基于模极大值特征提取的超声波海底沉积物分类识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着陆地矿产资源的日趋枯竭,大洋钴结壳成为21世纪最具有商业开采价值的战略资源,世界主要发达国家已经开始了开采研究工作。为加快我国深海钴结壳开采的步伐,在国家自然科学基金项目“深海钴结壳微地形监测技术与最佳采集深度建模研究”的资助下,本论文对海底沉积物的识别与分类做了相关研究。
     根据模极大值在特征提取中的应用,本文提出了一种基于模极大值的超声波回波探测沉积物分类方法。利用超声波探测不同的沉积物得到不同的回波波形,运用互相关算法找出真实回波起点,截取回波,再对回波进行小波变换,提取模极大值特征,然后将模极大值特征利用最佳鉴别矢量法进行特征压缩,最后送入分类器进行分析。在此理论基础上,根据自然界中沉积物的分类标准,由泥、砂、砾三种组分通过不同的配比组成14种不同的海底沉积物,对应14种不同的回波,得到的模极大值的特征是不同的。通过水下回波实验建立了一套沉积物的分类识别模型。运用所提出的方法,对建立的模型进行实验验证。通过采集湘江河床的沉积物作为样品,进行水下回波实验,并将样品进行筛分称重,得到真实的沉积物类型,将实验得到的分类结果与筛分得出的结果进行对比,得到正确识别率在80%左右。由此可以看出,本论文所提出的沉积物分类方法及建立的分类识别模型是正确的、可靠的。
     本论文的研究为海底沉积物的识别与分类提供了良好的理论基础,对海底地貌及其性质的识别具有实际意义,为我国的深海采矿事业提供有效的技术支持。
Along with land mineral resource used up, Oceanic cobalt crust resource has been a commercial foreground strategical resource in 21 century and the head developed countries in the world have been doing work of investigation and exploitation. In order to quicken the step of exploitation of seabed cobalt crust in our country, and imbursed by the national natural science fund item "Study on the Abyssalbenthic Cobalt-rich Crusts Tiny terrain Detecting Technology and the Best Collection Deepness Model", the investigation was done of the identification and classification of seabed sediment in the dissertation.
     A classification method was proposed based on the application of modulus maxima in feature extraction. Different echo is gained to detect different sediment. The jumping-off was found out making use of the correlation principle. Intercept echo. Then do wavelets transform and pick out the modulus maxima feature. They were compressed with optimal set of discriminant vectors. At the end, analysis was done in the classifier. Based on above-mentioned theory, according as the standard of nature sediment, 14 sediment was made of mud、sand and gravel according to different proportion. The modulus maxima feature is different corresponding different echo. A classification and identification model was found on experiments. In order to validate the model, we sampled sediment from the XiangJiang riverbed. The experiment was done to the samples. A portion of the samples were griddled and weighed. Compared the two results, the exactness identification rate was about 80 percents. Look from the results, this method and model are correct and reliable.
     The research affords favorable theoretic value for the identification and classification of seabed sediment. It also has realistic significance for the seabed physiognomy and characters. And the research furnishes effective technique sustain for the country abyssalbenthic mining.
引文
[1]Manheim F T.Marine cobalt resources[J].Science,1987,232:600-608
    [2]国家海洋局发展战略研究所.海洋采矿前景预测[J].北京,1995,5:2-6
    [3]2001年中国大洋矿产资源研究开发学术研讨会论文集(上)[C].北京:中国大洋协会办公室,2001
    [4]简曲.中太平洋富钴结壳的研究[J].矿业研究与开发,1992,19(1):26-27
    [5]何清华,李爱强,邹湘伏.大洋富钴结壳调查进展及开采技术[J].金属矿山,2005,347(5):4-7
    [6]吕东,何将三,刘少军.深海资源开采技术的研究现状[J].矿山机械,2004,9:6-8
    [7]沈裕军,钟祥.大洋钴结壳资源研究开发现状[J].矿冶工程,1999,19(2):11-13
    [8]John E.Halkyard.Technology for mining cobalt rich manganese crusts from seamounts[J].New York,1985,352-374
    [9]王明和,阳宁.深海采矿中试整体系统研究开发[J].矿业研究与开发,2001:20-30
    [10]莫杰.中国大洋矿产资源勘查进展概况[J].海洋地质动态,2000,16(3):6-8
    [11]Giancarlo G Bianchi,Nicholas McCave Ⅰ.Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland[J].Nature,1999,397:515-517
    [12]梁平,石海林,崔波.洋底富钴结壳矿床微地形和物理特性[J].金属矿山,2002,315(9):15-17
    [13]任凤跃.基于AVS/Express可视化技术的回转接触式微地形探测系统研究[D].长沙:中南大学,2005
    [14]罗柏文.四轮驱动履带式海底钴结壳采矿车及其采集过程可视化研究[D].长沙:中南大学,2003
    [15]王震宇,刘少军,李力.Crawling Feasibility Simulation Study on Tracked vehicle for Deep Ocean Mining[J].系统仿真学报,2004,16(4):644-647
    [16]秦宣云.基于微地形重构的深海钴结壳最佳采集切削深度控制模型研究[D].长沙:中南大学,2005
    [17]秦宣云,卜英勇.大洋富钴结壳实时开采切削深度优化分级模型研究[J]. 海洋工程,2005,23(8):99-104
    [18]卜英勇,任凤跃,罗柏文,等.基于Avs/Express三维显示的机械式微地形探测仪研制[J].矿山机械,2005,33(12):6-8
    [19]黄中华,刘少军,谢雅.富钴结壳轮式集矿机越障性能研究[J].计算机仿真,2006,23(8):45-47
    [20]K.V.Mackenzie.Reflection of sound from coastal bottoms[J].J.Acoust.Soc.Am,1960,Vol 32(2):221-231
    [21]M.A.Biot.Theory of propagation of elastic waves in a fluid-saturated porous solid,I Low frequency range[J].J.Acoust.Soc.Am,1956,Vol 28(1):168-178
    [22]M.A.Biot.Theory of propagation of elastic waves in a fluid-saturated porous solid,ⅡHigher frequency range[J].J.Acoust.Soc.Am,1956,Vol 28(1):179-191
    [23]E.L.Hamilton,George Shumway.Acoustic and Other Physical Properties of Shallow-Water Sediments off San Diego[J].J.Acoust.Soc.Am,1956,Vol 28(1):1-15
    [24]E.Ⅰ.Hamilton.Low sound velocities in high-porosity sediments[J].J.Acoust.Soc.Am,1956,Vol 28(1):16-19
    [25]PM.Dizaji and R L.Kirlin.Seabottom Classifier Using Novel Wavelet Entropy Features[J].
    [26]J.Tegowski and Z.Lubniewski.Acoustical classification of bottom sediments in southern Baltic using fractal dimension[C].In Proceeding if the 4th European Conference on Underwater Acoustics,Rome,1998,179-184
    [27]Jaroslaw Tegowski.Acoustical classification of the bottom sediments in the southern Baltic Sea[J].Quaternary International,2005,130:153-161
    [28]Paul A.van Walree,Jaroslaw Tegowski,Cees Laban,etal.Acoustic seafloor discrimination with echo shape parameters:A comparison with the ground truth[J].Continental Shelf Research,2005,25:2273-2293
    [29]HJ.Kim,JK.Chang,HT.Jou,etal.Seabed classification from acoustic profiling data using the similarity index[J].J.Acoust.Soc.Am,2002,Vol 111(2):794-799
    [30]M.B.Collins and G.Voulgaris.Empirical field and laboratory evaluation of a Real-time acoustic seabed surveying system[J].Proc.Inst. of Acoustics,1993,15:343-351
    [31]W.T.Collins and J.L.Galloway.Dual-frequency acoustic classification of seafloor habitat using the QTC VIEW[J].In Oceans 98,Nice,1998
    [32]L.J.Hamilton,P.J.Mulhearn,R.Poeckert.Comparison of RoxAnn and QTC-View acoustic bottom classification system performance for the Cairns area,Great Barrier Reef,Australia[J].Continental Shelf Research,1999,19(1):1577-1597
    [33]孟金生,关定华.海底沉积物的声学方法分类[J].声学学报,1986,7(6):337-343
    [34]王正垠,马远良.宽带声呐湖底沉积物分类研究[J].声学学报,1996,21(4):517-524
    [35]赵建平,黄建国,谢一清,等.用小波变换进行水下回波边缘特征提取与分类识别[J].声学学报,1998,23(1):31-38
    [36]黄海宁,李志舜.湖底沉积物分类的新方法研究[J].西北工业大学学报,1998,16(3):421-426
    [37]马艳,李志舜.基于连续小波变换的水下目标特征提取与分类[J].系统工程与电子技术,2003,25(3):375-378
    [38]于同利,马艳,雷勇.基于小波变换和神经网络的水下宽度回波分类[J].系统工程与电子技术,2006,28(5):681-726
    [39]马艳,李志舜.基于正交小波包的水下宽度回波特征提取与识别[J].西北工业大学学报,2003,21(1):54-57
    [40]刘建国,李志舜.湖底回波的包络特征提取[J].计算机仿真,2005,22(10):151-154
    [41]刘建国,李志舜,刘东.基于平稳小波变换及奇异值分解的湖底回波分类[J].声学学报,2006,31(2):167-172
    [42]刘建国,李志舜.基于连续小波变换的湖底回波特征提取[J].西北工业大学学报,2006,24(1):111-114
    [43]孙延奎.小波分析及其应用[M].北京:机械工业出版社,2005
    [44]Mallat,Sifen Zhong.Characterization of signals from multiscale edges[J].IEEE Trans.on PAMI,1992,14(7):710-732
    [45]朱埜.主动声纳检测信息原理[M].北京:海洋出版社,1990
    [46]张静远,张冰,蒋兴舟.基于小波变换的特征提取方法分析[J].信号处理,2000,16(2):156-162
    [47]Albert Boggess Franeis J.Narcowich.小波与傅立叶分析基础[M].北京:电子工业出版社,2004.144-236
    [48]彭玉华.小波变换与工程应用[M].北京:科学出版社,1999.115-122
    [49]秦前清,杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1994.54-67
    [50]陈逢时.子波变换理论及其在信号处理中的应用[M].北京:国防工业出版社,1999.112-124
    [51]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,1999.145-157
    [52]徐长发,李国宽.实用小波方法[M].武汉:华中科技大学出版社,2004.72-75
    [53]龙公,王玉平.多尺度样条小波变换[J].医用生物力学,1995,10(1):19-23
    [54]李雪耀,彭圆,林良骥,等.基于小波与三次样条插值的包迹谱的水下目标分类研究[J].声学学报,2004,29(1):63-67
    [55]飞思科技产品研发中心.小波分析理论与MATLAB7实现[M].北京:电子工业出版社,2005.37-47
    [56]程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,2001.46-85
    [57]黄凤岗,宋克欧.模式识别[M].哈尔滨:哈尔滨工程大学出版社,1998.119-130
    [58]涂志江,刘国岁.基于最佳鉴别准则的目标识别方法[J].现代雷达,2002,1(22):39-43
    [59]王筑娟.Karhunen_Loeve变换及其几种计算方法[J].上海应用技术学院学报,2004,4(2):117-121
    [60]边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000.87-188
    [61]Fukunaga K S.No linear feature extraction with a general criterion function[J].IEEE Trans Information Theory,1978,24(5):600-607
    [62]郭跃飞,黄修武,杨静宇.一种求解Fisher最佳鉴别矢量的新算法及人脸识别[J].中国图象图形学报,1999,4(A):95-98
    [63]金忠,杨静宇,胡钟山.有效最佳鉴别特征的抽取与维数问题[J].计算机学报,2000,23(1):108-112
    [64]杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493
    [65]李昭阳,王元全,夏德深.关于最佳鉴别特征维数问题的讨论[J].计算机学报,2003,26(7):825-830
    [66]吉小军,施文康,张国伟.一种有效的声信号特征提取算法及应用[J].上海交通大学学报,2003,11(37):1732-1735
    [67]陈伏兵,张生亮,高秀梅,等.小样本情况下Fisher线性鉴别分析的理论及其验证[J].中国图象图形学报,2005,10(8):984-991
    [68]胡广书.数字信号处理--理论、算法与实现[M].北京:清华大学出版社,1997.298-382
    [69]曾禹村,张宝俊,吴鹏翼.信号与系统[M].北京:北京理工大学出版社,1992.5-48
    [70]黄文梅,熊桂林,杨勇.信号分析与处理--MATLAB语言及应用[M].长沙:国防科技大学出版社,1999.125-211
    [71]飞思科技产品研发中心.MATLAB7辅助信号处理技术与应用[M].北京:电子工业出版社,2005.213-442
    [72]Robinson E A.A historical perspective of spectrum estimation[J].Proc.IEEE,1982,70(Sept):885-907
    [73]Kay S M,Marple S L.Spectrum analysis:a modern perspective[J].Proc.IEEE,1981,69(Nov):1380-1419
    [74]Folk R L.碎屑沉积物的分类及其命名在新泽西的应用[J].海洋地质动态,2007,23(1):31-34
    [75]Folk R L.The distinction between grain size and mineral composition in sedimentary rock nomenclature[J].Journal of the Geology 62,1954,13(4):344-359
    [76]G.M.弗里德曼,J.E.桑德斯.沉积学原理[M].北京:科学出版社,1987.70-78
    [77]何起祥,李绍全,刘健.海洋碎屑沉积物的分类[J].海洋地质与第四纪地质,2002,22(1):115-121
    [78]于峰,侯永海,王建国.基于PCI-1714的高速数据采集系统方案设计[J].微型计算机信息,2005,21(81):59-62
    [79]ADVANTECH.inc.PC_LabCard/PCI-1714 User' s Manual[J].TAIWAN:2003
    [80]ADVANTECH.inc.Advantech DLL Drivers User' s Manual and Programmer' s Reference[J].TAIWAN:2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700