纤维悬浮流中纤维取向的理论研究及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬浮流动在自然界及工业生产和日常生活中十分普遍。而纤维悬浮流作为一种理论模型,可以用来模拟多种包含细长结构悬浮颗粒的流动,如造纸工业的纸浆流动,向列型的液晶态物质流动,以及一大类的具有细长分子链结构的聚合物的溶液流动。由于纤维(特指细长结构的悬浮颗粒)不同于球状颗粒,其结构具有很强的空间方向性,因而当其悬浮在流场中时将使悬浮流场表现出多种非各向同性效应,如很强的拉伸粘性,第一和第二法向应力差等非牛顿流体特性。对这些性质的研究有着非常重大的科学和生产意义。从纤维悬浮流的微观流动结构出发来研究悬浮流的宏观平均性质是一种最根本的方法。而查明纤维在各种悬浮流场中的运动方式,便是最基本的问题之一。本文便着重于研究纤维在悬浮流中的转动取向问题。
     纤维在均匀Stokes流场中的转动满足著名的Jeffery方程。在简单剪切流动情形下,Jeffery(1922)给出了此方程的解,发现纤维在流场中作周期性转动。而本文通过扩充了Jeffery的结果,给出了纤维在一般二维流场中转动的解析表达式。发现纤维的转动有两种模式,一种是如在简单剪切流场中作周期性转动,而另一种则是渐近趋向于特定角度。文中给出了相应的周期与渐近角度方向,同时,给出了一个判别式来判定纤维的转动模式。只要给定流场的局部应变率,便可立刻判定纤维的转动状态,周期或渐近方向。
     纤维悬浮流的各种流变性质与纤维的取向分布函数直接相关。取向分布函数是为了在系综平均过程中给出悬浮流的宏观性质而引入的,其表示纤维在转动过程中在各空间方向出现的可能性。对于取向分布的三种情形:无扩散效应,弱扩散效应以及强扩散效应,文中三种不同的方法进行了研究。在无扩散情形下,首先证明了纤维的转动方程与控制取向分布的Fokker-Planck在弱解条件下等价,然后通过分析变换,直接用前面求得的纤维转动解析表达式构建了取向分布函数。在强扩散情形下,巧妙结合纤维转动解析表达式,用谱方法求解了Fokker-Planck方程。因为采用球面调和函数作为基,有效避免了在球坐标中用其他方法求解(差分法或有限元方法)时所遇到的奇点问题。与差分法的比较求解证明,所提出的谱方法具有高精度,高效率等诸多优点。由于谱方法在弱扩散情形下收敛性变差,为解决此情形下纤维取向分布的高效求解问题,而采用正则摄动法,给出了在弱扩散条件下取向分布的一阶近似解。所提出的三种方法,系统完整地解决了纤维取向分布的高效求解问题。
     对在纤维悬浮流中若干相关的重要问题,扩散系数,附加应力以及取向分布与流场的耦合求解等,文中也给出了相应的研究成果。
     本文的研究成果,对于更清楚了解纤维在各种流动中的转动状态,提示相关的流变学机理,以及结合相应的本构关系来数值求解纤维悬浮流等方面,都有着重要贡献。
Suspension flows are very popular in industries and daily life. And fiber suspen-sion flow is a model for the flow in which slender bodies suspend, such as the pulpflow, nematic liquid crystal flow, and abundant polymer flows. Fiber which standsfor slender particulate is different from spherical particulate, since fiber is orientablewhile the latter is isotropic. Fiber suspension flow always show non-isotropic proper-ties, such as huge extensional viscosity, the first normal stress difference and the secondnormal stress difference, which are among the various peculiar properties of the Non-Newtonian fluid. It is significant to research such rheological properties. Finding outthe micro flow structure of the suspensions is rudimental for the study of the macroproperties of the suspensions. The subject of this thesis focuses on the fiber orientationin the suspension flows.
     The rotation of a fiber is depicted by the well-known Jeffery equation. Jeffery (1922)have solved the equation in a simple shear flow. He found that the fiber rotates period-ically in such flow. In the thesis, the solution of Jeffery equation in general 2D flows isobtained, which covers Jeffery's result for the simple shear flow. It is found that thereare two modes for the fiber's rotation, periodical and asymptotical. A discriminant ispresented in the thesis to judge whether a fiber will rotate periodically or asymptoti-cally run to a specific direction in a flow. The expressions for the period and for theasymptotical direction have been given also.
     The apparent properties of fiber suspension flow can be derived from the contribu-tion of all the fiber orientation through the ensemble average method. In the method,the fiber orientation distribution is introduced, which describes the probability of a fiberorientates in certain direction. According to the different effects of diffusion, three meth-ods have been developed to deal with the orientation distribution. Under no diffusioncircumstance, the solution of the orientation distribution is derived from the analyti-cal solution of the Jeffery equation. Under strong diffusion circumstance, a spectralmethod which ingeniously utilizes the analytical solution of the Jeffery equation is de-veloped. The spectral method has high computational efficiency and high precision, in the same time, it avoids the singularity problem which is inevitable for the finitedifference method or the finite element method to solve the Fokker-Planck equationin spherical coordinates. Under weak diffusion circumstance, the spectral method isnot feasible because of the increasing of computational errors. A regular perturbationmethod is developed under such circumstance, which is suitable for weak diffusionproblem. The three methods, as a whole, have efficiently and completely solved theorientation distribution problem.
     Several important topics in the research of fiber suspension flow, i.e., diffusivity, ad-ditional stress, and the coupling solution of the orientation distribution and flow field,are discussed in the thesis also.
     The achievement of the thesis contributes the understanding of the movement offiber in various flows, it gives clues to reveal the complicated rheology of suspensionflow, it also can be used to numerical simulation when combined with suitable consti-tutive equations about fiber suspension flow.
引文
Advani, S. G. and Tucker Ⅲ, C. L. The use of tensors to describe tand rpedict fiber orientation in short fiber composites. J. Rheol., 31(8): 751-784, 1987.
    Advani, S. G. and Tucker Ⅲ, C. L. Closure approximations for three-dimensional structure tensors. J. Rheol., 34(3): 367-386, 1990.
    Altan, M. C. and Rao, B. N. Closed-form solution for the orientation field in a centergated disk. J. Rheol., 39(3): 581-599, 1995.
    Barbosa, S. E. and Bibbo, M. A. Fiber motion and rheology of suspensions with uniform fiber orientation. J. Polym. Sci., Part B: Polym. Phys., 38: 1788-1799, 2000.
    Barnes, H. A. A Handbook of Elementary Rheology. University of Wales, Institute of Non-Newtonian Fluid Mechanics, Wales, 2000.
    Barnes, H. A., Hutton, J. F. and Waiters, K. An Introduction to Rheology. Elsevier, Amsterdam, 1989.
    Batchelor, G. K. Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech., 44(3): 419-440, 1970a.
    Batchelor, G. K. The stress system in a suspension of force-free aprticles. J. Fluid Mech., 41(3): 545-570, 1970b.
    Batchelor, G. K. The stess generated in a non-dilute suspension of elongated particles by pure straining motion. J. Fluid Mech., 46: 813-829, 1971.
    Batchelor, G. K. Developments in microhydrodynamics. In Koiter, W. T., editor, Theoretical and Applied Mechanics, pages 33-55. North-Holland, Amsterdam, 1977. Proceedings of the 14th IUTAM congress, Delft, the Netherlands.
    Becraft, M. L. and Metzner, A. B. The rheology, fiber orientation, and processing behavior of fiber-filled fluids. J. Rheol., 36(1): 143-174, 1992.
    Bernstein, O. and Shapiro, M. Direct determination of the orientation distribution function of cylindrical particles immmersed in laminar and turbulent shear flows. J. Aerosol Sci., 25(1): 113-136, 1994.
    Bird, R. B., Armstrong, R. C. and Hassager, O. Dynamics of Polymeric Liquids. Volume 1: Fluid Mechanics. Wiley, New York, second edition, 1987a.
    Bird, R. B., Hassager, O., Armstrong, R. C. and Curtiss, C.F. Dynamics of Polymeric Liquids. Volume 2: Kinetic Theory. Wiley, New York, second edition, 1987b.
    Brady, J. F. and Bossis, G. Stokesian dynamics. Annu. Rev. Fluid Mech., 20: 111-157, 1988.
    Bretherton, F. P. The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech., 14: 284-304, 1962.
    Chaouche, M. and Koch, D. L. Rheology of non-Brownian rigid fiber suspensions with adhesive contacts. J. Rheol., 45(2): 369-382, 2001.
    Chen, S. B. and Jiang, L. Orientation distribution in a dilute suspension of fibers subject to simple shear flow. Phys. Fluids, 11(10): 2878-2890, 1999.
    Chen, S. B. and Koch, D. L. Rheology of highly aligned menatic liquid crystals. J. Non-Newtonian Fluid Mech., 69: 273-292, 1997.
    Chhabra, R. P. and Richardson, J. F. Non-Newtonian FLow in the Process Industries: Fundamentals and Engineering Applications. Butterworth-Heinemann, Oxford, 1999.
    Chinesta, F., Chaidrou, G. and Poitou, A. On the solution of Fokker-Planck equations in steady recirculaing flows involing short fiber suspensions. J. Non-Newtonian Fluid Mech., 113: 97-125, 2003.
    Chinesta, F., Poitou, A. and Torres, R. A semi-Lagrangian strategy to predict the fiber orientation in the steady flows of reinforced thermoplastics. Comput. Method. Appl. M., 189: 233-247, 2000.
    Chung, S. T. and Kwon, T. H. Numerical simulation of fiber orientation in injection molding of short-fiber-reinforced thermoplastics. Polym. Eng. Sci., 35(7): 604-618, 1995.
    Chung, S. T. and Kwon, T. H. Coupled analysis of injection molding filling and fiber orientation, incluing in-plane velocity gradient effect. Polym. Composite., 17(6): 859-872, 1996.
    Claeys, I. L. and Brady, J. F. Suspensions of prolate spheroids in Stokes flow. Part 1. Dynamics of a finite number of particles in an unbounded fluid. J. Fluid Mech., 251: 411-442, 1993a.
    Claeys, I. L. and Brady, J. F. Suspensions of prolate spheroids in Stokes flow. Part 2. Statistically homogeneous dispersions. J. Fluid Mech., 251: 443-477, 1993b.
    Claeys, I. L. and Brady, J. F. Suspensions of prolate spheroids in Stokes flow. Part 3. Hydrodynamic transport properties of crystalline dispersions. J. Fluid Mech., 251: 479-500, 1993c.
    Cloitre, M. and Mongruel, A. Dynamics of non-Brownian rodlike particles in a nonuniform elongational flow. Phys. Fluids, 11(4): 773-777, 1999.
    Cox, R. G. The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech., 44(4): 791-810, 1970.
    Cox, R. G. The motion of long slender bodies in a viscous fluid. Part 2. Shear flow. J. Fluid Mech., 45(4): 625-657, 1971.
    Dimitropoulos, C. D., Sureshkumar, R. and Beris, A. N. Direct numerical simulation of viscoelastic turbulent channel flow exhibiting drag reduction. J. Non-Newtonian Fluid Mech., 79: 433-468, 1998.
    Dingman, S. E., Ingber, M. S., Mondy, L. A., Abbott, J. R. and Brenner, H. Particle tracking in three-dimensional stokes. J. Rheol., 36(3): 413-440, 1992.
    Dinh, S. M. and Armstrong, R. C. A rheological equation of state for semiconcentrated fiber suspensions. J. Rheol., 28(3): 207-227, 1984.
    Doi, M. Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystallline phases. J. Polym. Sci. Pol. Phys., 19: 229-243, 1981.
    Dong, S., Feng, X., Salcudean, M. and Gartshore, I. Concentration of pulp fibers in 3D turbulent channel flow. Int. J. Multiphase Flow, 29: 1-21, 2003.
    Edwardes, D. Steady motion of a viscous liquid in which an ellipsoid is constrained to rotate about a principal axis. Quart. J. Math., 26: 70-78, 1892.
    Ericksen, J. L. Anisotropic fluids. Arch. Rat. Mech. Anal., 4: 231-237, 1959.
    Ericsson, K. A., Toll, S. and Manson, J.-A. E. The two-way interaction between anisotropic flow and fiber orientation in squeeze flow. J. Rheol., 41(3): 491-511, 1997.
    Fan, X., Phan-Thien, N. and Zheng, R. A direct simulation of fibre suspensions. J. Non-Newtonian Fluid Mech., 74: 113-135, 1998.
    Folgar, F. and Tucker Ⅲ, C. L. Orientation behavior of fibers in concentrated suspensions. J. Reinf. Plast. Comp., 3: 98-119, 1984.
    Frattini, P. L., Shaqfeh, E. S. G., Levy, J. L. and Koch, D. L. Observation of axisymmetric tracer particle orientation during flow through a dilute fixed bed of fibers. Phys. Fluids A, 3(11): 2516-2528, 1991.
    Freundlich, H. and Juliusburger, F. Thixotropy, influenced by the orientation of anisometric particles in sols and suspensions. Trans. Faraday Soc., 31: 920-921, 1935.
    Galdi, G. P. and Reddy, B. D. Well-posedness of the problem of fiber suspension flows. J. Non-Newtonian Fluid Mech., 83: 205-230, 1999.
    Givler, R. C., Crochet, M. J. and Pipes, R. B. Numerical prediction of fiber orientation in dilute suspensions. J. Compos. Mater., 17: 330-343, 1983.
    Han, K.-H. and Im, Y.-T. Modified hybrid closure appoximation for prediction of flowinduced fiber orientation. J. Rheol., 43(3): 569-589, 1999.
    Hand, G. L. A theory of dilute suspensions. Arch. Rat. Mech. Anal., 7: 81-86, 1961.
    Hand, G. L. A theory of anisotropic fluids. J. Fluid Mech., 13: 33-46, 1962.
    Happel, J. and Brenner, H. Low Reynolds Number Hydrodynamics. Prentice-Hall, Englewood Cliffs, New Jersey, 1965.
    Hinch, E. J. and Leal, L. G. Constitutive equations in suspension mechanics. Part 1. General formulation. J. Fluid Mech., 71(3): 481-495, 1975a.
    Hinch, E. J. and Leal, L. G. Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations. J. Fluid Mech., 76: 187-208, 1975b.
    Ingber, M. S. and Mondy, L. A. A numerical study of three-dimensional Jeffery orbits. J. Rheol., 38(6): 1829-1843, 1994.
    Jackson, D. The harmonic boundary value problem for an ellipse or an ellipsoid. Am. Math. Monthly, 51(10): 555-563, 1944.
    Jackson, W. C., Advani, S. G. and Tucker Ⅲ, C. L. Predicting the orientation of short fibers in thin compression moldings. J. Compos. Mater., 20: 539-557, 1986.
    Jeffery, G. B. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A, 102(715): 161-179, 1922.
    Joung, C. G., Phan-Thien, N. and Fan, X. J. Direct simulation of flexible fibers. J. Non-Newtonian Fluid Mech., 99: 1-36, 2001.
    Joung, C. G., Phan-Thien, N. and Fan, X. J. Viscosity of curved fibers in suspension. J. Non-Newtonian Fluid Mech., 102: 1-17, 2002.
    Kagermann, H. and Kohler, W. E. On the motion of nonspherical particles in a turbulent flow. Physica, 116A: 178-198, 1982.
    Koch, D. L. On hydrodynamic diffusion and drift in sheared suspensions. Phys. Fluids A, 1(10): 1742-1745, 1989.
    Koch, D. L. A model for orientational diffusion in fiber suspensions. Phys. Fluids, 7(8): 2086-2088, 1995.
    Koch, D. L. and Hill, R. J. Inertial effects in suspension and porous-media flows. Annu. Rev. Fluid Mech., 33: 619-647, 2001.
    Koch, D. L. and Shaqfeh, E. S. G. The average rotation rate of a fiber in the linear flow of a semidiute suspension. Phys. Fluids A, 2(12): 2093-2102, 1990.
    Lambourne, R. and Strivens, T. A., editors. Paint and Surface Coatings: Theory and Practice. Woodhead Publishing, Cambridge, second edition, 1999.
    Larson, R. G. The Structure and Rheology of Complex Fluids. Oxford University Press, New York 1999.
    Laun, H. M. Orientation effects and rheology of short glass fiber-reinforced thermoplastics. Colloid Polym. Sci., 262: 257-269, 1984.
    Lee, J.-D., So, J.-H. and Yang, S.-M. Rheological behavior and stability of concentrated silica suspensions. J. Rheol., 43(5): 1117-1140, 1999.
    Lin, J. Z., Shi, X. and Yu, Z. S. The motion of fibers in an evolving mixing layer. Int. J. Multiphase Flow, 29: 1355-1372, 2003.
    Lin, J. Z., Zhang, W. F. and Yu, Z. S. Numerical research on the orientation distribution of fibers immersed in laminar and turbulent pipe flows. J. Aerosol Sci., 35: 63-82, 2004.
    Lipscomb Ⅱ, G. G. and Denn, M. M. The flow of fiber suspensions in complex geometries. J. Non-Newtonian Fluid Mech., 26: 297-325, 1988.
    Loewenberg, M. Stokes resistance, added mass, and Basset force for arbitrarily oriented, finite-length cylinders. Phys. Fluids A, 5(3): 765-767, 1993.
    Lyon, M. K., Mead, D. W., Elliott, R. E. and Leal, L. G. Structure formation in moderately concentrated viscoelastic suspensions in simple shear flow. J. Rheol., 45(4): 881-890, 2001.
    Mackaplow, M. B. and Shaqfeh, E. S. G. A numerical study of the rheological properties of suspensions of rigid, non-Brownian fibres. J. Fluid Mech., 329: 155-186, 1996.
    McLaughlin, J. B. Numerical computation of particles-turbulence interaction. Int. J. Multiphase Flow, 20: 211-232, 1994.
    Mewis, J. and Metzner, A. B. The rheological properties of supensions of fibres in Newtonian fluids subjected to extensional deformations. J. Fluid Mech., 62(3): 593-600, 1974.
    Miloh, T. The ultimate image singularities for external ellipsoidal harmonics. SIAM J. Appl. Math., 26(2): 334-344, 1974.
    Muthukumar, M. and Edwards, S. F.Screening of hydrodynamic interaction in a solution of rodlike macromolecules. Macromolecules, 16: 1475-1478, 1983.
    Nishinura, T., Yasuda, K. and Nakamura, K. Orientation behaviour of fibers in suspension flow through a branching channel. J. Non-Newtonian Fluid Mech., 73: 279-288, 1997.
    Oberbeck, A. Uber stationare Flussigkeitsbewegungen mit Berucksichtigung der inneren Reibung. Crelle, 81: 62-80, 1876.
    Olson, J. A. The motion of fibres in turbulent flow, stochastic simulation of isotropic homogeneous turbulence. Int. J. Multiphase Flow, 27: 2083-2103, 2001.
    Olson, J. A., Frigaard, I., Chan, C. and Hamalainen, J. P. Modeling a turbulent fibre suspension flowing in a planar contraction: The one-dimensional headbox. Int. J. Multiphase Flow, 30: 51-66, 2004.
    Olson, J. A. and Kerekes, R. J. The motion of fibres in turbulent flow. J. Fluid Mech., 377: 47-64, 1998.
    Parsheh, M., Brown, M. L. and Aidun, C. K. On the orientation of stiff fibres suspened in turbulent flow in a planar contraction. J. Fluid Mech., 545: 245-269, 2005.
    Perram, J. W. and Werthem, M. S. Statistical mechanics of hard ellipsoids. Ⅰ. Overlap algorithm and the contact function. J. Comput. Phys., 58: 409-416, 1985.
    Petrich, M. P. and Koch, D. L. Interactions between contacting fibers. Phys. Fluids, 10(8): 2111-2113, 1998.
    Petrich, M. P., Koch, D. L. and Cohen, C. An experimental determination of the stressmicrostructure relationship in semi-concentrated fiber suspensions. J. Non-Newtonian Fluid Mech., 95: 101-133, 2000.
    Poitou, A., Chinesta, F. and Torres, R. Numerical simulation of the steady recirculating flows of fiber suspensions. J. Non-Newtonian Fluid Mech., 90: 65-80, 2000.
    Rahnama, M., Koch, D. L. and Cohen, C. Observations of fiber orientaion in suspensions subjected to planar extensional flows. Phys. Fluids, 7(8): 1811-1817, 1995.
    Rahnama, M., Koch, D. L., Iso, Y. and Cohen, C. Hydrodynamic, translational diffusion in fiber suspensions subject to simple shear flow. Phys. Fluids, 5(4): 849-862, 1993.
    Reeks, M. W. On a kinetic equation for the transport of particles in turbulent flows. Phys. Fluids A, 3(3): 446-457, 1991.
    Reeks, M. W. On the constitutive relations for dispersed particles in nonuniform flows. Ⅰ: Dispersion in a simple shear flow. Phys. Fluids A, 5(3): 750-761, 1993.
    Rosenberg, J. and Denn, M. Simulation of non-recirculating flows of dilute fiber suspensions. J. Non-Newtonian Fluid Mech., 37: 317-345, 1990.
    S. A., A. R., Ait-Kadi, A. and Grmela, M. Rheology of fiber suspensions in viscoelastic media: Experiments and model predictions. J. RheoI., 45(2): 945-962, 2001.
    Schiek, R. L. and Shaqfeh, E. S. G. Cross-streamline migration of slender Brownian fibres in plane Poiseuille flow. J. Fluid Mech., 332: 23-39, 1997.
    Shanker, R., J. W. Gillespie, J. and Guceri, S. I. On the effect of nonhomogeneous flow fields on the orientation distribution and rheology of fiber suspensions. Polym. Eng. Sci., 31(3): 161-171, 1991.
    Shaqfeh, E. S. G. and Fredrickson, G. H. The hydrodynamic stress in a suspension of rods. Phys. Fluids A, 2(1): 7-23, 1990.
    Shaqfeh, E. S. G. and Koch, D. L. The combined effects of hydrodynamic interactions and Brownian motion on the orientation of particles flowing through fixed beds. Phys. Fluids, 31(10): 2769-2781, 1988a.
    Shaqfeh, E. S. G. and Koch, D. L. The effect of hydrodynamic interactions on the orientation of axisymmetric particles flowing through a fixed bed of spheres or fibers. Phys. Fluids, 31(4): 728-739, 1988b.
    Shaqfeh, E. S. G. and Koch, D. L. Orientational dispersion of fibers in extensional flows. Phys. Fluids A, 2(7): 1077-1088, 1990.
    Shin, M. and Koch, D. L. Rotational and translational dispersion of fibres in isotropic turbulent flows. J. Fluid Mech., 540: 143-173, 2005.
    Stokes, G. G. On the effect of the internal friction of fluids on the motion of pendulums. Cambridge Philos. Trans., 9: 8-106, 1851. Reprinted in Mathematical and Physical Papers, 2nd ed., Vol. 3. New York: Johnson Reprint Corp., p. 1, 1966.
    Stover, C. A., Koch, D. L. and Cohen, C. Observations of fibre orientation in simple shear flow of semi-dilute suspensions. J. Fluid Mech., 238: 277-296, 1992.
    Sundararajakumar, R. R. and Koch, D. L. Structure and properties of sheared fiber suspensions with mechanical contacts. J. Non-Newtonian Fluid Mech., 73: 205-239, 1997.
    Szeri, A. J. and Leal, L. G. A new computational method for the solution of flow problems of microstructured fluids. Part 1. Theory. J. Fluid Mech., 242: 549-576, 1992.
    Szeri, A. J. and Lin, D. J. A deformation tensor model of brownian suspensions of orientable particles-the nonlinear dynamics of closure models. J. Non-Newtonian Fluid Mech., 64: 43-69, 1996.
    Tang, L. and Altan, M. C. Entry flow of fiber suspension in a straight channel. J. Non-Newtonian Fluid Mech., 56: 183-216, 1995.
    Tillett, J. P. K. Axial and transverse Stokes flow past slender axisymmetric bodies. J. Fluid Mech., 44(3): 401-417, 1970.
    Toll, S. and Manson, J. E. Dynamics of a planar concentrated fiber suspension with non-hydrodynamic interaction. J. Rheol., 38(4): 985-997, 1994.
    Ui, T. J., Hussey, R. G. and Roger, R. P. Stokes drag on a cylinder in axial motion. Phys. Fluids, 27(4): 787-795, 1984.
    Weinbaum, S., Ganatos, P. and Yan, Z. Y. Numerical multipole and boundary integral equation techniques in Stokes flow. Annu. Rev. Fluid Mech., 22: 275-316, 1990.
    Weissenberg, K. A continuum theory of rheological phenomena. Nature, 159: 310-311, 1947.
    Yamamoto, S. and Matsuoka, T. A method for dynamic simulation of rigid and flexible fibers in a flow field. J. Chem. Phys., 98(1): 644-650, 1993.
    Yamamoto, S. and Matsuoka, T. Dynamic simulation of fiber suspensions in shear flow. J. Chem. Phys., 102(5): 2254-2260, 1995.
    Yamane, Y., Kaneda, Y. and Doi, M. Numerical simulation of semi-dilute suspensions of rodlike particles in shear flow. J. Non-Newtonian Fluid Mech., 54: 405-421, 1994.
    Youngren, G. K. and Acrivos, A. Stokes flow past a particle of arbitrary shape: a numerical method of solution. J. Fluid Mech., 69(2): 377-403, 1975.
    Zhang, H. F., Ahmadi, G., Fan, F. G. and McLaughin, J. B. Ellipsoidal particles transport and deposition in turbulent channel flows. Int. J. Multiphase Flow, 27: 971-1009, 2001.
    Bird, R. B., Armstrong, R. C. and Hassager, O. Dynamics of Polymeric Liquids. Volume 1: Fluid Mechanics. Wiley, New York, second edition, 1987.
    Jeffery, G. B. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A, 102(715): 161-179, 1922.
    Muzaferija, S. Adaptive finite volume method for flow predictions using unstructured meshes and multigrid appoach. Ph.D. thesis, University of London, 1994.
    Szeri, A. J. and Leal, L. G. A new computational method for the solution of flow problems of microstructured fluids. Part 1. Theory. J. Fluid Mech., 242: 549-576, 1992.
    Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-Verlag, New York, 2003.
    Yamane, Y., Kaneda, Y. and Doi, M. Numerical simulation of semi-dilute suspensions of rodlike particles in shear flow. J. Non-Newtonian Fluid Mech., 54: 405-421, 1994.
    Arnold, V. I. Mathematical Methods of Classical Mechanics. Springer-Verlag, New York, second edition, 1989.
    Courant, R. Methods of Mathematical Physics. Volume Ⅱ Partial Differential Equations. Interscience Publishers, New York, 1962.
    Dinh, S. M. and Armstrong, R. C. A rheological equation of state for semiconcentrated fiber suspensions. J. Rheol., 28(3): 207-227, 1984.
    Folgar, F. and Tucker Ⅲ, C. L. Orientation behavior of fibers in concentrated suspensions. J. Reinf. Plast. Comp., 3: 98-119, 1984.
    Greiner, W. Classical Mechanics: System of Particles and Hamiltonian Dynamics. Springer-Verlag, New York, 2003.
    Liboff, R. L. Kinetic Theory: Classical, Quantum, and Relativistic Descriptions. Springer-Verlag, New York, third edition, 2003.
    Schlichting, H. Boundary Layer Theory. McGraw-Hill, New York, seventh edition, 1979.
    Szeri, A. J. and Leal, L. G. A new computational method for the solution of flow problems of microstructured fluids. Part 1. Theory. J. Fluid Mech., 242: 549-576, 1992.
    Gardiner, C.W. Handbook of Stochastic Methods. Springer-Verlag, New York, second edition, 1997.
    Hinch, E. J. Perturbation Methods. Cambridge University Press, Cambridge, 1991.
    Holmes, M. Introduction to Perturbation Methods. Springer-Verlag, New York, 1995.
    Leal, L. G. and Hinch, E.J. The effect of weak Brownian rotation on particles in shear flow. J. Fluid Mech., 46(4): 685-703, 1971.
    Boyd, J. P. Chebyshev and Fourier Spectral Methods. Dover Publications, New York, second edition, 2000.
    Folgar, F. and Tucker Ⅲ, C. L. Orientation behavior of fibers in concentrated suspensions. J. Reinf. Plast. Comp., 3: 98-119, 1984.
    Gardiner, C.W. Handbook of Stochastic Methods. Springer-Verlag, New York, second edition, 1997.
    Hinch, E. J. and Leal, L. G. Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations. J. Fluid Mech., 76: 187-208, 1975.
    Koch, D. L. A model for orientational diffusion in fiber suspensions. Phys. Fluids, 7(8): 2086-2088, 1995.
    Leonard, B. A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comput. Meth. Appl. Mech. Eng., 29: 59-98, 1979.
    Risken, H. The Fokker-Planck Equation: Methods of Solution and Applications. Springer-Verlag, Berlin, second edition, 1989.
    Shaqfeh, E. S. G. and Koch, D. L. Orientational dispersion of fibers in extensional flows. Phys. Fluids A, 2(7): 1077-1088, 1990.
    Anderson, Jr., J. D. Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill, New York, 1995.
    Batchelor, G. K. Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech., 44(3): 419-440, 1970.
    Batchelor, G. K. The stess generated in a non-dilute suspension of elongated particles by pure straining motion. J. Fluid Mech., 46: 813-829, 1971.
    Boyd, J. P. Chebyshev and Fourier Spectral Methods. Dover Publications, New York, second edition, 2000.
    Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A. Spectral Methods in Fluid Dynamics. Springer-Verlag, New York, 1988.
    Constantin, P. Nonlinear Fokker-Planck Navier-Stokes systems. Commun. Math. Sci., 3(4): 531-544, 2005.
    Constantin, P., Fefferman, C., Titi, E. S. and Zarnescu, A. Regularity of coupled twodimensional nonlinear Fokker-Planck and Navier-Stokes systems. Commun. Math. Phys., 270: 789-811, 2007.
    Davis, P. J. and Rabinowitz, P. Methods of Numerical Integration. Academic Press, New York, second edition, 1984.
    Ferziger, J. H. and Peric, M. Computational Methods for Fluid Dynamics. Springer-Verlag, New York, third edition, 2002.
    Gottlieb, D. and Orszag, S. A. Numerical Analysis of Spectral Methods: Theory and Applications. Society for Industrial Mathematics, Philadelphia, 1977.
    Guntzburger, M. D. Finite Element Methods for Viscous Icompressible Flows: A Guide to Theory, Practice and Algorithms. Academic Press, New York, 1989.
    Koch, D. L. A model for orientational diffusion in fiber suspensions. Phys. Fluids, 7(8): 2086-2088, 1995.
    Muzaferija, S. Adaptive finite volume method for flow predictions using unstructured meshes and multigrid appoach. Ph.D. thesis, University of London, 1994.
    Pironeau, O. Finite Element Methods for Fluids. John Wiley & Son, New York, 1989.
    Rahnama, M., Koch, D. L. and Cohen, C. Observations of fiber orientaion in suspensions subjected to planar extensional flows. Phys. Fluids, 7(8): 1811-1817, 1995a.
    Rahnama, M., Koch, D. L. and Shaqfeh, E. S. G. The effect of hydrodynamic interactions on the orientation distribution in a fiber suspension subject to simple shear flow. Phys. Fluids, 7(3): 487-506, 1995b.
    Shaqfeh, E. S. G. and Fredrickson, G. H. The hydrodynamic stress in a suspension of rods. Phys. Fluids A, 2(1): 7-23, 1990.
    Shaqfeh, E. S. G. and Koch, D. L. Orientational dispersion of fibers in extensional flows. Phys. Fluids A, 2(7): 1077-1088, 1990.
    Srinivas, K. and Fletcher, C. A. J. Computational Techniques for Fluid Dynamics: A Solution Manual. Springer-Verlag, New York, 1992.
    Stover, C. A., Koch, D. L. and Cohen, C. Observations of fibre orientation in simple shear flow of semi-dilute suspensions. J. Fluid Mech., 238: 277-296, 1992.
    Abramowitz, M. and Stegun, I. A., editors. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Publications, New York, 1965.
    Gardiner, C.W. Handbook of Stochastic Methods. Springer-Verlag, New York, second edition, 1997.
    Jeffery, G. B. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A, 102(715): 161-179, 1922.
    Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-Verlag, New York, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700