siRNA特异性及脱靶效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
RNA干扰(RNA interfering, RNAi)是指进化保守的小干扰RNA (small interfering RNA, siRNA)介导的抑制靶基因表达的现象。主要通过降解靶标mRNA从而抑制目标蛋白合成的转录后调控,有效抑制基因表达。参与这一过程的作用因子是siRNA(约21-23nt),作为关键的媒介与RISC蛋白在细胞质中结合,进而特异性的降解靶标mRNA。由于siRNA的这种特性可以抑制致病基因的突变位点,因此siRNA被广泛希望于作为新一代的生物临床治疗药物。
     RNA干扰过程中,siRNA和mRNA特异结合能够使得靶基因沉默。但研究证实,siRNA还可以与非靶基因结合而导致非靶基因沉默,这种现象称为siRNA的脱靶效应。
     siQuant系统以双荧光报告检测技术为基础,是一种检测siRNA抑制活性的高通量检测工具。在siQuant中引入siRNA的靶位点,siRNA的沉默效率可以通过荧光报告基团的活性直接反映出来。
     siRNA的沉默特异性和脱靶效应是其作为临床应用,特别是在选择性沉默SNP突变基因过程中遇到的关键问题。然而,目前尚没有设计等位基因特异性siRNA的可行性指导原则。本论文以基于siQuant的双荧光报告系统为主要检测手段,使用20条siRNAs和相应的240条错配靶序列,以siRNA的4、12和17三个位点为例,发现siRNA的错配容忍模式是由其错配位点决定的,在不同位置具有不同的错配容忍模式,并且不受周围序列的影响。本论文进一步使用20条siRNAs和相应的260条错配靶序列对siRNA的错配模式进行了全面研究,建立了siRNA各碱基在各位点的错配容忍模式图谱。
     根据上述得到的siRNA各碱基各位点错配容忍规律,将错配位点放置在siRNA高敏感区域,从而实现将完全匹配与单碱基错配选择性地沉默,即通过人为设计等位基因特异性siRNA来有效抑制突变治病的等位基因而对正常基因的影响达到最小。本论文设计抑制PIK3CA基因的两个致病突变位点的特异性siRNA,成功地对PIK3CA基因的两个致病突变位点进行了选择性沉默。
     本论文建立的siRNA错配容忍模式可以为等位基因特异性siRNA的设计提供可行的规律,选择性的基因沉默对治疗因SNP导致的疾病具有重大价值,为siRNA作为临床治疗药物研究提供有力的技术支持。
RNA interfering (RNAi) is an evolutionarily conserved process where small interfering RNA (siRNA) specifically represses the expression of target genes. The effectors of this process are siRNA duplexes (approximately 21-23nt) that are key intermediaries in the specific degradation of target mRNA following incorporation into the RNA-induced silencing complex (RISC) in the cytoplasma
     siRNAs are widely expected to become next generation of biological therapeutics, and they are initially anticipated to play a major role in treatment of diseases involving single nucleotide polymorphisms (SNPs) where discrimination against single nucleotide variation between wild-type and mutant alleles is demanded.
     In RNA interference, siRNAs can silence target genes specifically by binding corresponding mRNA. But recent researches confirm that siRNAs are likely to act on non-target genes and degrade them. This is so-called "off target effects".
     siQuant is a reporter-based siRNA validation system that provides a rapid and precise approach to evaluate individual siRNA in high-throughput manner. The efficacy of a siRNA could be read out by measuring the activity of a reporter enzyme, of which the mRNA was tagged by a short sequence representing the target site of tested siRNA.
     Silencing specificity and off target effects are critical issues in the therapeutic applications of siRNA, particularly in the treatment of single nucleotide polymorphism (SNP) diseases. However, no generally applicable guidelines are available for the design of such allele-specific siRNAs. In this paper, the issue was approached by using a reporter-based assay. With a panel of 20 siRNAs and 240 variously mismatched target reporters, we first demonstrated that the mismatches were discriminated in a position-dependent order, which was however independent of their sequence contexts using position 4th,12th and 17th as examples. A general model was further built for mismatch discrimination at all positions using 260 additional reporter constructs specifically designed to contain mismatches distributed evenly along the target regions of different siRNAs. This model was successfully employed to design allele-specific siRNAs targeting disease-causing mutations of PIK3CA gene at two SNP sites. Furthermore, conformational distortion of siRNA-target duplex was observed to correlate with the compromise of gene silencing. In summary, these findings could dramatically simplify the design of allele-specific siRNAs and might also provide guide to increase the specificity of therapeutic siRNAs.
引文
[1]R. Jorgensen:Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechnol 1990,8(12):340-4.
    [2]S. Guo and K. J. Kemphues:par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 1995,81(4):611-20.
    [3]G. L. Sen and H. M. Blau:A brief history of RNAi:the silence of the genes. FASEB J 2006, 20(9):1293-9.
    [4]A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver and C. C. Mello:Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998,391(6669):806-11.
    [5]S. Brantl:Antisense-RNA regulation and RNA interference. Biochim Biophys Acta 2002, 1575(1-3):15-25.
    [6]P. D. Zamore:Ancient pathways programmed by small RNAs. Science 2002,296(5571):1265-9.
    [7]M. Wassenegger, S. Heimes, L. Riedel and H. L. Sanger:RNA-directed de novo methylation of genomic sequences in plants. Cell 1994,76(3):567-76.
    [8]V. Ambros:Development. Dicing up RNAs. Science 2001,293(5531):811-3.
    [9]S. M. Hammond, E. Bernstein, D. Beach and G. J. Hannon:An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000,404(6775):293-6.
    [10]G. J. Hannon:RNA interference. Nature 2002,418(6894):244-51.
    [11]J. K. Kundu, P. Briard, J. M. Hily, M. Ravelonandro and R. Scorza:Role of the 25-26 nt siRNA in the resistance of transgenic Prunus domestica graft inoculated with plum pox virus. Virus Genes 2008, 36(1):215-20.
    [12]F. Noreen, R. Akbergenov, T. Hohn and K. R. Richert-Poggeler:Distinct expression of endogenous Petunia vein clearing virus and the DNA transposon dTphl in two Petunia hybrida lines is correlated with differences in histone modification and siRNA production. Plant J2007,50(2):219-29.
    [13]T. A. Volpe, C. Kidner, I. M. Hall, G. Teng, S. I. Grewal and R. A. Martienssen:Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 2002,297(5588):1833-7.
    [14]T. Volpe, V. Schramke, G. L. Hamilton, S. A. White, G. Teng, R. A. Martienssen and R. C. Allshire: RNA interference is required for normal centromere function in fission yeast. Chromosome Res 2003, 11(2):137-46.
    [15]V. Schramke and R. Allshire:Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science 2003,301(5636):1069-74.
    [16]K. Mochizuki, N. A. Fine, T. Fujisawa and M. A. Gorovsky:Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell 2002,110(6):689-99.
    [17]S. D. Taverna, R. S. Coyne and C. D. Allis:Methylation of histone h3 at lysine 9 targets programmed DNA elimination in tetrahymena. Cell 2002,110(6):701-11.
    [18]J. M. Silva, H. Mizuno, A. Brady, R. Lucito and G.J. Hannon:RNA interference microarrays: high-throughput loss-of-function genetics in mammalian cells. Proc Natl Acad Sci U S A 2004, 101(17):6548-52.
    [19]P. J. Paddison, J. M. Silva, D. S. Conklin, M. Schlabach, M. Li, S. Aruleba, V. Balija, A. O'Shaughnessy, L. Gnoj, K. Scobie, K. Chang, T. Westbrook, M. Cleary, R. Sachidanandam, W. R. McCombie, S. J. Elledge and G. J. Hannon:A resource for large-scale RNA-interference-based screens in mammals. Nature 2004,428(6981):427-31.
    [20]K. Berns, E. M. Hijmans, J. Mullenders, T. R. Brummelkamp, A. Velds, M. Heimerikx, R. M. Kerkhoven, M. Madiredjo, W. Nijkamp, B. Weigelt, R. Agami, W. Ge, G. Cavet, P. S. Linsley, R. L. Beijersbergen and R. Bernards:A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 2004,428(6981):431-7.
    [21]F. Simmer, C. Moorman, A. M. van der Linden, E. Kuijk, P. V. van den Berghe, R. S. Kamath, A. G. Fraser, J. Ahringer and R. H. Plasterk:Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol 2003,1(1):E12.
    [22]E. A. Nollen, S. M. Garcia, G. van Haaften, S. Kim, A. Chavez, R. I. Morimoto and R. H. Plasterk: Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci U S A 2004,101(17):6403-8.
    [23]I. Maeda, Y. Kohara, M. Yamamoto and A. Sugimoto:Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol 2001,11(3):171-6.
    [24]J. Harborth, S. M. Elbashir, K. Bechert, T. Tuschl and K. Weber:Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 2001,114(Pt 24):4557-65.
    [25]A. P. McCaffrey, L. Meuse, T. T. Pham, D. S. Conklin, G. J. Hannon and M. A. Kay:RNA interference in adult mice. Nature 2002,418(6893):38-9.
    [26]L. Zhang, N. Yang, A. Mohamed-Hadley, S. C. Rubin and G. Coukos:Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun 2003,303(4):1169-78.
    [27]E. Song, S. K. Lee, J. Wang, N. Ince, N. Ouyang, J. Min, J. Chen, P. Shankar and J. Lieberman: RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003,9(3):347-51.
    [28]C. D. Novina, M. F. Murray, D. M. Dykxhoorn, P. J. Beresford, J. Riess, S. K. Lee, R. G. Collman, J. Lieberman, P. Shankar and P. A. Sharp:siRNA-directed inhibition of HIV-1 infection. Nat Med 2002, 8(7):681-6.
    [29]N. S. Lee, T. Dohjima, G. Bauer, H. Li, M. J. Li, A. Ehsani, P. Salvaterra and J. Rossi:Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 2002, 20(5):500-5.
    [30]D. Semizarov, L. Frost, A. Sarthy, P. Kroeger, D. N. Halbert and S. W. Fesik:Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci U S A 2003, 100(11):6347-52.
    [31]A. L. Jackson, S. R. Bartz, J. Schelter, S. V. Kobayashi, J. Burchard, M. Mao, B. Li, G. Cavet and P. S. Linsley:Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003, 21(6):635-7.
    [32]D. S. Schwarz, H. Ding, L. Kennington, J. T. Moore, J. Schelter, J. Burchard, P. S. Linsley, N. Aronin, Z. Xu and P. D. Zamore:Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genet 2006,2(9):e140.
    [33]X. Lin, X. Ruan, M. G. Anderson, J. A. McDowell, P. E. Kroeger, S. W. Fesik and Y. Shen: siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res 2005, 33(14):4527-35.
    [34]Y. Fedorov, E. M. Anderson, A. Birmingham, A. Reynolds, J. Karpilow, K. Robinson, D. Leake, W. S. Marshall and A. Khvorova:Off-target effects by siRNA can induce toxic phenotype. RNA 2006, 12(7):1188-96.
    [35]M. Overhoff, M. Alken, R. K. Far, M. Lemaitre, B. Lebleu, G. Sczakiel and I. Robbins:Local RNA target structure influences siRNA efficacy:a systematic global analysis. J Mol Biol 2005,348(4):871-81.
    [36]A. L. Jackson and P. S. Linsley:Noise amidst the silence:off-target effects of siRNAs? Trends Genet 2004,20(11):521-4.
    [37]Y. Ma, A. Creanga, L. Lum and P. A. Beachy:Prevalence of off-target effects in Drosophila RNA interference screens. Nature 2006,443(7109):359-63.
    [38]O. Snove, Jr. and T. Holen:Many commonly used siRNAs risk off-target activity. Biochem Biophys Res Commun 2004,319(1):256-63.
    [39]A. Birmingham, E. M. Anderson, A. Reynolds, D. Ilsley-Tyree, D. Leake, Y. Fedorov, S. Baskerville, E. Maksimova, K. Robinson, J. Karpilow, W. S. Marshall and A. Khvorova:3'UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 2006,3(3):199-204.
    [40]A. L. Jackson, J. Burchard, J. Schelter, B. N. Chau, M. Cleary, L. Lim and P. S. Linsley: Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. RNA 2006,12(7):1179-87.
    [41]S. Schubert, A. Grunweller, V. A. Erdmann and J. Kurreck:Local RNA target structure influences siRNA efficacy:systematic analysis of intentionally designed binding regions. J Mol Biol 2005, 348(4):883-93.
    [42]P. Stein, F. Zeng, H. Pan and R. M. Schultz:Absence of non-specific effects of RNA interference triggered by long double-stranded RNA in mouse oocytes. Dev Biol 2005,286(2):464-71.
    [43]M. M. Kulkarni, M. Booker, S. J. Silver, A. Friedman, P. Hong, N. Perrimon and B. Mathey-Prevot: Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nat Methods 2006,3(10):833-8.
    [44]S. Qiu, C. M. Adema and T. Lane:A computational study of off-target effects of RNA interference. Nucleic Acids Res 2005,33(6):1834-47.
    [45]T. Yamada and S. Morishita:Accelerated off-target search algorithm for siRNA. Bioinformatics 2005,21(8):1316-24.
    [46]Y. Naito, T. Yamada, T. Matsumiya, K. Ui-Tei, K. Saigo and S. Morishita:dsCheck:highly sensitive off-target search software for double-stranded RNA-mediated RNA interference. Nucleic Acids Res 2005,33(Web Server issue):W589-91.
    [47]S. Qiu and T. Lane:RNA string kernels for RNAi off-target evaluation. Int JBioinform Res Appl 2006,2(2):132-46.
    [48]K. Brown and D. Samarsky:RNAi off-targeting:Light at the end of the tunnel. J RNAi Gene Silencing 2006,2(2):175-7.
    [49]J. K. Ahn, H. G. Yu, H. Chung and Y. G. Park:Intraocular cytokine environment in active Behcet uveitis. Am J Ophthalmol 2006,142(3):429-34.
    [50]K. V. Wood, J. R. de Wet, N. Dewji and M. DeLuca:Synthesis of active firefly luciferase by in vitro translation of RNA obtained from adult lanterns. Biochem Biophys Res Commun 1984,124(2):592-6.
    [51]J. R. de Wet, K. V. Wood, D. R. Helinski and M. DeLuca:Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci USA 1985,82(23):7870-3.
    [52]W. W. Lorenz, R. O. McCann, M. Longiaru and M. J. Cormier:Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci USA 1991,88(10):4438-42.
    [53]A. L. Bothwell, M. Paskind, M. Reth, T. Imanishi-Kari, K. Rajewsky and D. Baltimore:Heavy chain variable region contribution to the NPb family of antibodies:somatic mutation evident in a gamma 2a variable region. Cell 1981,24(3):625-37.
    [54]Y. Gluzman:SV40-transformed simian cells support the replication of early SV40 mutants. Cell 1981,23(1):175-82.
    [55]C. L. Stewart, S. Schuetze, M. Vanek and E. F. Wagner:Expression of retroviral vectors in transgenic mice obtained by embryo infection. EMBOJ 1987,6(2):383-8.
    [56]E. F. Wagner, M. Vanek and B. Vennstrom:Transfer of genes into embryonal carcinoma cells by retrovirus infection:efficient expression from an internal promoter. EMBO J 1985,4(3):663-6.
    [57]W A. Phillips, F. St Clair, A. D. Munday, R. J. Thomas and C. A. Mitchell:Increased levels of phosphatidylinositol 3-kinase activity in colorectal tumors. Cancer 1998,83(1):41-7.
    [58]I. Vivanco and C. L. Sawyers:The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002,2(7):489-501.
    [59]Y. Samuels, Z. Wang, A. Bardelli, N. Silliman, J. Ptak, S. Szabo, H. Yan, A. Gazdar, S. M. Powell, G. J. Riggins, J. K. Willson, S. Markowitz, K. W. Kinzler, B. Vogelstein and V. E. Velculescu:High frequency of mutations of the PIK3CA gene in human cancers. Science 2004,304(5670):554.
    [60]S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber and T. Tuschl:Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411(6836):494-8.
    [61]H. Siomi and M. C. Siomi:On the road to reading the RNA-interference code. Nature 2009, 457(7228):396-404.
    [62]D. M. Dykxhoorn, L. D. Schlehuber, I. M. London and J. Lieberman:Determinants of specific RNA interference-mediated silencing of human beta-globin alleles differing by a single nucleotide polymorphism. Proc Natl Acad Sci USA 2006,103(15):5953-8.
    [63]R. D. Klootwijk, P. J. Savelkoul, C. Ciccone, I. Manoli, N. J. Caplen, D. M. Krasnewich, W. A. Gahl and M. Huizing:Allele-specific silencing of the dominant disease allele in sialuria by RNA interference. FASEB J2008,22(11):3846-52.
    [64]V. M. Miller, H. Xia, G.L. Marrs, C. M. Gouvion, G. Lee, B. L. Davidson and H. L. Paulson: Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci USA 2003,100(12):7195-200.
    [65]D. Castanotto and J. J. Rossi:The promises and pitfalls of RNA-interference-based therapeutics. Nature 2009,457(7228):426-33.
    [66]A. de Fougerolles, H. P. Vornlocher, J. Maraganore and J. Lieberman:Interfering with disease:a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 2007,6(6):443-53.
    [67]S. Saxena, Z. O. Jonsson and A. Dutta:Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem 2003,278(45):44312-9.
    [68]P. C. Scacheri, O. Rozenblatt-Rosen, N. J. Caplen, T. G.Wolfsberg, L. Umayam, J. C. Lee, C. M. Hughes, K. S. Shanmugam, A. Bhattacharjee, M. Meyerson and F. S. Collins:Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA 2004,101(7):1892-7.
    [69]C. Dahlgren, H. Y. Zhang, Q. Du, M. Grahn, G. Norstedt, C. Wahlestedt and Z. Liang:Analysis of siRNA specificity on targets with double-nucleotide mismatches. Nucleic Acids Res 2008,36(9):e53.
    [70]Q. Du, H. Thonberg, J. Wang, C. Wahlestedt and Z. Liang:A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res 2005, 33(5):1671-7.
    [71]Z. Zhao and E. Boerwinkle:Neighboring-nucleotide effects on single nucleotide polymorphisms: a study of 2.6 million polymorphisms across the human genome. Genome Res 2002,12(11):1679-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700