果蝇抗微生物相关基因Dmloxl2功能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫是地球上种类最多的动物群体,超过100多万种,在生态系统中占据重要地位。一般情况下,昆虫幼虫都是在腐烂的有机物中发育生长,而成虫往往成为导致植物和动物感染疾病的传播载体。因此,昆虫体内逐渐进化出了识别病原微生物和抵御细菌、真菌、寄生虫和病毒感染的能力。除了特殊行为、保护色和机体物理屏障如角质表皮、鳞毛或甲壳外,昆虫还具有识别和清除体内异物的高效免疫系统。免疫系统研究是昆虫研究中最重要的基本问题之一,对于阐明生物的生长发育和起源进化具有重要意义。
     果蝇(Drosophila melanogaster)由于具有容易饲养、产卵多、生命周期短以及具有粗大的多线染色体而便于进行基因定位等优点,已成为遗传学和发育生物学研究领域中重要的模式生物之一,对现代生命科学的发展作出了突出的贡献。
     如今果蝇又成为研究昆虫和人类天然免疫的重要模式生物,它主要是通过体液免疫和细胞免疫来抵抗各种病原微生物的侵染。研究表明,果蝇的免疫基因表达主要受两种信号转导途径的调控,即Toll/dif信号转导途径和Imd/Relish信号转导途径。
     本论文主要以野生型黑腹果蝇为材料,研究了果蝇在受到外界微生物侵染的条件下,其体内Dmloxl2基因的表达变化情况。我们以黑腹果蝇成虫为材料提取其总RNA,然后从中分离出mRNA,建立了果蝇成虫cDNA文库,得到大约为1×106个独立的克隆。这次构建的cDNA文库,为果蝇抗微生物相关基因Dmloxl2的克隆和结构功能研究奠定了基础。
     我们利用培养至高浓度(600nm下细菌悬液光吸收在50以上)的四种常见微生物(大肠杆菌、枯草芽孢杆菌、金黄色葡萄球菌和白色链球菌)人工感染果蝇,以rp49为内参照基因,通过RT-PCR的方法检测果蝇体内Dmloxl2基因的表达变化情况,试验结果显示:黑腹果蝇在受到上述四种微生物侵染12 h后,Dmloxl2基因表达均呈现明显上调趋势。
     为了进一步验证该实验结果,我们又用实时荧光定量PCR技术检测了Dmloxl2基因在上述四种微生物侵染12 h后的表达变化情况。试验结果显示:果蝇成虫在经过高浓度的E. coli感染时,Dmloxl2的表达上调1.8倍;果蝇成虫在经过高浓度的B. subtilis感染时,Dmloxl2的表达上调2.6倍;果蝇成虫在经过高浓度的S. aureus感染时,Dmloxl2的表达上调2.8倍;果蝇成虫在经过高浓度的C.albicans感染时,Dmloxl2的表达上调2.2倍。上述试验结果说明Dmloxl2基因在受到外界微生物的感染12 h后其表达显著上调,这也进一步验证了前文RT-PCR的实验结果。同时,我们也检测了Dmloxl2基因在上述四种微生物侵染6h后的表达变化情况,其表达也呈现上调趋势。
Insect is the largest animal groups on the earth with more than one million species, and play an important role in ecological systems. Frequently, insect larvae develop in decaying organic matter, and insect adults often serve as vectors for microorganisms causing plant and animal diseases. In the process of evolution, insects have formed a highly effective defense system to resist the invasion and parasitization of microbes. Besides the protection of physical barriers such as cuticle, scale and carapace, insects have immune related molecules to recognize and kill invaders. Immune system is one of the most important issues in insect studies and has great significance for clarifying the growth-development and origin.
     The fruit fly Drosophila melanogaster is an important model organism in research fields of genetics and developmental biology due to the advantages of easy to breed and to get enough embryos in the laboratory, short life cycle, having large polytene chromosomes and so on. It has made great contributions to the development of modern life science.
     Drosophila has become the important model for the study of the innate immunity of insect and human. Its defense against invading pathogens includes humoral and cellular reactions. The immune gene expression of Drosophila is regulated by two signal transduction pathways:Toll/dif and Imd/relish.
     In this thesis, under the conditions of microbial infection, the antimicrobial-related gene Dmloxl2 change on expression was studied in wild-type Drosophila melanogaster. cDNA library of Drosophila melanogaster was constructed. 1×106 independent clones were got in the cDNA library. The cDNA library of Drosophila melanogaster, which can improve the structure and function research of antimicrobial-related gene Dmloxl2.
     We used the high concentration (OD600nm>50) of four microorganisms (Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Candida albicans) infected flies by the method of RT-PCR detection of the expression of Dmloxl2. The results showed that the fruit flies by microbial infection after 12 h, the antimicrobial-related gene Dmloxl2 expression was remarkably up-regulated. To further prove that the experimental results, we had used fluorescence quantitative PCR technique to detect Dmloxl2 gene expression after microbial infection. The results showed that after high concentration of E. coli infection, the expression of Dmloxl2 was increased 1.8; after high concentration of B. subtilis infection, the expression of Dmloxl2 was increased 2.6; after high concentration of S. aureus infection, the expression of Dmloxl2 was increased 2.8; after high concentration of C. albicans infection, the expression of Dmloxl2 was increased 2.2. These results indicated the antimicrobial-related gene Dmloxl2 by microbial infection after 12 h was a significant increase on its expression, which further verified the former RT-PCR results. At the same time, we also detected Dmloxl2 by microbial infection after 6 h, Dmloxl2 expression was also up-regulated.
引文
[1]Lemaitre B, Hoffmann JA. The host defense of Drosophila malanogaster [J]. Annu Rev Immunol 2007,25:697-743.
    [2]Hoffmann JA. The immune response of Drosophila [J]. Nature 2003,426 (6962):33-38.
    [3]Kimbrell DA, Beutler B. The evolution and genetics of innate immunity [J]. Nat Rev Genet 2001, 2(4):256-267.
    [4]Gregorio ED, Spellman PT, Rubin GM, et al. Genome-wide analysis of the drosophila immune response by using oligonucleotide microarrays [J]. Proc Natl Acad Sci USA 2001,98 (22):12590-95.
    [5]Medzhitov R, Janeway C AJ. Innate immunity: impact on the adaptive immune response [J]. Curr Opin Immunol 1997,9(1):4-9.
    [6]Christophides G K, Zdobnov E, Barillas-Mury C, et al. Immunity-related genes and gene families in Anopheles gambiae [J]. Science 2002,298 (5591):159-165.
    [7]Hultmark D. Drosophila immunity, paths and patterns [J]. Curr Opin Immunol,2003,15 (1):12-19.
    [8]Honeybee Genome Sequencing Cinsortium. Insights into social insects from the genome of the honeybee Apis mellifera [J]. Nature 2006,443 (7114):931-949.
    [9]Richards S, Gibbs RA, Weinstock GM, et al. The genome of the model beetle and pest Tribolium castaneum [J]. Nature 2008,452 (7190):949-955.
    [10]Zdobnov EM, Bork P. Quantification of insect genome divergence [J]. Trends Genet 2007,23 (1): 16-20.
    [11]Sackton TB, Lazzaro BP, Schlenke TA, et al. Dynamic evolution of innate immune system in Drosophila [J]. Nat genet 2007,39 (12):1461-68.
    [12]Bulet P, Hetru C, Dimarcq JL, et al. Antimicrobial peptides in insects: structure and function [J]. Dev comp Immunol 1999,23 (4-5):329-344.
    [13]Hetru C, Troxler L, Hoffmann JA. Drosophila melanogaster antimicrobial defense [J]. J Infect Dis 2003,187 Suppl 2:S327-334.
    [14]Wang Z, Wang G. ADP:the Antimicrobial Peptide Database [J]. Nucleic Acids Res 2004,32 (Datebase issue):D590-592.
    [15]Medzhitov R, Janeway C. Innate immune recognition: mechanisms and pathways [J]. Immunol Rev 2000,173:89-97.
    [16]Lemaitre B, Reichhart JM, Hoffmann JA. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms [J]. Proc Natl Acad Sci USA 1997,94 (26):14614-19.
    [17]Yoshida H, Kinoshita K, Ashida M. purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori[J]. J Biol Chem 1996,271 (23):13854-60.
    [18]Lee WJ, Lee JD, Kravchenko VV, et al. Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori [J]. Proc Natl Acad Sci. USA 1996,93 (15):7888-93.
    [19]Kang D, Liu G, Lundstrom A, et al. A peptidoglycan recognition protein in innate immunity conserved from insects to humans [J]. Proc Natl Acad Sci USA 1998,95 (17):10078-82.
    [20]Gottar M, Gobert V, Michel T, et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein [J]. Nature 2002,416 (6881):640-643.
    [21]Werner T, Liu G, Kang D, et al. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster [J]. Proc Natl Acad Sci USA 2000,97 (25):13772-77.
    [22]Yoshida H, Kinoshita K, Ashida M. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori [J]. J Biol Chem 1996,271 (23):13854-60.
    [23]Michel T, Reichhart JM, Hoffmann JA, et al. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein [J]. Nature 2001,414 (6865):756-759.
    [24]Choe KM, Werner T, Stoven S, et al. Requirement for a peptidoglycan recognition protein (PGRP) in relish activation and antibacterial immune responses in Drosophila [J]. Science 2002,296 (5566): 359-362.
    [25]Kim YS, Ryu JH, Han SJ, et al. Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and beta-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells [J]. J Biol Chem 2000,275 (42):32721-27.
    [26]Levashina EA, Moita LF, Blandin S, et al. Conserved role of Complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae [J]. Cell 2001,104 (5):709-718.
    [27]Vargas-Albores F, Yepiz-Plascencia G. β-glucan binding protein and its role in shrimp immune response [J]. Aquaculture 2000,191 (1-3):13-21.
    [28]Lagueux M, Perrodou E, Levashina EA, et al. Constitutive expression of a complement-like protein in Toll and JAK gain-of-function mutants of Drosophila [J]. Proc Natl Acad Sci USA 2000,97 (21): 11427-32.
    [29]Peiser L, Mukhopadhyay S, Gordon S. Scavenger receptors in innate immunity [J]. Curr Opin Immunol 2002,14(1):123-128.
    [30]Pearson A, Lux A, Krieger M. Expression cloning of dSR- CI, a class C macrophage -specific scavenger receptor from Drosophila melanogaster [J]. Proc Natl Acad Sci USA 1995,92 (9):
    4056-60.
    [31]Fujita Y, Kurata S, Homma K, et al. A novel lectin from Sarcophaga, Its purification, characterization, and cDNA cloning [J]. J Biol Chem,1998,273 (16):9667-72.
    [32]Vasta GR, Quesenberry M, Ahmed H, et al. C-type lectins and galectins mediate innate and adaptive immune functions: their roles in the complement activation pathway [J]. Dev Comp Immunol 1999, 23:401-420.
    [33]Liu FT, Patterson RJ, Wang JL. Intracellular functions of galectins [J]. Biochim Biophys Acta 2002, 1572 (2-3):263-273.
    [34]Pace K E, Lebestky T, Hummel T, et al. Characterization of a novel Drosophila melanogaster galectin, Expression in developing immune, neural, and muscle tissues [J]. J Biol Chem 2002,277 (15):13091-98.
    [35]Lemaitre B, Reichhart JM, Hoffmann JA. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms [J]. Proc Natl Acad Sci USA 1997,94 (26):14614-19.
    [36]Hoffmann JA, Kafatos FC, Janeway CA, et al. Phylogenetic perspectives in innate immunity [J]. Science 1999,284(5418):1313-18.
    [37]Medzhiotov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity [J]. Nature 1997,388 (6640):394-397.
    [38]Morisato D, Anderson KV. The spatzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo [J]. Cell 1994,76 (4): 677-688.
    [39]Tauszing S, Jouanguy E, Hoffmann JA, et al. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila [J]. Proc Natl Acad Sci U S A 2000,97 (19):10520-25.
    [40]Lemaitre B, Nicolas E, Michaut L, et al. The drosoventral regulatory gene cassette spatzle/ Toll/ cactus control the potent antifungal response in Drosophila adults [J]. Cell 1996,86 (6):973-983.
    [41]Hu X, Yagi Y, Tanji T, et al. Multimerization and interaction of Toll and Spatzle in Drosophila [J]. Proc Natl Acad Sci U S A 2004,101 (25):9369-74.
    [42]Takeuchi O, Akira S. Toll-like receptors: their physiological role and signal transduction system [J]. Int Immunopharmacol 2001,1 (4):625-635.
    [43]Girardin SE, Sansonetti PJ, Philpott DJ. Intracellular vs extracellular recognition of pathogens-common concepts in mammals and flies [J]. Trends Microbiol 2002,10 (4):193-199.
    [44]Krutzik SR, Sieling PA, Modlin RL. The role of Toll-like receptors in host defense against microbial infection [J]. Curr Opin Immunol 2001,13 (1):104-108.
    [45]Engstrom Y. Induction and regulation of antimicrobial peptides in Drosophila [J]. Dev Comp Immunol 1999,23 (4/5):345-358.
    [46]Georgel P, Naitza S, Kappler C, et al. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterical defense and can promote apoptosis [J]. Dev Cell 2001,1 (4): 503-514.
    [47]Stoven S, Ando I, Kadalayil L, et al. Activation of the Drosophila NF-kappaB factor Relish by rapid endoproteolytic cleavage [J]. EMBO Rep 2000,1 (4):387-396.
    [48]Leulier F, Rodriguez A, Khush RS, et al. The Drosophila caspase Dredd is required to resist gram-negative bacterial infection [J]. EMBO Rep 2000,1 (4):353-358.
    [49]Gottar M, Gobert V, Michel T, et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protiein [J]. Nature 2002,416 (6881):640-644.
    [50]De Gregorio E, Spellman PT, Tzou P, et al. The Toll and Imd pathways are the major regulators of the immune response in Drosophila [J]. EMBO J 2002,21:2568-79.
    [51]Bangham J, Jiggins F, Lemaitre B. Insect immunity:the postgenomic era [J]. Immunity 2006,25: 1-5.
    [52]Leulier F, Rodriguez A, Khush RS, et al. The Drosophila caspase Dredd is required to resist gram-negative bacterial infection [J]. EMBO Rep 2000,1:353-58.
    [53]Tzou P, Ohresser S, Ferrandon D, et al. Tissue specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia [J]. Immunity 2000,13:737-748.
    [54]Boutros M, Agaisse H, Perrimon N. Sequential activation of signaling pathwaysduring innate immune responses in Drosophila [J]. Dev Cell 2002,3 (5):711-722.
    [55]Rutschmann S, Jung AC, Hetru C, et al. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila [J]. Immunity 2000,12:569-580.
    [56]Lemaitre B, Reichhart J, Hoffmann JA. Drosophila host defense:differential induction of antimicrobial peptide genes after infection by various classes of microorganisms [J]. Proc Natl Acad Sci USA 1997,94 (26):14614-19.
    [57]Meister M, Richards G. Ecdysone and insect immunity:the maturation of the inducibility of the diptericin gene in Drosophila larvae [J]. Insect Biochem Mol Biol 1996,26:155-160.
    [58]Ligoxygakis P, Bulet P, Reichhart JM. Critical evaluation of the role of the Toll like receptor 18-Wheeler in the host defense of Drosophila [J]. EMBO Rep 2002,3:666-673.
    [59]Lavine MD, Strand MR. Insect hemocytes and their role in immunity [J]. Insect Biochem Mol Biol 2002,32 (10):1295-09.
    [60]Lanot R, Zachary D, Holder F, et al. Postembryonic hematopoiesis in Drosophila [J]. Dev Biol 2001, 230 (2):243-257.
    [61]Gillespie JP, Bailey AM, Cobb B, et al. Fungi as elicitors of insect immune responses [J]. Archives of Insect Biochemist ry and Physiology 2000,44:49-68.
    [62]Zaidman-Remy A, Herve M, Poidevin M, et al. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 2006,24:463-473.
    [63]Kocks C, Cho JH, Nehme N, et al. Eater, a transmenbrane protein mediating phagocytosis of bacterial pathogens in Drosophila [J]. Cell 2005,123 (2):335-346.
    [64]Watson FL, Puttmann-Holgado R, Thomas F, et al. Extensive diversity of Ig-superfamily proteins in the immune system of insects [J]. Science 2005,309 (5742):1874-78.
    [65]Ju JS, Cho MH, Bradee L, et al. A novel 40-kDa protein containing six repeats of an epidermal growth factor-like domain functions as a pattern recognition protein for lipopolysaccharide [J]. J immunol 2006,177 (3):1838-1835.
    [66]De Gregorio E, Spellman PT, Rubin GM, et al. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays [J]. Proc Natl Acad Sci U S A 2001,98 (22): 12590-95.
    [67]Daffre S, Kylsten P, Samakovlis C, et al. The lysozyme locus in Drosophila melanogaster: an expanded gene family adapted for expression in the digestive tract [J]. Mol Gen Genet 1994,242 (2):152-62.
    [68]Brey PT, Lee WJ, Yamakawa M, et al. Role of the integument in insect immunity:epicuticular abrasion and induction of cecropin synthesis in cuticular epithelial cells [J]. Proc Natl Acad Sci U S A 1993,90 (13):6275-79.
    [69]Tzou P, Ohresser S, Ferrandon D, et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia [J]. Immunity 2000,13 (5):737-748.
    [70]Ferrandon D, Jung AC, Criqui M, et al. A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway [J]. EMBO J 1998,17 (5): 1217-27.
    [71]Onfelt Tingvall T, Roos E, Engstrom Y. The imd gene is required for local Cecropin expression in Drosophila barrier epithelia [J]. EMBO Rep 2001,2 (3):239-243.
    [72]Ryu JH, Nam KB, Oh CT, et al. The homeobox gene Caudal regulates constitutive local expression of antimicrobial peptide genes in Drosophila epithelia [J]. Mol Cell Biol 2004,24 (1):172-185.
    [73]Han SH, Ryu JH, Oh CT, et al. The moleskin gene product is essential for Caudal-mediated constitutive antifungal Drosomycin gene expression in Drosophila epithelia [J]. Insect Mol Biol 2004,13 (3):323-27.
    [74]Ritsick DR, Edens WA, McCoy JW, et al. The use of model systems to study biological functions of Nox/Duox enzymes [J]. Biochem Soc Symp 2004,71:85-96.
    [75]Ha EM, Oh CT, Bae YS, et al. A direct role for dual oxidase in Drosophila gut immunity [J]. Science 2005,310 (5749):847-850.
    [76]Csiszar K. Lysyl Oxidase: A Novel Multifunctional Amine Oxidase Family [J]. Prog Nuclei Acid Res Mol Biol 2001,70:1-32.
    [77]Kagan HM, Li W. Lylyl oxidase: properties, specificity and biological roles inside and outside of the cell [J]. Cell Biochem 2003,88 (4):660-672.
    [78]Hein S, Yamamoto SY, Okazaki K, et al. Lysyl oxidases: expression in the fetal membranes and placenta [J]. Placenta 2001,22 (1):49-57.
    [79]Tang C, Klinman J P. The catalytic function of bovine lysyl oxidase in the absence of copper [J]. J Biol Chem 2001,276 (33):30575-78.
    [80]Lucero HA, Kagan HM. Lysyl oxidase:an oxidative enzyme and effector of cell function [J]. Cell Mol Life Sci 2006,63 (19-20):2304-16.
    [81]Kagan HM, Raghavan J, Hollander W, et al. Changes in aortic lysyl oxidase activity in diet-induced atherosclerosis in the rabbit [J]. Arterioscler Thromb Vasc Biol 1981,1:287-291.
    [82]Chanoki M, Ishii M, Kobayashi H, et al. Increased expression of lysyl oxidase in skin with scleroderma [J]. British Journal of Dermatology 1995,133 (5):710-715.
    [83]Kagan HM. Lysyl oxidase: mechanism, regulation and relationship to liver fibrosis [J]. Pathol Res Pract 1994,190 (9-10):910-919.
    [84]Thomas R, Trompeter R, Duffy P, et al. Congenital cutis laxa and lysyl oxidase deficiency [J]. Clin Genet 1997,51 (2):109-114.
    [85]Poyne AS, Gitlin BD. Functional Expression of the Menkes Disease Protein Reveals Common Biochemical Mechanisms Among the Copper- transporting P-type ATPases [J]. Bio Chem 1998, 273:3765-70.
    [86]Leigh Ackland M, Anikijenko Peter, Michalczyk Agnes, et al. Expression of Menkes Copper-transporting ATPase, MNK, in the Lactating Human Breast:Possible Role in Copper Transport into Milk [J]. Histochemistry Cytochemistry 1999,47 (12):1553-61.
    [87]Ha VT, Marshall MK, Elsas LJ, et al. A patient with Ehlers-Danlos syndrome type VI is a compound heterozygote for mutations in the lysyl hydroxylase gene [J]. Clin Invest 1994,93 (4): 1716-21.
    [88]Kagan HM, Li W. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell [J]. J Cell Biochem 2003,88 (4):660-672.
    [89]Payne SL, Fogelgren B, Hess AR, et al. Lysyl oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide-mediated mechanism [J]. Cancer Res 2005,65 (24): 11429-36.
    [90]Ohkawa K, Fujii K, Nishida A, et al. Lysyl oxidase-catalyzed cross-linking and insolubilization reactions of Lys-containing polypeptides and synthetic adhesive proteins [J].Biomacromolecules 2001,2(3):773-779.
    [91]Peyrol S, Raccurt M, Gerard f, et al. Lysyl oxidase gene expression in the stromal reaction to in situ and invasive ductal breast carcinoma [J]. Am J Pathol 1997,150 (2):497-507.
    [92]Giampuzzi M, Botti G, DiDuca M, et al. Lysyl oxidase activates the transcription activity of human collagene Ⅲ promoter: Possible involvement of Ku antigen [J]. J Biol Chem 2000,275 (46): 36341-49.
    [93]Saito H, Papaconstantinou J, Sato H, et al. Regulation of a novel gene encoding a lysyl oxidase-related protein in cellular adhesion and senescence [J]. J Bio Chem 1997,272 (13): 8157-60.
    [94]Kim Y, Boyd CD, Csiszar K. A new gene with sequence and structural similarity to the gene encoding human lysyl oxidase [J]. J Bio Chem 1995,270 (13):7176-82.
    [95]Ren C, Yang G, Timme TL, et al. Reduced lysyl oxidase messenger RNA levels in experimental and human prostate cancer [J]. Cancer Res 1998,58 (6):1285-90.
    [96]Janos Molnar, Zsuzsanna Ujfaludi, Sheri F. T. Fong, et al. Drosophila Lysyl Oxidases Dmloxl-1 and Dmloxl-2 Are Differentially Expressed and the Active DmLOXL-1 Influences Gene Expression and Development[J]. J Biol Chem 2005,280 (24):22977-85.
    [97]Liu G, Nellaiappan K, Kagan HM. Irreversible inhibition of lysyl oxidase by homocysteine thiolactone and its selenium and oxygen analogues.Implications for homocystinuria [J].J Biol Chem 1997,272:32370-77.
    [98]Molnar J, Fong KS, He QP, et al. Structural and functional diversity of lysyl oxidase and the LOX-like proteins [J]. Biochim Biophys Acta 2003,1647 (1-2):220-224.
    [99]Saito H, Papaconstantinou J, Sato H, et al. Regulation of a novel gene encoding a lysyl oxidase-related protein in cellular adhesion and senescence [J]. J Biol Chem 1997,272 (13): 8157-60.
    [100]Jourdan-Le Saux C, Tomsche A, Ujfalusi A, et al. Central nervous system, uterus, heart, and leukocyte expression of the LOXL3 gene, encoding a novel lysyl oxidase-like protein [J]. Genomics 2001,74 (2):211-218.
    [101]Maki JM, Kivirikko KI. Cloning and characterization of a fourth human lysyl oxidase isoenzyme [J].Biochem J 2001,355(Pt2):381-387.
    [1]刘小平.利用果蝇模型研究帕金森病相关基因α-synuclein, PINK1和LRRK2的作用机制[D].中南大学:博士学位论文.2007.
    [2]朱定良,译.果蝇实验手册[M].上海:复旦大学出版社.1987.
    [3]王燕妮,肖谷田,毕惠祥,等.恶性疟原虫(海南株)cDNA表达文库的构建及初步鉴定[J].中国寄生虫学和寄生虫病杂志1997,15(1):21-25.
    [4]Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. Construction and charactorozation of a full length enriched and a 5'end enriched cDNA library [J]. Gene 1997,200:149-156.
    [5]Zhu YY, Machleder EM, Chenchik A, et al. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction [J]. Biotechniques 2001,30 (4): 892-897.
    [6]Clontech laboratories, inc. SMART cDNA Library Construction Kit User Manual 2001, Catalog:k1051-1, p1-51.
    [7]Chenchik A, Zhu YY, Diatchenko L, et al. Generation and use of high-quality cDNA from small amounts of total RNA by SMART PCR. In Gene Cloning and Analysis by RT-PCR (BioTechniques Books, MA) 1998, p305-319.
    [8]Janos Molnar, Zsuzsanna Ujfaludi, Sheri F. T. Fong, et al. Drosophila Lysyl Oxidases Dmloxl-1 and Dmloxl-2 Are Differentially Expressed and the Active DmLOXL-1 Influences Gene Expression and Development[J]. J Biol Chem 2005,280 (24):22977-85.
    [1]Nicolas Vodovar, Marisa Vinals, Peter Liehl, et al. Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species [J]. Proc Natl Acad Sci U S A 2005,102 (32):11414-19.
    [2]Marie Gottar, Vanessa Gobert, Matskevich AA, et al. Dual Detection of Fungal Infections in Drosophila via Recognition of Glucans and Sensing of Virulence factors [J]. Cell 2006,127 (7): 1425-37.
    [3]Bruno Lemaitre, Jean-Marc Reichhart, Jules A Hoffmann. Drosophila host defense: Differential induction of antimicrobial peptide genes after infection by various classes of microorganisms [J]. Proc Natl Acad Sci U S A 1997,94 (26):14614-19.
    [4]Ennio De Gregorio, Sung-Jun Han, Won-Jae Lee, et al. An Immune-Responsive Serpin Regulates the Melanization Cascade in Drosophila [J]. Developmental Cell 2002,3:581-592.
    [5]A. Levitin, A. Marcil, G. Tettweiler, et al. Drosophila melanogaster Thor and Response to Candida albicans Infection [J]. EUKARYOTIC CELL 2007, Apr:658-663.
    [6]Michael Boutros, Herve'Agaisse, Norbert Perrimon. Sequential Activation of Signaling Pathways during Innate Immune Responses in Drosophila [J]. Developmental Cell 2002,3:711-722.
    [7]Chang CI, Pili-Floury S, Herve'M, et al. A Drosophila pattern recognition receptor contains a peptidoglycan docking groove and unusual L,D-carboxypeptidase activity [J]. PLoS Biol 2004,2 (9): e277,1293-1302.
    [8]袁亚男,刘文忠.实时荧光定量PCR技术的类型、特点与应用[J].中国畜牧兽医2008,35(3):27-30.
    [9]林玲.定量PCR技术的研究进展[J].国外医学遗传学分册1999,22(3):116-120.
    [10]Heid CA, Stevens J, Livak KJ, et al. Real time quantitative PCR [J]. Genome Res 1996,6(10): 986-994.
    [11]Giulietti A, Overbergh L, Valckx D, et al. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression [J]. Methods 2001,25 (4):386-401.
    [12]邓少丽,罗阳,陈伟.荧光定量PCR技术及其在临床上的应用[J].国外医学临床生物化学与检验学分册2002,23(5):301-303.
    [13]刘向国,谢国明.荧光定量PCR技术及其在医学中的应用[J].医疗卫生装备2002,5:37-39.
    [14]Walker NJ. Real time and quantitative PCR: applications to mechanism based toxicology [J] Biochem Mol Toxicol 2001,15 (3):121-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700