LOCH仿人机器人系统设计实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿人机器人是机器人研究领域的热点。结构通用、功能完备、费用经济的仿人机器人系统将为这一领域的研究提供基础的实验平台,从而推动相关技术和产业化的发展。
     本文探讨了仿人机器人系统LOCH的设计与实现,对其软硬件结构做了整体的简要介绍。基于可视化动力学仿真技术,设计并建立了面向LOCH机器人样机的仿真平台,为控制算法提供高效、可移植的实验基础。同时根据基于模型的双足步行控制思想,提出并实现了一种统一的步态轨迹规划算法,以支持多种步行模式用于高层的行为控制;最后,利用先进的机器人应用程序框架技术,设计并开发了组件化的遥操作单元,为用户层面的控制接口提供了界面友好、功能强大、人机交互式的解决方案。
     在样机系统所实现的仿真平台、步行算法、遥操作单元及其它软硬件部分的支持下,一系列的仿真及实际实验证明,该系统实现了仿人机器人的基本行为与功能,设计总体上实现了通用性、完备性、经济性的目标,为进一步的仿人机器人系统技术研究提供了必要的积累与坚实的基础。
Humanoid robot is an exciting field of robotics. It is essential to build a universal, complete and low cost platform to facilitate related research and even the development of whole industry.
     This dissertation focuses on the design and implementation of a humanoid prototype, LOCH. First, a brief introduction about the overall structure is given. Then, for efficient and compatible experiment, a LOCH-oriented simulator is designed and built based on visual dynamics simulation technique. Moreover, according to model-based concept for biped walking, unified trajectory planning algorithm is presented and implemented, which supports various gaits and walking modes for behavior control. Finally, utilizing advanced application framework for robotics software, a unit for remote control is developed and componentized to provide friendly, powerful and interactive interface for users.
     Supported by above features and other parts of LOCH prototype, a series of experiment, both virtual and real, are carried out to validate the universality, integrity and economy of LOCH robot system. The research and design have laid solid foundation for further studies on humanoids and other relevant studies.
引文
[1]梶田秀司.仿人机器人管贻生译.北京:清华大学出版社. 2007:2-3.
    [2] K.Hirai, M.Hirose, Y.Haikawa, T.Takenaka. The Development of Honda Humanoid Robot[C]. Proc. of the 1998 ICRA. 1998, 1321-1326.
    [3] Fumihide Tanaka, Hirotaka Suzuki. Dance Interaction with QRIO: A Case Study for Non-boring Interaction by using an Entrainment Ensemble Model[C]. Proceedings of the 2004 IEEE International Workshop on Robot and Human Interactive Communication. 2004, 419-424.
    [4] Kaneko.K, Kanehiro.F, Kajita.S, Hirukawa.H, Kawasaki.T, Hirata.M, Akachi.K, Isozumi.T. Humanoid robot HRP-2[C]. Proceedings of IEEE ICRA2004. 2004, 1083-1090.
    [5] Jung-Yup Kim, Ill-Woo Park, Jungho Lee, Min-Su Kim, Baek-kyu Cho, Jun-Ho Oh. System Design and Dynamic Walking of Humanoid Robot KHR-2[C]. Proceedings of IEEE International Conference on Robotics and Automation. 2005, 1431-1436.
    [6] I.W.Park, J.Y.Kim, J.Lee, J.H.Oh. Mechanical Design of Humanoid Robot Platform KHR-3(KAIST Humanoid Robot- 3(HUBO)[C]. Proc. IEEE-RAS Int. Conference on Humanoid Robots. 2005, 321-326.
    [7] Qiang Huang, Yokoi K, Kajita S, Kaneko K, Arai H, Koyachi N, Tanie K. Planning walking patterns for a biped robot[J]. Robotics and Automation, IEEE Transactions. 2001, 17(3), 280-289.
    [8] Vukobratovic.M, B.Borovac, D.Surdilovic. Zero-Moment Point– Proper Interpretation and Application in Gait Control[J]. Intelligent Journal Engineering and Automation Problems. 2002, 3, 3-14.
    [9] Miomir Vukobratovic, Branislav Borovac. Zero-Moment Point– Thirty Five Years ofits Life[J]. International Journal of Humanoid Robotics. 2004, 1(1), 157-173.
    [10] Miomir Vukobratovic, Branislav Borovac. Note on Zero-Moment Point– Thirty Five Years of its Life[J]. International Journal of Humanoid Robotics. 2005, 2(2), 225-228.
    [11] Miomir Vukobratovic, Branislav Borovac. ZMP: A Review of Some Basic Misunderstandings[J]. International Journal of Humanoid Robotics. 2006, 3(2), 153-175.
    [12] Koichi Nishiwaki, Satoshi Kagami. High Frequency Walking Pattern Generation based on Preview Control of ZMP[C]. Proceedings of the 2006 IEEE International Conference on Robotics and Automation. 2006, 2667-2672.
    [13]杨东超,汪劲松,刘莉,陈恳.基于ZMP的拟人机器人步态规划.机器人. 2001, 23(6), 504-508.
    [14] Jung-Yup Kim, Ill-Woo Park, Jun-Ho Oh. Walking Control Algorithm of Biped Humanoid Robot on Uneven and Inclined Floor[J]. Journal of Intelligent Robot System. 2007 48, 457-484.
    [15] Armstrong.D.M. Review lecture: The supraspinal control of mammalian locomotion[J]. Journal of Physiology. 1988, 405, 1-37.
    [16] Beer R.D., Ritzmann R.E., McKenna T.M. Biological neural networks in invertebrate neuroethology and robotics[M]. Academic Press. 1993.
    [17] Auke Jan Ijspeert. Central pattern generators for locomotion control in animals and robots: a review[J]. Preprint of Neural Networks. 2008, 21(4), 642-653.
    [18] Seiichi Miyakoshi, Gentaro Taga, Yasuo Kuniyoshi, Akihiko Nagakubo. Three Dimensional Bipedal Stepping Motion using Neural Oscillators– Towards Humanoid Motion in the Real World[C]. Proceedings of the 1998 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems. 1998, 84-89.
    [19] Jiang Shan, Fumio Nagashima. Neural Locomotion Controller Design and Implementation for Humanoid Robot HOAP-1[C]. 20th Annual Conference of the RoboticsSociety of Japan– Celebrating the RSJ’s 20th Anniversary. 2002.
    [20] Huang W, Chew CM, Hong GS. Coordination between Oscillators: An important feature for robust bipedal walking[C]. Proceedings of IEEE International Conference on Robotics and Automation. 2008, 3206-3212.
    [21] John Demiris. Movement Imitation Mechanisms in Robots and Humans[D]. Department of Artificial Intelligence, University of Edinburgh. 1999.
    [22] T.McGeer. Passive dynamic walking[J]. The International Journal of Robotics Research. 1990, 3, 1640-1645.
    [23] S.H.Collins, M.Wisse, A.Ruina. A Three-Dimensional Passive Dynamic Walking Robot with Two Legs and Knees[J]. International Journal of Robotics Research. 2001, 20(7), 607-615.
    [24] R.Tedrake, T.W.Zhang, H.S.Seung. Stochastic Policy Gradient Reinforcement Learning on a Simple 3D Biped[C]. Proceedings of IEEE RSJ International Conference on Intelligent Robots and Systems. 2004, 2849-2854.
    [25] Daan Hobbelen, Tomas de Boer, Martijn Wisse, Institute of Electrical and Electronics Engineers, Inc. System overview of bipedal robots Flame and Tulip: tailor-made for Limit Cycle Walking[C]. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2008, 2091-2610.
    [26] Jianjuen Hu, Jerry Pratt, Gill Pratt. Adaptive Dynamic Control of a Bipedal Walking Robot with Radial Basis Function Neural Networks[C]. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 1998, 400-405.
    [27] Rolf Pfeifer, Max Lungarella, Fumiya Iida. Self-Organization, Embodiment, and Biologically Inspired Robotics[J]. Science. 2007, 318(5853), 1088-1093.
    [28] Christopher M. Bishop. Pattern Recognition and Machine Learning[M]. Springer Press. 2006.
    [29] Richard S. Sutton, Andrew G. Barto. Reinforcement Learning: An Introduction[M]. The MIT Press, Cambridge, MA. 1998.
    [30] de Garis. H. GenNETS: Genetically programmed neural net[C]. Proceedings of IJCNN91 Singapore, Int. Joint Conf. on Neural Networks. 1991, 1391-1396.
    [31] Xie M, Zhong Z.W, Zhang L, Xian L.B, Wang L, Yang H.J, Song C.S and Li J. A Deterministic Way of Planning and Controlling Biped Walking of Low Cost Humanoid (LOCH) Robot[J]. Industrial Robot– An International Journal. 2009, 36(4), 314-325.
    [32] L.B. Xian, M.Xie. Design of Human-Like Leg-Foot for Human-Assisted Biped Walking[C]. Proceedings of International Conference on Intelligent Robotics and Applications. 2008, 520-527.
    [33] Xie M, Wang L, Xian L.B, Li J, Yang H.J, Song C.S and Zhang L. Developing hardware capability for mobile manipulation by low-cost humanoid robot (LOCH)[J]. Industrial Robot– An International Journal. 2009, 36(5), 428-440.
    [34] Wang L. Design of Human-Like Hand-arm for Human Assisted Manipulation[D]. School of Mechanical & Aerospace Engineering, Nanyang Technological University. 2009.
    [35] Wang L, Xie M, Zhong, Z.W, Wang C, Zhang L. Power Analysis and Structure Optimization in the Design of a Humanoid Robot[C]. Proceedings of International Conference on Climbing and Walking Robots. 2008.
    [36] Guodong Chen, Zeyang Xia, Xie Ming, Sun Lining, Junhong Li, Zhijiang Du. Camera Calibration based on Extended Kalman Filter using Robot’s Arm Motion[C]. Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 2009, 1839-1844.
    [37] Jeff Craighead, Robin Murphy, Jenny Burke and Brian Goldiez. A Survey of Commercial & Open Source Unmanned Vehicle Simulators[C]. Proceedings of International Conference on Robotics and Automation.
    [38] Oliver Michel. Cyberbotics Ltd– WebotsTM: Professional Mobile Robot Simulation[J]. International Journal of Advanced Robotics Systems. 2004 1(1).
    [39] Kyle Johns, Trevor Taylor. Professional Microsoft Robotics Studio[M]. Wrox Press. 2008.
    [40] Fumio Kanehiro, Hirohisa Hirukawa, Shuuji Kajita. OpenHRP: Open Architecture Humanoid Robotics Platform[J]. The International Journal of Robotics Research. 2004, 23(2), 155-165.
    [41] CAO Xi, ZHAO Qun-fei, MA Pei-sun. Humanoid Robot 3-D Motion Simulation for Hardware Realization[J]. Journal of Donghua University (Eng. Ed.). 2007, 24(6), 713-722.
    [42]孙毅军,余蕾斌,邱长伍,曹其新.基于Java3D的仿人型机器人三维仿真.上海交通大学学报. 2007, 41(8), 1287-1291.
    [43] GuoQing Zhang, Ming Xie, Hang Yin, Lei Wang, Hejin Yang. Planning and Control of Biped Walking along Curved Paths on Unknown and Uneven Terrain[C]. International Conference on Intelligent Robotics and Application, Springer Lecture Notes in Artificial Intelligence. 2009, 1032-1043.
    [44]王剑,绳涛,马宏绪.仿人机器人逆运动学在线求解方法研究[J].控制工程. 2008.
    [45]尹航,言勇华.基于MRDS仿人机器人仿真平台设计[J].上海交通大学学报(评审中).
    [46]尹航,言勇华.基于倒立臂的双足行走步态规划及动力学仿真[J].机电一体化(已录用).
    [47] J. Denavit, R. S. Hartenberg. A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices [J]. Journal of Applied Mechanics. 1955, 215-221.
    [48] Saeed B.Niku.机器人学导论——分析、系统及应用孙富春,朱纪洪,刘国栋译.北京:电子工业出版社. 2004.
    [49]熊有伦,丁汉,刘恩沧.机器人学.北京:机械工业出版社. 1993.
    [50] Stuart Russel, Peter Norvig. Artificial Intelligence– A Modern Approach, Second Edition[M]. Prentice Hall Press. 2003.
    [51] Sara Morgan. Programming Microsoft Robotics Studio[M]. Microsoft Press A Division of Microsoft Corporation. 2008.
    [52] David J.C. Mackay. Information Theory, Inference, and Learning Algorithms[M]. Cambridge University Press. 2005.
    [53] Tom M. Mitchell. Machine Learning[M]. McGraw-Hill Press. 1997.
    [54]李立国,赵明国,张乃尧.平面双足机器人虚拟斜坡行走步态生成算法研究.机器人. 2009, 31(1), 77-81.
    [55]王旭阳,吕恬生,徐兆红,张培艳.类人机器人复杂运动的状态转换规划方法研究.中国机械工程. 2007, 18(6), 659-662.
    [56]付成龙,陈恳,王健美,黄元林.动态步行双足机器人THR-I的设计与实现.机器人. 2008, 30(2), 123-129.
    [57]夏泽洋,陈恳,熊璟,付成龙.仿人机器人运动规划研究进展.高技术通讯. 2007, 17(10), 1092-1099.
    [58] Philippe Coiffet. An Introduction to Bio-Inspired Robot Design[J]. International Journal of Humanoid Robotics. 2005, 2(3), 229-276.
    [59] Christine Chevallereau, Dalila Djoudi, Jessy W.Grizzle. Stable Bipedal Walking With Foot Rotation Through Direct Regulation of the Zero Moment Point[J]. IEEE Transactions on Robotics. 2008, 24(2), 390-401.
    [60] Bum-Joo Lee, Daniel Stonier, Yong-Duk Kim, Jeong-Ki Yoo, Jong-Hwan Kim. Modifiable Walking Pattern of a Humanoid Robot by Using Allowable ZMP Variation[J]. IEEE Transactions on Robotics. 2008, 24(4), 917-925.
    [61] A Biologically Inspired Biped Locomotion Strategy for Humanoid Robots:Modulation of Sinusoidal Patterns by a Coupled Oscillator Model[J]. IEEE Transactions on Robotics. 2008, 24(1), 185-191.
    [62] Gustavo Arechavaleta, Jean-Paul Laumond, Halim Hicheur, Alain Berthoz. An Optimality Principle Governing Human Walking[J]. IEEE Transactions on Robotics. 2008, 24(1), 5-14.
    [63] Kojiro Matsushita, Hiroshi Yokoi, Hitoshi Iba. Embodiment of Legged Robots Emerged in Evolutionary Design: Pseudo Passive Dynamic Walkers– Frontiers in Evolutionary Robotics[M]. I-Tech Education and Publishing, 2008.
    [64] B.W.Verdaasdonk, H.F.J.M.Koopman, F.C.T.van der Helm. Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control[J]. Biological Cybernetics. 2009, 101, 49-61.
    [65] Jin’ichi Yamaguchi, Eiji Soga, Sadatoshi Inoue, Atsuo Takanishi. Development of a Bipedal Humanoid Robot Control Method of Whole Body Cooperative Dynamic Biped Walking[C]. Proceedings of IEEE International Conference on Robotics and Automation. 1999, 368-374.
    [66] Kenji KANEKO, Fmio KANEHIRO, Shuuji KAJITA, Kazuhiko YOKOYAMA, Kazuhiko AKACHI, Toshikazu KAWASAKI, SHIgehiko OTA, Takakatsu ISOZUMI. Design of Prototype Humanoid Robotics Platform for HRP[C]. Proceedings of IEEE/RSJ Intl. Conference on Intelligent Robots and Systems. 2002, 2431-2436.
    [67] Carl F.DiSalvo, Francine Gemperle, Jodi Forlizzi, Sara Kiesler. All robots are not created equal: the design and perception of humanoid robot heads[C]. Proceedings of the 4th conference on Designing interactive systems: processes, practices, methods, and techniques. 2002, 321-326.
    [68] Shan.J, Nagashima.F. Neural locomotion controller design and implementation for humanoid robot HOAP-1[C]. Proceedings of the 20th Annual Conference of the RoboticsSociety of Japan. 2002.
    [69] Jefferson Coelho, Justus Piater, Roderic Grupen. Developing haptic and visual perceptual categories for reaching and grasping with humanoid robot[J]. Robotics and Autonomous Systems. 2001, 37(2-3), 195-218.
    [70] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kazuhito Yokoi, Hirohisa Hirukawa. The 3D Linear Inverted Pendulum Mode: A simple modeling for a biped walking pattern generation[C]. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2001, 239-246.
    [71] Filipe M. Silva, J.A. Tenreiro Machado. Energy Analysis During Biped Walking[C]. Proceedings of IEEE International Conference on Robotics and Automation. 1999, 59-64.
    [72] Fumihiko Asano, Masaki Yamakita, Norihiro Kamamichi, Zhi-Wei Luo. A Novel Gait Generation for Biped Walking Robots Based on Mechanical Energy Constraint[J]. IEEE Transactions on Robotics and Automation. 2004, 20(3), 565-573.
    [73] Tao Geng, Bernd Porr, Florentin W?rg?tter. Fast Biped Walking with a Sensor-driven Neuronal Controller and Real-time Online Learning[J]. The International Journal of Robotics Research. 2006, 25(3), 243-259.
    [74] Changjiu Zhou, Qingchun Meng. Dynamic balance of a biped robot using fuzzy reinforcement learning agents[J]. Fuzzy Sets and Systems. 2003, 134(1), 169-187.
    [75] Sergei Poskriakov. Humanoid Balance Control: A Comprehensive Review[D]. University of Geneva. 2006.
    [76] Shuuji Kajita, Takashi Nagasaki, Kazuhito Yokoi, Kenji Kaneko, Kazuo Tanie. Running Pattern Generation for a Humanoid Robot[C]. Proceedings of IEEE International Conference on Robotics and Automation. 2002, 2755-2761.
    [77]王鹏飞,黄博,孙立宁.四足仿生机器人稳定性判定方法[J].哈尔滨工业大学学报. 2008, 40(7), 1063-1066.
    [78]于秀丽,魏世民,廖启征.仿人机器人发展及其技术探索[J].机械工程学报. 2009.
    [79]朱志斌,王岩,陈兴林.一种双足机器人实时步态规划方法及相关数值算法[J].机器人. 2008, 30(6), 521-527.
    [80]吴伟国,郎跃东,梁风.类人猿型机器人“GOROBOT”的可变ZMP双足动步行仿真[J].系统仿真学报. 2007, 19(17), 4000-40003.
    [81] Marco Zaratti, Marco Fratarcangeli, Luca Iocchi. A 3D Simulator of Multiple Legged Robots Based on USARSim[M]. Springer Berlin. 2007.
    [82] Martin Friedmann, Karen Petersen, Oskar von Styk. Adequate motion simulation and collision detection for soccer playing humanoid robots[J]. Robotics and Autonomous Systems. 2009, 57(8), 786-795.
    [83] Takehito Kikuchi, Kunihiko Oda, Junji Furusho. Development of Leg-Robot for Simulation of Spastic Movement with Compact MR Fluid Clutch[C]. IEEE International Conference on Robotics and Automation. 2009, 1903-1908.
    [84] Auke Jan Ijspeert, Alessandro Crespi, Jean-Marie Cabelguen. Simulation and robotics studies of salamander locomotion– Applying neurobiological principles to the control of locomotion in robots[J]. Neuroinformatics. 2005, 3(3), 171-195.
    [85] Hod Lipson, Josh Bongard, Victor Zykov, Evan Malone. Evolutionary Robotics for Legged Machines: From Simulation to Physical Reality[J]. Intelligent Autonomous System. 2006, 9, 11-18.
    [86] Gen Endo, Jun Morimoto, Takamitsu Matsubara, Jun Nakanishi, Gordon Cheng. Learning CPG-based Biped Locomotion with a Policy Gradient Method: Application to a Humanoid Robot[J]. The International Journal of Robotics Research. 2008, 27(2), 213-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700