体外筛选炭疽杆菌芽孢适配子的研究与初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:In Vitro Selection of Aptamers to Bacillus Anthracis Spores by SELEX and Primary Application
  • 作者:甄蓓
  • 论文级别:博士
  • 学科专业名称:流行病学
  • 学位年度:2002
  • 导师:俞守义 ; 杨瑞馥
  • 学科代码:100401
  • 学位授予单位:第一军医大学
  • 论文提交日期:2002-05-01
摘要
SELEX技术(Systematic evolution of ligands by exponentialenrichment)即指数扩增配体的系统进化技术,是90年代初建立的一种体外文库筛选方法。SELEX技术的基本思想是合成一个两端为固定序列,中间为随机序列的单链寡核苷酸库(RNA或DNA),库中序列的多样性可反映为二级结构的多样性;将它与靶物质混合,形成靶物质—寡核苷酸的复合物,去除未与靶物质结合的核酸,分离与靶物质结合的核酸分子,并以此类核酸分子为模板由固定序列为引物进行PCR扩增,扩增产物再进行下一轮的筛选过程;通过多轮的筛选与扩增,一些与靶物质不结合或与靶物质只有低亲和力的寡核苷酸被去除,而与靶物质有较高亲和力的“适配子”(Aptamer)将逐渐得到富集。这一方法的原理简单,操作简便易行,一经问世,便得到了广泛的应用。适配子具有亲和力高且特异性好等特点,而且易于标准化,目前正在成为一种新的诊断试剂。目前,已有研究者将凝血酶的适配子成功地固化在光纤传感器上,用以检测凝血酶,这一工作为生物战剂传感器的研制提示了新的方向。国外有利用SELEX技术筛选炭疽杆菌芽孢适配子的报道,但其使用的是高压灭菌处理后的芽孢,而且没有完成适配子特异性、亲和力以及结构与功能的考察,在这一方面还有许多工作急待进行。国内有关SELEX技术的研究起步较晚,文献报道较少。
     本研究工作将系统地进行炭疽杆菌芽孢适配子的研究,并基于适配子的特性,建立一种以尼龙膜为载体,炭疽芽孢适配子为检测分子来检测炭疽芽孢的方法;此外,由于许多生物战剂的单克隆抗体研制存在困难,本研究可为解决这一难题提供新的思路。我们一直期望能将SELEX这一新技术应用到微生物检测的研究工作中。适配子是一段寡核苷酸,其稳定性优于单克隆抗体,已有实验证明SELEX技术可以筛选到特异性和亲和力都强于单克隆抗体的适配子;而适配子与靶物质的结合是结构依赖性,而不是序列依赖性的,因此不需杂交等步骤;此外适
    
    配于的筛选是一种体外筛选,不涉及免疫过程,适用范困广。
     基于上述考虑,结合国外的技术进展和自身工作的实际需要,我们
    拟定了这一课题,目的不仅在于以炭疽杆菌的芽抱作为筛选模式,筛选
    到炭疽芽抱特异的适配子,将筛选到的适配子作结构与功能研究,并将
    亲和性较好的适配子作为检测炭疽芽抱的检测分子;还期望在我们实验
    室建立起行之有效的SELEX技术,用于单克隆抗体制备存在困难的其它
    生物战剂,为生物战剂的快速侦检开辟新的思路。
     研究结果显示:在体外构建的两端为固定序列,中I’riJ随机区域为
    35个核昔酸序列,其全长为78个核昔酸的随机寡核昔酸文库的基础卜,
    用炭疽秆菌疫茵株 A.161{的芽抱为靶物质,在含有 2价 Mg‘”存在的情况
    下,按SSDNA:炭疽芽抱=l…g:1.5X108混合,经过了十/轮“吸附-
    漂洗-洗脱-扩增”的SELEX过程,同时,每三轮的筛选产物用蜡样芽
    抱杆菌芽抱进行反筛,以提高筛选的特异性。筛选产物经扩增后在 15%
    的聚丙烯酚胺凝胶电泳图中显示,随着筛选轮数的增加,PCR扩增电
    泳条带逐渐单纯。为了提高产物的忠实性,PCR扩增的优化条件为:
    采用热启动法扩增可以稳定地获得较好的扩增结果;退火温度在58OC
    ~68C、循环数为20~22时,有预期的扩增带。将每轮的筛选产物用标
    有生物素的引物PCR扩增后,与炭疽芽抱进行结合实验,TMB显色系
    统提示,第十八轮筛选的炭疽芽抱适配子库与芽抱结合后显色O*值
    比第一轮的O*值提高了37 fg以上,在第六轮筛选时,出现了O*值
    降低,这种现象的产生是山于筛选压”(选择/进化压)的影响,使得筛
    选库中所期望得到的寡核昔酸片段的特异性增强。在考察筛选库的特异
    性时,将高压灭菌后的炭疽芽抱和筛选用炭疽芽泡约 IXIO’分别与第十
    八轮的筛选库巾g作结合实验,检测的0.D值分别是0.193和 1.1H,
    说明了筛选产物对靶物质的特异性较强。考虑到芽抱是一个多表位的靶
    物质,是个混合靶物质的筛选过程,筛选的适配子是多样的,我们将筛
    选库进行了单链和双链(加热与不加热)DNA与炭疽芽抱的结合实验。
    结果显示,适配子与芽抱结合以单链为主,双链也有结合。
     在经过了成功的十八轮SELEX筛选后,将筛选产物-寡核昔酸片段
    进行了克隆,在500个克隆子中随机选取79个克隆子进行了测序,将
    测序结果按碱基多少分为A、BVH群,AJty的54条与预期片段大小一致,
     一10 一
    
     少数片段在3’端固定区有个别碱基突变山群为25条大小不等的片段。
     可分为两个亚群,BI群为12条随机序列区域短于所期望长度的片段,
     并在随机区域或 3’端引物区域有碱基突变;BZ群为* 条长于预期长
     度的片段,主要表现在3’端引物序列的重复出现。造成短于彬]望片段
     长短的原因可能是山于跳跃PCR的影响;长于期望片段长度的原因PJ‘能
     是低温下,引物与随机区域退火延伸所致。将测序序列(适配-f)计算
     机分析软件分析测序序列的保守
SELEX (System Evolution of Ligands by Exponential enrichment), which is a universally-applied method for spanning of aptamer from oligonucleotide pool as potential pharmaceutical and diagnostic agents, has been under development for more than a decade. SELEX technology provides an excellent opportunity to search for oligonucleotides binding to target and has an advantage over other known methods for ligands discovery, such as the small molecule combinatorial chemistry and phage-displayed antibody technique. SELEX can be essentially applied to any target and generate a large number of lead compounds very quickly, reducing much work and saving much time before animal testing. SELEX begins, with a large population of single-stranded nucleic acid molecules that is challenged with a specific task. Usually, the task is to bind to a purified protein, yet many other tasks have been successfully selected, including cell binding, peptide binding, small molecule binding, nucleic acid binding and catalysis of a variety
    of chemical reactions. A successful SELEX experiment requires the determination of a method for partitioning those nucleic acid molecules that have performed the task from those that have not. A pool of randomized RNA or single stranded DNA sequences was selected against
    
    
    interested targets. Several rounds of spanning lead to winning sequences with specific structure called 'aptamers', which are single-stranded nucleic acids that perform a specific function. Structures of aptamer complexes reveal the key molecular interactions conferring specificity to the aptamer-ligand association, including the precise stacking of flat moieties, specific hydrogen binding, and molecular shape complementarities. The oligonucleotide aptamers selected by SELEX process are superior in terms of higher affinity, specificity and stability. This technology has found a wide range of applications, yet little work has been reported on development of SELEX aptamers to interact infectious disease agents or their epitopes for either diagnosis or potential therapy with the exceptions of SELEX aptamers specific for HIV components and a selection model for autoclaved anthrax spores. And anti-Bacillus anthracis spores aptamers' research related with structures and functions is remaining urgently.
    In the present report, our aim is not only to establish a mold taking selection as anthrax spores for a target, but also to study the relationship between structures and affinities of SELEXed DNA aptamers to Bacillus anthracis spores. Meanwhile choosing the higher affinity aptamer as the detection molecules for Bacillus anthracis spores, we open a new throughway for a rapid detection of the pathogen microbiology used in the war.
    The research results showed that a custom synthesized 78mer random oligonucleotides DNA library (ca. 10l4~l5types of different DNA), containing 35 random nucleotides flanked by primer annealing sites, was chemosynthesized, and was subjected to 18 rounds of selection of 'binding-washing-separation-PCR amplifying' by using SELEX method against spores of Bacillus anthracis vaccine strain A.16R. There were totally 18 rounds of selection and after each 3 rounds a counter-selection was performed. Counter-selection was binding reaction between the PCR product from each three round and the microcentrifuge tube used in the selection process and Bacillus cereus spores to getting rid of the
    
    components bound to the tube and those unspecific to anthrax spores. 15%PAGE electrophoresis analysis of PCR products from different selection rounds were showed that electrophoresis bands of the expected size got compact with the progress of SELEX rounds. An optimization strategy was carried out with annealing at 58-68癈 and 20-22 cycles to ensure complete elongation of the products. 'Hot star1 strategy, with adding Tap DNA polymerase at penetration temperature, was employed in the experiment. Selected products in each round were amplified through PCR with biotin-modified primers. The amplified product in each round to the spores was visu
引文
1. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990: 249:505-510.
    2. Ellingtin AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990; 346:818-822
    3. Wentworth P, Janda K. Generating and analyzing combinatorial chemistry libraries. Curr Opin Biotechnol.1998; 9:109-115
    4. Houghten R, Wilson D, Pinilla C. Drug discovery and vaccine development using mixture-based synthetic combinatorial libraries. Drug Discov Today. 2000; 5:276-285
    5. James W: Aptamers. In the Encyclopedia of Analytical Chemisny: Instrumentation and Applications. Edited by Myers R.Chichester: John Wiley. 2000: 4848-4871.
    6. Brody EN, Gold L. Aptamers as therapeutic and diagnostic agents.J Biotechnol. 2000: 74:5-13
    7. Geyer CR, Brent R: Selection of genetic agents from random peptide aptamer expression libraries. Methods Enzymol. 2000: 328:171-208.
    8. Holland CA, Henry AT, Whinna H.C, et al. Effect of oligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparin cofactor Ⅱ and antithrombin. FEBS Letters. 2000: 484:87-91.
    9. Cannone JJ, Barnes CL, Achari A, Kundrot CE, et al. Crystallization of bFGF-DNA aptamer complexes using a Sparse Matrix designed for protein-nucleic acid complexes. Journal of Crystal Growth. 2001: 232:409-417.
    10. Bacher JM, Ellington AD. Nucleic acid selection as a tool for drug discovery. DDT. 1998; 3 (6): 265-273
    11. Jayasena. SD. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem. 1999; 45 (9): 1628-1650
    12. Ciesiolka J, Gorski J, Yarus M. Selection of an RNA domain that binds Zn~(2+). RNA. 1995; 1:538-550
    13. Huiaenga DE, Szostak JW. A DNA aptamer that binds adenosine and ATP. Biochem. 1995; 34:656-665
    14. Lauhon CT, Azostak JW. RNA aptamers that binds flavin and nicotinamide radix cofactors. J Am Chem Soc. 1995: 117:1246-1257
    
    
    15. Kato T, Yano K, Lkebukuro K et al. Interaction of three-way DNA junctions with steroids. Nucl Aci Res. 2000; 28:1963-1968
    16. Tao J, Frankel AD. Arginine-binding RNAs resembling TAR identified by in vitro selection. Biochem. 1996: 35: 2229-2238
    17. Ohtsuki T, Kimoto M, Ishikawa M et al. Unnatural vase pairs for specifc transcription. PNAS. 2001; 98:4922-4925
    18. Gourlain T, Sidorov A, Mignet N et al. Enhancing the catalytic repertoire of nucleic acids. Ⅱ. Simultaneous incorporation of amino and imidazolyl functionalities by two modified triphosphates during PCR. Nucleic Acids Res. 2001; 29:1898-1905
    19. Colas P, Cohen B, Jessen T et al. Genetic selection of peptide aptamers that recognize and inhibit cyclindependent kinase 2. Nature. 1996; 380:548-550
    20. Blum JH, Dove SL, Hochschild A et al. Isolation of peptide aptamers that inhibit intracellular processes. Proc Natl Acad Sci USA. 2000; 97:2241-2246
    21. Butz K, Denk C, Ullmann A et al. Induction of apaptosis in human papillomavirus-positive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc Natl Acad Sci USA. 2000; 97:6693-6697
    22. Colas R Combinatorial protein reagents to manipulate protein function. Curr Opin in Chem Biol. 2000; 4:54-59
    23. Nieuwlandt D Weckr M, Gold L. In Vitro selection of ligands to substance P. Biochem. 1995; 34:5651-5659
    24. Dobbelstein M, Shenk T. In Vitro selection of RNA ligands for the ribosomal L22 Protein associated with epstein-barr virus-expressed RNA by using randomized and cDNA-derived RNA libraries. J Vieol. 1995; 8027-8034
    25. Cannone JJ, Barnes CL, Achari A et al. Crystallization of bFGF-DNA aptamer complexes using a sparse matrix designed for protein-nucleic acid complexes. J. Crystal Growth. 2001; 232:409-417
    26. Burke DH, Scatrs L, Andrews K et al. Bent pseudoknots and noble RNA inhibitors of type Ⅰ human immunodeficiency virus (HIV-Ⅰ) reverse transcriptase. J Mol Biol. 1996; 264(4): 650-666
    
    
    27. Cui Y, Wang Q, Stormo GD et al. A consensus sequence for binding of Lrp to DNA. Journal of Bacteriology. 1995; 4872-4880
    28. Ellington. AD, Szostak JW. Selection in vitro of single stranded DNA molecules that fold into specific ligand-binding structures. Nature. 1992:355:850-852
    29. Ei-ichiro Fukusaki, Kato T, Maesa H et al. DNA aptamers that bind to chitin. Bioorg & Med Chem Lett. 2000; 10:423-425
    30. Th str m A, Lowary PT, Wodlund HR et al. Sequence motifs and energies of selected natural and non-natural nuclesone positioning DNA sequences, J Mol Biol. 1999; 288(2): 213-229.
    31. Okazawa A, Maeda H, Fukuski E et al. In Vitro.selection of hematoporphyrin binding DNA aptamers. Bioorg Med Chem Lett. 2000; 10(23): 2653-2656,
    32. Tung CS, Oprea TI, Hummer G et al. Three-dimensional moel od a selectibe theophylline-binding RNA molecule, J Mol Recognit. 1996; 9(4): 275-286
    33. Drolet D, Lotus Moore-McDermott, Romig TS. An enzyme-linked oligonucleotide assay. Nat Biotechnol. 1996; 14:1021-1025
    34. Pelletier JN, Arndt KM, Pluckthun A et al. An in vivo library versus-library selection of optimized protein-protein interactions. Nat Biotechnol. 1999; 17: 683-690
    35. Zhang Z, Murphy A, Hu JC et al. Genentic selection if short peptides that support protein oligomerization in vivo. Curt Biol. 1999; 9:417-420
    36. Barry WH, Antonio PB, Robert HD, et al. The mathematics of SELEX against complex targets. J Mol Biol. 1998; 278:579-597
    37. L(??)f(??)s S, Malmqvist M, R6nnberg Ⅰ et al. Bioanalysis with surface plasmon resonance. Sens Actuat Sect B. 1991; 5:79-84
    38. Bruno JG, Kiel JL. In vitro selection Of DNA aptamer to anthrax spores with electrochemiluminescence detection. Biosen. Bioelectr. 1999; 14:457-464
    39. Tuerk C. Methods in Molecular Biology. vol 67. In: white, B.A.(Ed), PCR cloning protocols: from molecular cloning to genetic engineering. Humana Press, Totowa, NJ. 1996; 219-229
    40. Schneider D, Gold L, Platt T. Selective enrichment of RNA species for tight binding to Escherichia coil rho factor. FASEB. 1993; 7:201-207
    
    
    41. Hobbs J, Sternbach H, Sprinzl M et al. Polynucleotides containing 2'-amiino-2'-deoxyribose. Biochem. 1973; 12:5138-5145
    42. Pieken WA, Olsen DB, Benseler F et al. Kinetic characterization of ribonuclease-resistant 2'-miodified hammerhead ribozymes. Science. 1991; 253:314-317
    43. Heidenreich O, Eckstein F. Hammerhead cleavages of the ling terminal repeat RNA of human immunodeficiency virus type Ⅰ. J Bio chem. 1992; 267:1904-1909
    44. Jellinek D, Green LS, Bell C et al. Potent 2'-amino-2'deoxupyrimidine RNA inhibitors of basic fibroblast growth factor. Biochem. 1995; 34:11363-11372
    45. Jenison RD, Jennings SD, Walker DW et al. Oligonucleotide inhibiters of P-selection-dependent neytrophilplatelet adhesion. Antisense Nucleic Acid Drug Dev. 1998; 8:265-279
    46. Lin Y, Qiu Q, Gill SC et al. Modified RMA sequence pools for in vitro selection. Nucleic Acids Res. 1994; 22:5229-5234
    47. Wiegand TW, Williams PB, Dreskin SC et al. High-affinity oligonucleotide ligands to human IgE inhibitor binding to Fcc receptor Ⅰ, J Immunol. 1996; 157:231-238
    48. Pagratis NC, Bell C, Chang Y-F et al. Potent 2'-amino-, and 2'-fluoro-2'-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor. Nat Biotechnol. 1997; 15:68-73
    49. Davis KA, Lin Y, Abrams B et al. Straining of cell surface human CD4 with 2'-F-pyrmidine-containing RNA aptamers for flow cytometry. Nucleic Acids Res. 1998; 26:3915-3924
    50. Pan W, Craven RC, Qiu Q et al. Isolation of virus-neutralizing RNAs from a large pool of random sequences. Proc Natl Acad Sci USA, 1995; 92:11509-11513
    51. Morris KN, Jensen KB, Julin CM et al. High affinity ligands fforn in vitro selection: Complex targets. Biochem. 1998; 95:2962-2907
    52. Tao J, Frankel AD. Arginine-binding RNAs resembling TAR identified by in vitro selection. Biochem. 1996; 35:2229-2238
    53. Davis KA, Abrams B, Lin Y et al. Use of a high DNA ligand in flow cytornetry. Nucl Aci Res. 1996; 24:702-706
    54. Schneider DJ, Feigon J, Hostonsky Z et al. High-affinity ssDNA inhibitors of type Ⅰ human immunodeficiency virus. Biochem. 1995; 34:9599-9610
    
    
    55. Floege J, Ostendorf T, Janji(??) N. Aptamers: novel tool for specific intervention studies. Nephrol Dial Transplant. 1999; 14:1354-1357
    56. Tucker CE, Chen LS, Juckins MB et al. Detection and plasma pharmacokinetics of an antivascular endothelial growth factor oligonucleotide-aptamer (NX-1383)in rhesus monkeys, J Chromatogr B Biomed Appl. 1999; 732(1): 203-212
    57. Hicke B J, Warson SR, Koening A et al. DNA aplamers block L-selection function in vivo inhibition of human lumphoeyte trafficking in SCID mice. J Clin Invest. 1996; 98(12): 2688~2692
    58. Gilead Sciences Inc: Company communication. 2000; 18 January59. Morris KN, Jensen KB, Julin CM et al. High affinity ligands from in vitro selection: Complex targets. Biochem. 1998; 95:2902-2907
    60. Kato T, Yano K, Ikebukuro K, et al. Bioassay of bile acids using an enzyme-linked DNA aptamer. Analyst. 2000; 125:1371-1373
    61. Bruno JG. In vitro selection of DNA to chloroaromatics using magnetic microbead-based affinity separation and fluorescence detection. Bioch and Bioph Res Com. 1997; 234:117-120
    62. Bruno JG, Kiel JL. In vitro selection of DNA aptamer to anthrax spores with electrochemiluminescence detection. Biosen. Bioelectr. 1999; 14:457-464
    63. Potyailo RA, Conrad RC, EIlington AD, et al. Adapting selected nucleic acid ligands (aptamers) to biosensors. Analy Chem. 1998; 70( 16): 3419-3425
    64. Scheller F.W, Wollenberger U, Wardinke A, et al. Research and development in biosensors. Curt Opin in Biotech. 2001; 12:35-40
    65. Golden M.C, Collins B.D, Willis M.C, et al. Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers, J Biotech. 2000; 81: 167-178
    66. Taulor LC, Walt DR. Application of high density optical microwell arrays in a live-cell biosensing system. Anal Biochem. 2000; 278:132-142
    67. Walt DR. Tec view: molecular biology. Bead-based fiber-optic arrays. Science. 2000; 287:451-452
    68. Goodman SD, Velten NJ, Gao Q et al. In vitro selection of integration host factor binding sites, J Bacterio. 1999; 3246-3255
    
    
    69. Bianchi A, Stansel RM, Fairall L et al. TRFI binds a bipartite telomeric site with extreme spatial flexibility. EMBO. 1999; 18 (20): 5735-5744
    70. Brown D, Gold L. Template recognition by an RNA-dependent RNA polymerase: identification and characterization of two RNA binding sites on Qβreplicase. Biochem. 1995; 34:14765-14774
    71. Shultzaberger RK, Schneider TD. Using sequence Iogos and information analusis of Lrp DNA binding sites to investigate discrepancies between natural selection and SELEX. Nucle Acids Res.1999; 27:882-887
    72. Sen D, Geyer CR. DNA enzymes. Curr Opin in Chem Bio. 1998; 2:680-687
    73. Li Y, Sen D. The modus operandi of a DNA enzyme: enhancement of substrate basicity. Chem Biol. 1998; 5:1-12
    74. Travascio P. Li Y, Sen D. DNA-enhanced peroxidase activity if a DNA aptamer-hemin complex. Chem Biol. 1998; 5:505-517
    75. Chartrand P, Hervey SC, Ferbeyre G An oligodeoxyribonucleotide that supports catalytic activity in the hammerhead ribozyme domain. Nucle Acids Res. 1995; 23 (20): 4092-4096
    76. Breaker RR. DNA aptames and DNA enzymes. Curr Opin in Chem Bio. 1997; 1:26-31
    77. Li Y, Padmapriya A, Morden KM et al. Peptide conjugation to an in vitro-selectioned DNA ligand improves enzyme inhibition. Gene. 1995; 92: 11044-11048
    78. Ota N, Warashina M, Hirano Ken'ichi, Hatanaka K et al. Effects of helical structures formed by the binding arms of DNAzymes and their substrates on catalytic activity. Nucle Acids Res. 1998; 26 (14): 3385-3391
    79. Cox JC, Ellington AD. Automated selection of anti-protein aptamers. Bioorg &Med Chem. 2001; 9:2525-2531
    80. Cox JC, Rudolph P, Ellington AD. Automated RNA selection. Biolechnol Prog 1998;14:835-850
    81. Goila R, Banerjea AC. Sequence specific cleavage of the HIV-1 coreceptor CCT5 gene by a hammer-head ribozyme and a DNA-enzyme: inhibition of coreceptor function by DNA-enzyme. FEBS Lett. 1998; 436:233-238
    
    
    82. Basu S, Sriran B, Goila R et al. Targeted cleavage of HIV-1 coreceptor-CXCR-4 by RNA-clevaing DNA-enzyme: inhibition of coreceptor function. Antiviral Research. 2000; 46:125-134
    83. Tuerk C, Sheela MacDougal-Waugh. In vitro evolution of functional nucleic acids: high-affinity RNA ligands of HIV-1 proteins. Gene. 1993; 137:33-39
    84. Berglund JA, Charpentir B, Rosbash M. A high affinity binding site for the HIV-1 nucleocapsid protein. Nucl Aci Res. 1997; 25 (5): 1024-1049
    85. Allen P, Worland S, Gold L. Isolation of high-affinity RNA ligands to HIV-1 from a random pool. Virology. 1995; 209:327-336
    86. Homann M, G ringer HU. Uptake and intracellular transport of RNA aptamers in African Trypanosomes suggest therapeutic "Piggy-Back"approach. Bioorg &Med Chem. 2001; 9:2571-2580
    87. Yajun Song, Ruifu Yang, Zhaobiao Guo et al. Distinctness of spore and vegetative cellμlar fatty acid profiles of some aerobic endospore-forming bacilli. J Microbiol. Method. 2000; 39:225-241
    88. Sndman K, Soares D, Reeve JN. Molecular components of the archaeal nucleosome. Biochimie. 2001; 83:277-281
    89. Schultz PG, Lerner RA, Benkovic SJ. Catalytic antibodies. Chem Emg News 1990; 68:26-40
    90. Chariton J, Sennello J, Smith D. In vivo inflammation using an aptamer inhibitor of himan neutrophil wlastase. Chem Biol. 1997; 4:809-816
    91. Cook DB, Self CH. Monoclonal antibodies in diagnostic immunoassays. In: Titter MA, Ladyman HM,eds. Monoclonal antibodies. Cambridge, UK: Cambridge University Press. 1995; 180-208
    92. Vaughan T, Osbourn JK, Tempest PR. Human antibodies by design. Nat Biotechnol. 1998; 16:535-539
    93. Charlton J, Smith D. Estimation of SELEX pool size by measurement of DNA renaturation rates. RNA. 1999; 5(10): 1326-1332
    94. Ponomarenko JV, Orlova GV, Ponomarenko MP et al. SELEX-DB: an activated database on selected randomized DNA/RNA sequence genomic sequence annotation. Nucleic Acids Res. 2000; 28(1): 205-208
    
    
    95. Drolet DW, Jenison RD, Smith DE et al. A high throughput platform for systematic evolution of ligands by exponential enrichment (SELEX). Comb Chem High Throughput Screen. 1999; 2(5): 271-278
    96. Andreola ML, Calmels C, Michel J et al. Towards the selection of phosphorothioate apramers optimizing in vitro with phosphorothioate nucleotides. Eur J Biochem. 2000; 267(16): 5032-5040
    97. Jenison RD, Gill sc, Pardi A et al. High-resolution molecular discrimination by RNA. Science. 1997: 94: 264:1425-1429
    98. Cooper TA. In vivo SELEX in vertebrate cells. Methods Mol Biol. 1999; 118: 405-417
    99. Vianini E, Palumbo M, Gatto B. Invitro selection of DNA aptamers that binding L-Tyrosinamide. Bioor Med Chem. 2001 ;9:1543-2548
    100. Klug SJ, Famulok M. All you wanted to know about SELEX. Mol Bio Rep. 1994; 20: 97-107
    101. Lin Y, Jayasena S.D. Inhibition of multiple thermostable DNA polymerase by a hetercdimeric aptamer. J Mol Biol. 1997; 271: 100-111
    102. Hermann T, Patel D.J. Adaptive recognition by nucleic acid aptamers. Science. 2000; 287:820-827
    103. Bruno JG, Yu H. Immunomomagnetic-electrochemiluminescent detection of Bacillus anthracis spores in soil matrices.Appl Environ Microbiol. 1996; 62(9) 3474~3476
    104. 王琛,徐丰,金由辛等。特异亲和活性蓝染料的小分子RNA的SELEX筛选。生物化学与生物物理学报。1999,31 (5):504~508
    105. Gold L, Brown D, Schneider D et al. The RNA World. New York: Cold Spring Harbor Laboratory Press. 1993
    106. 王琛,金由辛,王德宝.SELEX法筛选特异亲和淀粉的小分子RNA。生物化学与生物物理学报。1998;30 (40):402-404
    107. Bock LC, Griffin LC, Latham JA et al. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature. 1992; 355:564-566
    108. Wang YQ, Mi J, Cao XT et al. Anti-DNA antibodies exhibit different binding motif preferences for single stranded or double stranded DNA. Immunol Letters. 2000; 73:29-34
    
    
    109. Blind M, Kilanus W, Famulok M. Cytoplamic RNA-modulations of an inside-out signal transduction cascade. Proc Natl Acad Sci USA. 1999; 96:3606-3610
    110. Shi H, Hoffman BE, Lis JT. RNA aptamers as effective protein antagonists in a multicellulat organism. Proc Natl Acad Sci. USA. 1999; 96:10033-10038
    111. Fabbrizio E, Lw Cam L, Polanowska J et al. Inhibition of mammalian cell proliferation by genetically selected peptide aptamers that functionally antagonize E2F activity. Oncogene. 1999; 18:4357-4363
    112. Geyer CR, Colman-Lerner A, Brent R. "Mutagenesis" by peptide aptamers identifies genetic network members and pathway. Proc Natl Sci USA. 1999; 96:8567-8572
    113. Hicke BJ, Watson SR, Koenig A et al. DNA aptamers block L-selectin function on vivo inhibition of human lymphocyte trafficking in SCID mice. J Clin Invest. 1996; 98:2688-2692
    114. Hayakawa y, Hayashi T, Lee Jung-Bum et al. Inhibition of thrombin by sulfated polysaccharides isolated from green algae. Biochimica et Biophysica Acta. 2000; 1543: 86-94
    115. Holland CA, Henry AT, Whinna HC et al. Effect of oligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparin cofactor Ⅱ and antithrombin. FEBS Lett.2000; 484:87-91
    116. Chen H, Gold L. Selection of high-affinity RNA ligands to reverse transcriptase: inhibition of cDNA synthesis and RNase H activity. Biochem. 1994; 33: 8746-8756
    117. Takeno H, Yamamoto S, Tanaka T et al. Selection of an RNA molecule that specifically inhibits the protease activity. Biochem. 1999; 125: 1115-1119
    118. J. 萨姆布鲁克,E.F. 弗里奇,T.曼尼阿蒂斯著:分子克隆实验指南 第二版 科学出版社 北京 1992年:34-57
    119. Fukusaki E, Hasunuma T, Kajiyama S et al. SELEX for tubulin affords specific T-rich DNA aptamers. Bioorg. Med. Chem. Leu. 2001; 11: 2927-2930.
    120. Kato T, Yano L, Ikebukuro et al. Interaction of three-way DNA junctions with steroids. Nucleic Acids Research. 2000; 28(9): 1963-1968
    
    
    121. Hermann M, Gbringer H-U. Combinatorial selection of high affinity RNA ligands to live African trypanosrnes. Nucleic Acid Res. 1999; 27; 2006-2020
    122. Gold L, Allen P, Binkley J et al. RNA: the shape of things to come. In: Gesteland R, Atkins J, eds. The RNA world. Plainview. NY: Cold Spring Harbor Laboratory Press. 1993:497-509
    123. Gold L, Polisky B,Uhlenbeck P et al. Diversity of oligonucleotide functions. Annu Rev Biochem. 1995; 64:763-797
    124. Editorial. Aptamers. Reviews in Molecular Biotechnology. 2000; 74:3-4
    125. email-Poncho. Meisenheimer@Angelo. Edu Last Updated: July 25,2000
    126. Morris KN, Jensen KB, Julin CM et al. High affinity ligands from in vitro selection: complex targets. Proc Natl Acad Sci USA. 1998; 95:2902-2907
    127. Homann M, G(??)ringer HU. Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucle Acid Res. 1999: 27: 2006-2016.
    128. Huizenga DE, Szostak JW. A DNA aptamer that binds adenosine and ATP. Biochem. 1995; 34:656-665
    129. Geyer RC, Sen D. Use of intrinsic biding energy for catalysis by a cofactor-independent DNA enzyme, J Mol Biol. 2000; 299:1387-1398
    130. James W. Nucleic acid and polypepetide aptamers:a powerful approach to ligand discovery. Curt. Opin. Pharma. 2001; 1: 540-546
    131. Hermann T, Westhof E. Docking of cationic antibiotics to negatively charged pockets in RNA folds. J Med Chem. 1999; 42:1250-1261
    132. Hofmann HP, Limmer S, Horming V et al. Ni-binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair. RNA. 1997; 3:1289-1300
    133. Cowan JA, Ohyama T, Wang D et al. Recognition of a cognate RMA aptamer by neomycin B: quantitative evaluation if hydrogen bonding and electrostatic interactions. Nucle Acids Res. 2000; 28:2935-2942
    134. Eaton BE. The joys in vitro selection: chemically dressing oligonucleotides to satiate protein targets. Curr Opini Chen Bio. 1997; 1: 10-16
    135. Ellington AD, Szostak JW. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature. 1992; 355:850-852
    
    
    136. Connell GJ, Lliangesekare M, Yarus M. Three small ribooligononucleotides with specific arginine sites. Biochem. 1993; 32:5497-5502
    137. Gold L, Singer B, He YY et al. SELEX and the evolution of genomes. Curr Opini Gene Develo. 1997; 7:848-851
    138. Ellington AD, Szostak JW. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature. 1992; 355:850-852
    139. Rye PD, Nustad K. Immunomagnetic DNA Aptamer Assay. Boitechniques, 2001 2(30): 290—294
    140. Klug SJ, Famulok M. All you wanted to know about SELEX. Molecular Biology Reports. 1994; 20:97-107
    141. Cheng Ann-Joy, Dyke MWV. Oligodeoxytibonucleotide length and sequence effects on intramolecular and intermoleeular G-quartet formation. Gene. 1997; 197:153-260
    142.甄蓓 宋亚军 王津等。SELEX法筛选炭疽芽孢杆菌芽孢适配子的研究 军事医学科学院院刊。2001:25(2):111~114
    143.甄蓓 宋亚军 郭兆彪等。炭疽芽孢杆菌芽孢适配子的亲和性分析 解放军医学杂志 2001;26(6):419~422
    144.朱平,冯书章。抗体实验技术手册。长春出版社出版,1994年11月67~173页。
    145. G. Siuzdak, The emergence of the mass spectrometry in biochernical research. Proc Natl Acad Sci USA. 1994; 91: 11290-11297.
    146. R. Kaufmann, Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry: a novel analytical tool in molecular biology and biotechnology, J Biotechnol. 1995; 41: 155-175.
    147. The rapid identification of bacterial by MALDI. www. micromass.co.uk/masslynx
    148. M. B. Beverly, F. Basile, K.J. Voorhees, The effects of electro and chemical ionization modes on the MS profiling of whole bacteria, J Am Soc Mass Spectrom, 1999, 10, 747~758
    149. Kellogg JA, Bankert DA, Withers GS et al. Application of the Sherlock mycobacteria system using high-performance liquid chromatography in a clinical laboratory, J Clin Micromot. 2001; 964-970
    
    
    150. J.O. Lay Jr. MALDI-TOF mass spectrometry and bacterial taxonomy. Trend Anal Chem, 2000; 19:507-516.
    151. Walker J, Fox A J, Edwards-Jones V, Gordon D B. J Microbiol Methods. 2002, 48: 117-126
    152. Fan YW, Cui FZ, Chen LN et al. Improvement of neural cell adherence to silicon surface by hydroxyl ion impantation, J Microbiol Methods. 2000; 131:355-359
    153. Wei ZQ, Wang C, Zhu CF et al. Study on single-bond interaction between amino-terminated organosilane self-assembled monolayers by atomic force microscopy. Surface Science. 2000; 459:401-412
    154. Russell DH, Edmindson RD. High-resolution Mass Spectrometry and ACCURATE Mass measurements with emphasis on the characterization of peptides and proteins by Matrix-assisted Laser Desorption/Inoization Time-of-flight Mass spectrometry.,J Mass Spectrometry. 1997; 32:263-276
    155. Jarman K H, Cebula ST, Saenz AJ et al. An algorithm for automated bacterial identification using Matrix-Assisted Laser Desorption/Ionization Mass spectrometry. Anal Chem. 2000; 72:1217-1223
    156. S.W (?), S.Diekmann. Aptamers. Mol Biotechn. 2000; 74:3-4
    157. Osborne SO, Matsumura I, Ellington AD. Aptamers as therapeutic and diagnostic reagents: problems and prospects. Curr Opini Cbem Biol. 1997; 1: 5-9
    158. Soukup GA, Breaker RR. Nucleic acid molecular switches. Nanotechnology. 1999; 17:469-476
    159. Yamamoto R, Baba T, Kumar PK. Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1. Genes Cells. 2000; 5:389-396
    160. Hesselberth J, Robertson MP, Jhaveri S. In vitro selection of nucleic acids for diagnostic applications. J Biotechnol. 2000; 74; 15-25
    161. Kato T, Yano K, Ilebukero K. Bioassay of bile acids using an enzyme-linked DNA aptamer. Analyst. 2000; 125:1371-1373
    162. Lee M, Walt DR. A fiber-optic microarray biosensor using aptamers as receptors. Anal Biochem. 2000, 282:142-146
    163. Scheller FW, Wollenberger U, Warsinke A et al. Research and development in biosensors. Curr Opin Biotechnol. 2001, 12:35-40
    
    
    164. Abdel-Hamid I, Ivniski D, Atanasov P et al. Highly sensitive flow-injiection immunoassay system for rapid detection of bacteria. Analytica Chimica Acta. 1999; 399:99-108
    165. Jhaveri S, Rajendran M, Ellington AD. In vitro selection of signaling aptamers. Nat Biochem. 2000; 18:1293-1297
    166. Elligton AD, Hesselberth J, Jhaveri S. Combinatorial methods: aptamers and aplazymes. Proc SPIE. 1999; 3858:135-140.
    167. Jhavert SD et al. Designed signaling aptamers that transducer molecular recognition to changes in fluorescence intensity. J An Chem Soc. 2000; 122: 2469-2473

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700