kim S, Chip-based detection of hepatitis C virus using RNA aptamers that specifically bind to HCV core antigen, Biochem. Biophys. Res. Commun.358 (2007) 47-52.
    [52]Ikanovic M, Rudzinski W E, Bruno J G, Allman A, Carrillo M P, Dwarakanath S, Bhahdigadi S, Rao P, Kiel J L, Andrews C J, Fluorescence assay based on aptamer-quantum dot binding to bacillus thuringiensis spores, J. Fluoresc.17 (2007) 193-199.
    [53]de-los-Santos-Alvarez N, Lobo-Castanon M J, Miranda-Ordieres A J, Tunon-Blanco P, Modified-RNA Aptamer-Based Sensor for Competitive Impedimetric Assay of Neomycin B, J. Am. Chem. Soc.129 (2007) 3808-3809.
    [54]Senior K, Aptamers as potential probes for cancer, Lancet Oncol.7 (2006) 712.
    [55]N. Rupcich, R. Nutiu, Y. Li, J.D. Brennan, Solid-phase enzyme assay utilizing an entrapped fluorescence-signaling DNA aptamer, Angew. Chem. Int. Ed. Engl.45 (2006) 3295-3299.
    [56]Rankin C J, Fuller E N, Hamor K H, Gabarra S A, Shields T P, A simple fluorescent biosensor for theophylline based on its RNA aptamer nucleos, Nucleot. Nucl.25 (2006) 1407-1424.
    [57]Guthrie J W, Hamula C L, Zhang H, Le X C, Assays for cytokines using aptamers, Methods 38 (2006) 324-330.
    [58]Minunni M, Tombelli S, Gullotto A, Luzi E, Mascini M, Development of biosensors with aptamers as bio-recognition element:the case of HIV-1 Tat protein, Biosens. Bioelectron.20 (2004) 1149-1156
    [59]Stojanovic M N, Landry D W, Aptamer-based colorimetric probe for cocaine. J. Am. Chem. Soc.124 (2002) 9678-9679.
    [60]Zayats M, Huang Y, Gill R, Ma C, Willner I, Label-free and reagentless aptamer-based sensors for small molecules, J. Am. Chem. Soc.128 (2006) 13666-13667
    [61]Song S, Wang L, Li J, Zhao J, Fan C, Aptamer-based biosensors, Trends Anal. Chem.27(2008)108-117.
    [62]Geiger A, Burgstaller P, Von der Eltz H, Roeder A, Famulok M, RNA aptamers that bind 1-arginine with sub-micromolar dissociation constants and high enantioselectivity, Nucl. Acids Res.24 (1996) 1029-1036.
    [63]Williams K P, Liu X H, Schumacher T N M, Lin H Y, Ausiello D A, Kim P S, Bartel D P, Bioactive and nuclease-resistant 1-DNA ligand of vasopressin, Proc. Natl. Acad. Sci.94 (1997) 11285-11290.
    [64]Michaud M, Jourdan E, Ravelet C, Villet A, Ravel A, Grosset C, Peyrin E, Immobilized DNA aptamers as target-specific chiral stationary phases for resolution of nucleoside and amino acid derivative enantiomers, Anal. Chem.76 (2004) 1015-1020.
    [65]Michaud M, Jourdan E, Villet A, Ravel A, Grosset C, Peyrin E, A DNA aptamer as a new target-specific chiral selector for HPLC, J. Am. Chem. Soc.125 (2003) 8672-8679.
    [66]Deng Q, Watson C J, Kennedy R T, Aptamer affinity chromatography for rapid assay of adenosine in microdialysis samples collected in vivo. J. Chromatogr. A 1005(2003) 123-130.
    [67]Pavski V, Le X C, Detection of human immunodeficiency virus type 1 reverse transcriptase using aptamers as probes in affinity capillary electrophoresis, Anal. Chem.73 (2001) 6070-6076.
    [68]Berezovski M, Nutiu R, Li Y, Krylov S N, Affinity analysis of a protein-aptamer complex using nonequilibrium capillary electrophoresis of equilibrium mixtures, Anal. Chem.75(2003)1382-1386.
    [69]Clark SL, Remcho VT, Electrochromatographic retention studies on a flavin-binding RNA aptamer sorbent, Anal. Chem.75 (2003) 5692-5696.
    [70]Dick L W, McGown L B, Aptamer-enhanced laser desorption/ionization for affinity mass spectrometry, Anal. Chem.76 (2004) 3037-3041.
    [71]Xiao Y, Lubin A A, Heeger A J, Plaxco K W, Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor, Angew. Chem. Int. Ed. Engl.44 (2005) 5456-5459.
    [72]Bang G S, Cho S, Kim B G, A novel electrochemical detection method for aptamer biosensors, Biosens. Bioelectron.21 (2005) 863-870.
    [73]Le Floch F, Ho H A, Leclerc M, Label-free electrochemical detection of protein based on a ferrocene-bearing cationic polythiophene and aptamer, Anal. Chem.78 (2006)4727-4731.
    [74]Cheng A K, Ge B, Yu H Z, Aptamer-based biosensors for label-free voltammetric detection of lysozyme, Anal. Chem.79 (2007) 5158-5164.
    [75]Jayasena S, Aptamers:an emerging class of molecules that rival antibodies in diagnostics, Clin. Chem.45 (1999) 1628-1650.
    [76]Jhaveri S, Rajendran M, Ellington A D, In vitro selection of signaling aptamers, Nat. Biotechnol.18 (2000) 1293-1297.
    [77]Jhaveri S D, Kirby R, Conrad R, Maglott E J,(Bowser M, Kennedy R T, Glick G, Ellington A D, Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity, J. Am. Chem. Soc.122 (2000) 2469-2473.
    [78]Bock L C, Griffin L C, Latham J A, et al, Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature 355 (1992) 564-566.
    [79]Hamaguchi N, Ellington A, Stanton M, Aptamer beacons for the direct detection of proteins, Anal. Biochem.294 (2001) 126-131.
    [80]Li W, Yang X, Wang Ke, Tan W, Li H, Ma C, FRET-based aptamer probe for rapid angiogenin detection, Talanta 75 (2008) 770-774.
    [81]Li J J, Fang X, Tan W, Molecular aptamer beacons for real-time protein recognition, Biochem. Biophys. Res. Commun.292 (2002) 31-40.
    [82]Nutiu R, Li Y, Structure-switching signalling aptamers, J. Am. Chem. Soc.125 (2004) 4771-4778.
    [83]Wang L, Liu X, Hu X, Song S, Fan C, Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers, Chem. Commun.36 (2006) 3780-3782.
    [84]Wei H, Li B, Li J, Wang E, Dong S, Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes, Chem. Commun.37 (2007) 3735-3737.
    [85]Liu J, Lu Y, Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles, Angew. Chem. Int. Ed. Engl.45 (2005) 90-94.
    [86]Liu J, Lu Y, Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes, Nat. Protoc.1 (2006) 246-252.
    [87]Pavlov V, Xiao Y, Shlyahovsky B, Willner, I, Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin, J. Am. Chem. Soc.126 (2004)11768-11769.
    [88]Li Y Y, Zhang C, Li B S, Zhao L F, Li X B, Yang W J, Xu S Q, Ultrasensitive densitometry detection of cytokines with nanoparticle-modified aptamers, Clin. Chem. 53 (2007) 1061-1066.
    [89]Luzi E, Minunni M, Tombelli S, Mascini M, New trends in affinity sensing: aptamers for ligand binding, Trends Anal. Chem.22 (2003) 810-818.
    [90]Tombelli S, Minunni M, Luzi E, Mascini M, Aptamer-based biosensors for the detection of HIV-1 Tat protein, Bioelectrochemistry 67 (2005) 135-141.
    [91]Hianik T, Ostatna V, Zajacova Z, Stoikova E, Evtugyn G, Detection of aptamer-protein interactions using QCM and electrochemical indicator methods, Bioorg. Med. Chem. Lett.15 (2005) 291-295.
    [92]Schlensog M D, Gronewold T M A, Tewes M, Famulok M, Quandt E, A Lowe-wave biosensor using nucleic acids as ligands, Sens. Actuators B 10 (2004) 308-315.
    [93]Savran C A, Knudsen S M, Ellington A D, Manalis S R, Micromechanical detection of proteins using aptamer-based receptor molecules, Anal. Chem.76 (2004) 3194-3198.
    [94]Hwang K S, Lee S M, Eom K, Lee J H, Lee Y S, Park J H, Yoon D S, Kim T S, Nanomechanical microcantilever operated in vibration modes with use of RNA aptamer as receptor molecules for label-free detection of HCV helicase, Biosens. Bioelectron.23 (2007) 459-465.
    [95]Wells C M, Di Cera E, Thrombin is a sodium ion activated enzyme, biochemistry 31(1992)11721-11730.
    [96]Mann K G, Thrombin:can't live without it; probably die from it. Chest 124 (2003) 1S-3S.
    [97]Coughlin S R, Vu T-K H, Hung D T, Wheaton V I, Characterization of a functional thrombin receptor:issues and opportunities, J. Clin. Invest.89 (1992) 351-355.
    [98]Davie E W, Fujikawa K, Kisiel W, The coagulation cascade:initiation, maintenance, and regulation, Biochemistry 30 (1991) 10363-10370.
    [99]Esmon C T, Fukudome K, Cellular regulation of the protein C pathway, Semin. Cell. Biol.6(1995)259-268.
    [100]Di Cera E, Thrombin, Mol. Aspects. Med.29 (2008) 203-254.
    [101]Huntington J A, Molecular recognition mechanisms of thrombin, J. Thromb. Haemost.3 (2005) 1861-1872.
    [102]Stubbs M T, Bode W, A player of many parts:the spotlight falls on thrombin's structure, Thromb. Res.69 (1993) 1-58.
    [103]Stubbs M T, Bode W, The clot thickens:clues provided by thrombin structure, Trends Biochem. Sci.20 (1995) 23-28.
    [104]许善峰,李芳,姜涌明,杨生妹.凝血酶的结构及其变构特性[J].中国医学生物技术应用杂志,2004,3(3):18-23.
    [105]Tasset D M, Kubik M F, Steiner W, Oligonucleotide inhibitors of human thrombin that bind distinct epitopes, J. Mol. Biol.272 (1997) 688-698.
    [106]Wu Q, Tsiang M, Sadler J E, Localization of the single-stranded DNA binding site in the thrombin anion-binding exosite, J. Biol. Chem.267 (1992) 24408-24412.
    [107]Weizmann Y, Braunschweig A B, Wilner O I, Cheglakov Z, Willner I, Supramolecular aptamer-thrombin linear and branched nanostructures, Chem. Comm. 40 (2008) 4888-4890.
    [108]Alan S, Kevin M G, Drsiree A T, Ghadiri M R, DNA detection and signal amplification via an engineered allosteric enzyme,J. Am. Chem. Soc.125 (2003) 344-345.
    [1]Chorley B N, Wang X, Campbell M R, Pittman G S, Noureddine M A, Bell D A, Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions:current and developing technologies, Mutat. Res.659 (2008) 147-157.
    [2]Sobrino B, Brion M, Carracedo A, SNPs in forensic genetics:a review on SNP typing methodologies, Forensic. Sci. Int.154 (2005) 181-194.
    [3]Wen S, Wang S, Principle and development of SNP genotyping technology, Letters in Biotechnology 14 (2003) 218-221.
    [4]Biver T, Boggioni A, Secco F, Turriani E, Venturini M, Yarmoluk S, Influence of cyanine dye structure on self-aggregation and interaction with nucleic acids:A kinetic approach to TO and BO binding, Arch. Biochem. Biophys.465 (2007) 90-100.
    [5]Mishra A, BeherA RK, Behera P K, Mishra B K, Behera G B, Cyanines during the 1990s:a review, Chem. Rev.100 (2000) 1973-2011.
    [6]Jarikote D V, Krebs N, Tannert S, Roder B, Seitz O, Exploring base-pair-specific optical properties of the DNA stain thiazole orange, Chem. Eur. J.13 (2007) 300-310.
    [7]Wang M, Silva G L, Armitage B A, DNA-templated formation of a helical cyanine dye J-aggregate, J. Am. Chem. Soc.122 (2000) 9977-9986.
    [8]司文会,訾言勤,屠一锋.吖啶黄反应光度法测定脱氧核糖核酸含量的研究[J].光谱学与光谱分析,2008,28(2):412-414.
    [9]苏界殊,龙云飞,周梅芳,李韧韬.灿烂绿与DNA作用的紫外-可见光谱的特性及其分析应用[J].光谱实验室,2004,21(1):160-162.
    [10]Skeidsvoll J, Ueland P M, Analysis of double-stranded DNA by capillary electrophoresis with laser-induced fluorescence detection using the monomeric dye SYBR Green I, Anal. Biochem.231 (1995) 359-365.
    [11]高峰,章丽,卞桂荣,王伦.光谱法研究灿烂甲酚蓝与DNA的相互作用[J].光谱学与光谱分析,2005,25(11):1843-1845.
    [12]夏忠瑜,李原芳,龙云飞.光谱法研究CTMAB存在下荧光桃红B与fsDNA的相互作用及应用[J].分析测试学报,Vo1.26(6):851-854.
    [13]苗延芳,王振永,焦奎.循环伏安法研究天青A与dsDNA的相互作用[J].分析测试学报,2007,26(4):492-495.
    [14]Stojanovic M N, Landry D W, Aptamer-based colorimetric probe for cocaine, J. Am. Chem. Soc.124 (2002) 9678-9679.
    [15]Yan X, Habbersett R C, Yoshida T M, Nolan J P, Jett J H, and Marrone B, Probing the kinetics of SYTOX orange stain binding to double-stranded DNA with implications for DNA analysis, Anal. Chem.77 (2005) 3554-3562.
    [16]Gurrieri S, Wells K S, Johnson I D, and Bustamante C, Direct visualization of individual DNA molecules by fluorescence microscopy:characterization of the factors affecting signal/background and optimization of imaging conditions using YOYO, Anal. Biochem.249 (1997) 44-53.
    [17]Norman D G, Grainger R J, Uhrin D,and Lilley D M J, Location of cyanine-3 on double-stranded DNA:importance for fluorescence resonance energy transfer studies, Biochemistry 39 (2000) 6317-6324.
    [18]Larsson A, Carlsson C, Jonsson M, Albinsson N, Characterization of the binding of the fluorescent dyes YO and YOYO to DNA by polarized light spectroscopy, J. Am. Chem. Soc.116 (1994) 8459-8465.
    [19]Carlsson C, Larsson A, Jonsson M, Albinsson B, Norden B, Optical and photophysical properties of the oxazole yellow DNA probes YO and YOYO, J. Phys. Chem.98 (1994) 10313-10321.
    [20]Spielmann H P, Wemmer D E, Jacobsen J P, Solution structure of a DNA complex with the fluorescent bis-intercalator TOTO determined by NMR Spectroscopy, Biochemistry 34 (1995) 8542-8553.
    [21]Schweitzer C, Scaiano J C, Selective binding and local photophysics of the fluorescent cyanine dye PicoGreen in double-stranded and single-stranded DNA, Phys. Chem. Chem. Phys.5 (2003) 4911-4917.
    [22]Katoh T, Inagaki Y, Okazaki R, Linear and stack oligostreptocyanines effects of relative orientation of chromophores on redox potentials of dye aggregates, Bull. Chem. Soc. Jpn.70 (1997) 2279.
    [23]Maruyama T, Park L, Shinohara T, DNA hybridization in nanostructural molecular assemblies enables detection of gene mutations without a fluorescent, Biomacromolecules 5 (2004) 49-53.
    [24]Xu X S, Glazer P M, Wang G, Activation of human y-globin gene expression via triplex-forming oligonucleotide (TFO)-directed mutations in the y-globin gene 5' flanking region, Gene 242 (2000) 219-228.
    [1]Venter J C, Adams M D, Myers E W, et al, The sequence of the human genome, Science 291 (2001) 1304-1351.
    [2]Collins F S, Brooks L D, Chakravarti A, A DNA polymorphism discovery resource for research on human genetic variation, Genome Res.8 (1998) 1229-1231.
    [3]Sachidanandam R, Weissman D, Schmidt S C, et al, A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms, Nature 409(2001)928-933.
    [4]Brookes A J, The essence of SNPs, Gene 234 (1999) 177-186.
    [5]Sobrino B, Brion M, Carracedo A, SNPs in forensic genetics:a review on SNP typing methodologies, Forensic Sci. Int.154 (2005) 181-194.
    [6]Chorley B N, Wang X, Campbell M R, Pittman G S, Noureddine M A, Bell D A, Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions:Current and developing technologies, Mutat. Res.659 (2008) 147-157.
    [7]Sobrino B, Brion M, Carracedo A, SNPs in forensic genetics:a review on SNP typing methodologies, Forensic Sci. Int.154 (2005) 181-194.
    [8]Livak K J, Allelic discrimination using fluorogenic probes and the 5' nuclease assay, Genetic Anal.:Biomol. Eng.14 (1999) 143-149.
    [9]Csako G, Present and future of rapid and/or high-throughput methods for nucleic acid testing, Clin. Chim. Acta 363 (2006) 6-31.
    [10]Kafatos F C, Jones C W, Efstratiadis A, Determination of nucleic acid sequence and relative concentrations by a dot hybridization peocedure, Nucleic Acids Res.7 (1979) 1541-1552.
    [11]Southern E M, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol.98 (1975) 503-517.
    [12]Thomas P S, Hybridization of denatured RNA and small fragments transferred to nitrocellulose, Proc. Natl. Acad. Sci.77 (1980) 5201-5205.
    [13]Tyagi S, Kramer F R, Molecular beacons:probes that fluoresce upon hybridization, Nat. Biotechnol.14 (1996) 303-308.
    [14]Kostrikis L G, Tyagi S, Mhlanga M M, et al, Spectral genotyping of human alleles, Science 279 (1998) 1228-1229.
    [15]Christensen U, Jacobsen N, Rajwanshi V K, Wengel J, Koch T, Stopped-flow kinetics of locked nucleic acid (LNA)-oligonucleotide duplex formation:studies of LNA-DNA and DNA-DNA interactions, Biochem. J.354 (2001) 481-484.
    [16]Tibanyenda N, Debruin S H, Haasnoot C A G, Vandermarel G A, Vanboom J H, Hilbers C W, The effect of single base-pair mismatches on the duplex stability of d(T-A-T-T-A-A-T-A-T-C-A-A-G-T-T-G)-d(C-A-A-C-T-T-G-A-T-A-T-T-A-A-T-A), Eur. J. Biochem.139 (1984) 19-27.
    [17]Werntges H, Steger G, Riesner D, Fritz H J, Mismatches in DNA double strands: thermodynamic parameters and their correlation to repair efficiencies, Nucleic Acids Res.14 (1986) 3773-3790.
    [18]Hanley A B, Furniss C S M, Kwiatkowska C A, Mackie A R, The manipulation of DNA with restriction enzymes in low water systems, Biochim. Biophys. Acta 1074 (1991)40-44.
    [19]Wu H, Ramachandran A, Bielinska A U, Kingzett K, Sun R, Weiner N D, Roessler B J, Int. J. Pharm.211 (2001) 23-24.
    [20]Hanley A B, Grinfeld E, Baxter R L, Biocatalysis 3 (1990) 253-258.
    [21]Pietrini A V, Luisi P L, Circular dichroic properties and average dimensions of DNA-containing reverse micellar aggregates, Biochim. Biophys. Acta 1562 (2002)57-62.
    [22]Pileni M P, Zemb T, Petit C, Solubilization by reverse micelles:solute localization and structure perturbation, Chem. Phys. Lett.118 (1985) 414-420.
    [1]Brookes A J, The essence of SNPs, Gene 234 (1999) 177-186.
    [2]Pettipher R, Cardon L R, The application of genetics to the discovery of better medicines, Pharmacogenomics 3 (2002) 257-263.
    [3]Wen S, Wang S, Principle and development of SNP genotyping technology, Letters in Biotechnology 14 (2003) 218-221.
    [4]Sobrino B, Brion M, Carracedo A, SNPs in forensic genetics:a review on SNP typing methodologies, Forensic Sci. Int.154 (2005) 181-194.
    [5]Chorley B N, Wang X, Campbell M R, Pittman G S, Noureddine M A, Bell D A, Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions:Current and developing technologies, Mutat. Res.659 (2008) 147-157.
    [6]Orita M, Iwahama H, Kanazawa H, et al, Proc. Natl. Acad. Sci. USA 86 (1989) 2766-2770.
    [7]Ganguly A, Prockop D J, Detection of mismatched bases in double stranded DNA by gel electrophoresis, Electrophoresis 16 (1995) 1830-1835.
    [8]Myers R M, Maniatis T, Lerman L S, Detection and localization of single base changes by denaturing gradient gel electrophoreses, Methods Enzymol 155 (1987) 501-527.
    [9]Maruyama T, Park L, Shinohara T, Goto M, DNA hybridization in nanostructural molecular assemblies enables detection of gene mutations without a fluorescent, Biomacromolecules 5 (2004) 49-53.
    [10]Alan S, Kevin M G, Drsiree A T, Ghadiri M R, DNA detection and signal amplification via an engineered allosteric enzyme, J. Am. Chem. Soc.125 (2003) 344-345.
    [11]Tuerk C, Gold L, Systematic evolution of ligands by exponential enrichment, Science 249 (1990) 505-510.
    [12]Bock L C, Griffin L C, Latham J A, Vermaas E H, Toole J J, Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature 355 (1992)564-566.
    [13]Wu Q, Tsiang M, Sadler J E, Localization of the single-stranded DNA binding site in the thrombin anion-binding exosite, J. Biol. Chem.267 (1992) 24408-24412.
    [14]Tasset D M, Kubik M F, Steiner W, Oligonucleotide inhibitors of human thrombin that bind distinct epitopes, J. Mol. Biol.272 (1997) 688-698.
    [15]Yoshida M, Sode K, Ikebukuro K, Homogeneous DNA sensing using enzyme-inhibiting DNA aptamers, Biochem. Biophys. Res. Commun.348 (2006) 245-252.
    [16]Stryer L, Haugland R P, Energy transfer:a spectroscopic ruler, Proc. Natl. Acad. Sci. U.S.A.58(1967)719-726.
    [17]Xu X S, Glazer P M, Wang G, Activation of human y-globin gene expression via triplex-forming oligonucleotide (TFO)-directed mutations in the y-globin gene 5' flanking region, Gene 242 (2000) 219-228.
    [18]Arthanari H, Bolton P H, Functional and dysfunctional roles of quadruplex DNA in cells, Chem. Biol.8 (2001) 221-230.
    [19]Macaya R F, Schultze P, Smith F W, Roe J A, Feigon J, Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution, Proc. Natl. Acad. Sci. USA 90 (1993) 3745-3749.
    [20]Wang K Y, Krawczyk S H, Bischofberger N, Swaminathan S, Bolton P H, The tertiary structure of a DNA aptamer which binds to and inhibits thrombin, Biochemistry 32 (1993) 11285-11292.
    [21]Wang K Y, McCurdy S, Shea R G, Swaminathan S, Bolton P H, A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA, Biochemistry 32 (1993) 1899-1904.
    [22]Padmanabhan K, Padmanabhan K P, Ferrara J D, Sadler J E, Tulinsky A, The structure of alpha-thrombin inhibited by a 15-mer single stranded DNA aptamer, J. Biol. Chem.268 (1993) 17651-17654.
    [23]Schultze P, Macaya R F, Feigon J, Three-dimensional solution structure of the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG), J. Mol. Biol.235 (1994) 1532-1547.
    [24]Kelly J A, Feigon J, Yeates T O, Reconciliation of the X-ray and NMR structures of the thrombin-binding aptamer d(GGTTGGTGTGGTTGG), J. Mol. Biol.256 (1996) 417-422.
    [25]Smirnov I, Shafer R H, Effect of loop sequence and size on DNA aptamer stability, Biochemistry 39 (2000) 1462-1468.
    [26]Marathias V M, Bolton P H, Structures of the potassium-saturated,2:1, and intermediate,1:1,forms of a quadruplex DNA, Nucleic Acids Res.28 (2000) 1969-1977.
    [27]Kuryavyi V, Majumdar A, Shallop A, Chernichenko N, Skripkin E, Jones R, Patel D J, A double chain reversal loop and two diagonal loops define the architecture of a unimolecular DNA quadruplex containing a pair of stacked G(syn)center dot G(syn)center dot G(anti)center dot G(anti) tetrads flanked by a G center dot(TT) triad and a T center dot T center dot T triple, J. Mol. Biol.310 (2001) 181-194.
    [28]Mao X, Gmeiner W H, NMR study of the folding-unfolding mechanism for the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG), Biophys. Chem.113 (2005) 155-160.
    [29]Paramasivan S, Rujan I, Bolton P H, Circular dichroism of quadruplex DNAs: Applications to structure, cation effects and ligand binding, Methods 43 (2007) 324-331.
    [30]Huntington J A, Molecular recognition mechanisms of thrombin, J. Throm. Haemost.3(2005)1861-1872.
    [31]Nagatoishi S, Tanaka Y, Tsumoto K, Circular dichroism spectra demonstrate formation of the thrombin-binding DNA aptamer G-quadruplex under stabilizing-cation-deficient conditions, Biochem. Biophys. Res. Commun.352 (2007) 812-817.
    [1]Mann K G, Thrombin:can't live without it; probably die from it, Chest 124 (2003) 1S-3S.
    [2]Stubbs M T, Bode W, A player of many parts:the spotlight falls on thrombin's structure, Thromb. Res.69 (1993) 1-58.
    [3]Stubbs M T, Bode W, The clot thickens:clues provided by thrombin structure, Trends Biochem. Sci.20 (1995) 23-28.
    [4]Colwell N S, Blinder M A, Tsiang M, Gibbs C S, Bock P E, Tollefsen D M, Allosteric effects of a monoclonal antibody against thrombin exosite Ⅱ, Biochemistry 37(1998)15057-15065.
    [5]Huntington J A, Molecular recognition mechanisms of thrombin, J. Thromb. Haemost.3 (2005) 1861-1872.
    [6]Fuentes-Prior P, Iwanaga Y, Huber R, Pagila R, Rumennik G, Seto M, Morser J, Light D R, Bode W, Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex, Nature 404 (2000) 518-525.
    [7]Pechik I, Madrazo J M, Mosesson W, Hernandez I, Gilliland G L, Medved L, Crystal structure of the complex between thrombin and the central "E" region of fibrin, Proc. Natl. Acad. Sci. U.S.A.101 (2004) 2718-2723.
    [8]Ye J, Esmon N L, Esmon C T, Johnson A E, The active site of thrombin is altered upon binding to thrombomodulin, J. Biol. Chem.266 (1991) 23016-23021.
    [9]Parry M A A, Stone S R, Hofsteenge J, Jackman M P, Evidence for common structural changes in thrombin induced by active-site or exosite binding, Biochem. J. 290(1993)665-670.
    [10]Sabo T M, Farrell D H, Maurer M C, Conformational analysis of γ' peptide (410-427) interactions with thrombin anion binding exosite Ⅱ, Biochemistry 45 (2006) 7434-7445.
    [11]Croy C H, Koeppe J R, Bergqvist S, Komives E A, Allosteric changes in solvent accessibility observed in thrombin upon active site occupation, Biochemistry 43 (2004)5246-5255.
    [12]Liaw P C Y, Fredenburgh J C, Stafford A R, Tulinsky A, Austin R C, Weitz J I, Localization of the thrombin-binding domain on prothrombin fragment 2, J. Biol. Chem.273 (1998) 8932-8939.
    [13]Fredenburgh J C, Stafford A R, Weitz J I, Evidence for allosteric linkage between exosites 1 and 2 of thrombin, J. Biol. Chem.272 (1997) 25493-25499.
    [14]Verhamme I M, Olson S T, Tollefsen D M, Bock P E, Binding of exosite ligands to human thrombin:reevaluation of allosteric linkage between thrombin exosites I and II, J. Biol. Chem.277 (2002) 6788-6798.
    [15]Petrera N S, Stafford A R, Leslie B A, Kretz C A, Fredenburgh J C, Weitz J I, Long range communication between exosite 1 and 2 modulates thrombin function, J. Biol. Chem.284 (2009) 25620-25629.
    [16]May-Yoke Ng N, Quinsey N S, Matthews A Y, Kaiserman D, Wijeyewickrema L C, Bird P I, Thompson P E, Pike R N, The effects of exosite occupancy on the substrate specificity of thrombin, Arch. Biochemistry. Biophys.489 (2009) 48-54.
    [17]Tuerk C, Gold L, Systematic evolution of ligands by exponential enrichment, Science 249 (1990) 505-510.
    [18]Bock L C, Griffin L C, Latham J A, Vermaas E H, Toole J J, Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature 355 (1992)564-566.
    [19]Wu Q, Tsiang M, Sadler J E, Localization of the single-stranded DNA binding site in the thrombin anion-binding exosite, J. Biol. Chem.267 (1992) 24408-24412.
    [20]Tasset D M, Kubik M F, Steiner W, Oligonucleotide inhibitors of human thrombin that bind distinct epitopes, J. Mol. Biol.272 (1997) 688-698.
    [21]Higgins D L, Lewis S D, Shafer J A, Steady state kinetic parameters for the thrombin-catalyzed conversion of human fibrinogen to fibrin, J. Biol. Chem.258 (1983) 9276-9282.
    [22]Pospisil C H, Stafford A R, Fredenburgh J C, Weitz J I, Evidence that both exosites on thrombin participate in its high affinity interaction with fibrin, J. Biol. Chem.278 (2003) 21584-21591.
    [23]Ye J, Esmon C T, Johnson A E, The chondroitin sulfate moiety of thrombomodulin binds a second molecule of thrombin, J. Biol. Chem.268 (1993) 2373-2379.
    [24]Hogg P J, Jackson C M, Labanowski J K, Bock P E, Binding of fibrin monomer and heparin to thrombin in a ternary complex alters the environment of the thrombin catalytic site, reduces affinity for hirudin, and inhibits cleavage of fibrinogen, J. Biol. Chem.271 (1996) 26088-26095.
    [25]Padmanabhan K, Padmanabhan K P, Ferrara J D, Sadler J E, Tulinsky A, The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer, J. Biol. Chem.268 (1993) 17651-17654.
    [26]Jayapal P, Mayer G, Heckel A, Wennmohs F, Structure-activity relationships of a caged thrombin binding DNA aptamer:insight gained from molecular dynamics simulation studies, J. Struct. Biol.166 (2009) 241-250.
    [27]Paramasivan S, Rujan I, Bolton P H, Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding, Methods 43 (2007) 324-331.
    [28]Nagatoishi S, Tanaka Y, Tsumoto K, Circular dichroism spectra demonstrate formation of the thrombin-binding DNA aptamer G-quadruplex under stabilizing-cation-deficient conditions, Biochem. Biophys. Res. Commun.352 (2007) 812-817.
    [29]Di Cera E, Thrombin, Mol. Aspects. Med.29 (2008) 203-254.
    [30]Liu L-W, Vu T-K H, Esmon C T, Coughlin S R, The region of the thrombin receptor resembling hirudin binds to thrombin and alters enzyme specificity, J. Biol. Chem.266 (1991) 16977-16980.
    [31]Hogg P J, Jackson C M, Formation of a ternary complex between thrombin, fibrin monomer, and heparin influences the action of thrombin on its substrates, J. Biol. Chem.265 (1990) 248-255.
    [32]Yoshida M, Sode K, Ikebukuro K, Homogeneous DNA sensing using enzyme-inhibiting DNA aptamers, Biochem. Biophys. Res. Commun.348 (2006) 245-252.
    [33]Ponikova S, Antalik M, Hianik T. A circular dichroism study of the stability of guanine quadruplexes of thrombin DNA aptamers at presence of K+ and Na+ ions, Gen. Physiol. Biophys.27 (2008) 271-277.
    [1]Tuerk C, Gold L, Systematic evolution of ligands by exponential enrichment, Science 249 (1990) 505-510.
    [2]Hansen J A, Mukhopadhyay R, Hansen J O, Gothelf K V, Femtomolar electrochemical detection of DNA targets using metal sulfide nanoparticles, J. Am. Chem. Soc.128 (2006) 3860-3861.
    [3]Liu J, Cao Z. Lu Y, Functional nucleic acid sensors, Chem. Rev.109 (2009) 1948-1998.
    [4]Navani N K, Li Y, Nucleic acid aptamers and enzymes as sensors, Curr. Opin. Chem. Biol.10 (2006) 272-281.
    [5]Wang J, Jiang Y, Zhou C, Fang X, Aptamer-based atpassay using a luminescent light switching complex, Anal. Chem.77 (2005) 3542-3546.
    [6]Lee S J, Youn B S, Park J W, Niazi J H, Kim Y S, Gu M B, ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes, Anal. Chem.80 (2008) 2867-2873.
    [7]Liu J W, Lu Y, Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles, Angew. Chem. Int. Ed. 45 (2006) 90-94.
    [8]Chen C K, Huang C C, Chang H T, Label-free colorimetric detection of picomolar thrombin in blood plasma using a gold nanoparticle-based assay, Biosens. Bioelectron. 25 (2010) 1922-1927.
    [9]M. Liss, B. Peterson, H. Wolf, E. Prohaska, An aptamer-based quartz crystal protein biosensor, Anal. Chem.74 (2002) 4488-4495.
    [10]Zhang Z X, Yang W, Wang J, Yang C, Yang F, Yang X R, A sensitive impedimetric thrombin aptasensor based on polyamidoamine dendrimer, Talanta 78 (2009) 1240-1245.
    [11]Mir M, Vreeke M, Katakis I, Different strategies to develop an electrochemical thrombin aptasensor, Electrochem. Commun.8 (2006) 505-511.
    [12]Polsky R, Gill R, Kaganovsky L, Willner I, Nucleic acid-functionalized Pt nanoparticles:catalytic labels for the amplified electrochemical detection of biomolecules, Anal. Chem.78 (2006) 2268-2271.
    [13]Yang H, Ji J, Liu Y, Kong J L, Liu B H, An aptamer-based biosensor for sensitive thrombin detection, Electrochem. Commun.11 (2009) 38-40.
    [14]Ding C F, Ge Y, Lin J M, Aptamer based electrochemical assay for the determination of thrombin by using the amplification of the nanoparticles, Biosens. Bioelectron.25 (2010) 1290-1294.
    [15]Wang X, Dong P, Yun W, Xu Y, He P, Fang Y, A solid-state electrochemiluminescence biosensing switch for detection of thrombin based on ferrocene-labeled molecular beacon aptamer, Biosens. Bioelectron.24 (2009) 3288-3292.
    [16]Suprun E, Shumyantseva V, Bulko T, Rachmetova S, Rad'ko S, Bodoev N, Archakov A, Au-nanoparticles as an electrochemical sensing platform for aptamer-thrombin interaction, Biosens. Bioelectron.24 (2008) 825-830.
    [17]He P, Shen L, Cao Y, Li D, Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle bio bar codes, Anal. Chem.79 (2007) 8024-8029.
    [18]Cui R J, Pan H C, Zhu J J, Chen H Y, Versatile immunosensor using cdte quantum dots as electrochemical and fluorescent labels, Anal. Chem.79 (2007) 8494-8501.
    [19]Ding Y, Chen M, Erlebacher J, Metallic mesoporous nanocomposites for electrocatalysis, J. Am. Chem. Soc.126 (2004) 6876-6877.
    [20]Gregory S, Torsten R, Burkhard R, Energy storage by the electrochemical reduction of CO2 to CO at a porous Au film, J. Electroanal. Chem.526 (2002) 125-133.
    [21]Qiu H J, Li Y, Ji G L, Zhou G P, Huang X R, Qu Y B, Immobilization of lignin peroxidase on nanoporous gold:Enzymatic properties and in situ release of H2O2 by co-immobilized glucose oxidase, Bioresour. Technol.100 (2009) 3837-3842.
    [22]Qiu H J, Xu C X, Huang X R, Ding Y, Qu Y B, Immobilization of laccase on nanoporous gold:comparative studies on the immobilization strategies and the particle size effects, J. Phys. Chem. C 113 (2009) 2521-2525.
    [23]Qiu H J, Zhou G P, Ji G L, Huang X R, Ding Y, A novel nanoporous gold modified electrode for the selective determination of dopamine in the presence of ascorbic acid, Colloid Surf. B 69 (2009) 105-108.
    [24]Qiu H J, Xue L Y, Ji G L, Zhou G P, Huang X R, Qu Y B, Gao P J, Enzyme-modified nanoporous gold-based electrochemical biosensors, Biosens. Bioelectron.24 (2009) 3014-3018.
    [25]Huczko A, Template-based synthesis of nanomaterials, Appl. Phys. A 70 (2000) 365-376.
    [26]Yi Q F, Yu W Q, Nanoporous gold particles modified titanium electrode for hydrazine oxidation, J. Electroanal. Chem.633 (2009) 159-164.
    [27]Huang J F, Sun I W, Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-cysteine monolayers, Adv. Funct. Mater.15 (2005) 989-994.
    [28]Zhang Q, Wang X G, Qi Z, Wang Y, Zhang Z H, A benign route to fabricate nanoporous gold through electrochemical dealloying of Al-Au alloys in a neutral solution, Electrochim. Acta 54 (2009) 6190-6198.
    [29]Huang W, Wang M H, Zheng J F, Li Z L, Facile fabrication of multifunctional three-dimensional hierarchical porous gold films via surface rebuilding, J. Phys. Chem. C 113 (2009) 1800-1805.
    [30]Qiu H J, Huang X R, Effects of Pt decoration on the electrocatalytic activity of nanoporous gold electrode toward glucose and its potential application for constructing a nonenzymatic glucose sensor, J. Electroanal. Chem.643 (2010) 39-45.
    [31]Doron A, Katz E, Willner I, Organization of Au colloids as monolayer films onto ITO glass surfaces:application of the metal colloid films as base interfaces to construct redox-active monolayers, Langmuir 11 (1995) 1313-1317.
    [32]Bard A J, Faulkner L R, Electrochemical Methods—Fundamental Applications, John Wiley and Sons, New York,1980.
    [33]Huang C, Huang Y, Gao Z, Tan W, Chang H, Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors, Anal. Chem.77 (2005) 5735-5741.
    [34]Zhang S S, Zhong H, Ding C F, Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using signal DNA probe modified with Au and CuS nanoparticles, Anal. Chem.80 (2008) 7206-7212.
    [35]Fu Y, Yuan R, Tang D, Chai Y, Xu L, Study on the immobilization of anti-IgG on Au-colloid modified gold electrode via potentiometric immunosensor, cyclic voltammetry, and electrochemical impedance techniques, Colloid Surf. B 40 (2005) 61-66.
    [36]Zayats M, Huang Y, Gill R, Ma C A, Willner I, Label-free and reagentless aptamer-based sensors for small molecules, J. Am. Chem. Soc.128 (2006) 13666-13667.
    [37]Katz E, Weizmann Y, Willner I, Magnetoswitchable reactions of DNA monolayers on electrodes:gating the processes by hydrophobic magnetic nanoparticles, J. Am. Chem. Soc.127 (2005) 9191-9200.
    [38]Lao R J, Song S P, Wu H P, Wang L H, Zhang Z Z, He L, Fan C H, Electrochemical Interrogation of DNA Monolayers on Gold Surfaces, Anal. Chem.77 (2005) 6475-6480.
    [39]Centi S, Messina G, Tombelli S, Palchetti I, Mascini M, Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads, Biosens. Bioelectron.23 (2008) 1602-1609.
    [40]Deng C Y, Chen J H, Nie Z, Wang M D, Chu X C, Chen X L, Xiao X L, Lei C Y, Yao S Z, Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles, Anal. Chem.81 (2009) 739-745.
    [41]Zhang X R, Qi B P, Li Y, Zhang S S, Amplified electrochemical aptasensor for thrombin based on bio-barcode method, Biosens. Bioelectron.25 (2009) 259-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700