抗上皮细胞生长抑制因子对膀胱癌细胞中c-jun与HB-EGF的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     抗上皮细胞生长抑制因子(Antiproliferative Factor, APF)是一种由9个氨基酸与半乳糖相连的小分子量、热稳定的唾液酸糖多肽,它含有Frizzled 8的跨膜片段,主要存在于间质性膀胱炎患者的尿液中,具有强烈的抗膀胱上皮细胞生长的作用,同时发现其具有抗膀胱肿瘤细胞生长的作用,尤其对T-24细胞(膀胱癌细胞)。AP-1在肿瘤形成及发展过程中,通过促进细胞增殖、抑制分化、促进肿瘤细胞的侵袭和转移等过程发挥作用。APF作用于正常膀胱上皮细胞后,其c-jun的水平明显下降,从而导致活性蛋白-1(Activator Protein-1,AP-1)的整体水平下降,其活性降低,AP-1调节靶基因的表达,包括细胞增殖、分化、炎症、宿主反应和恶变,而AP-1的活性降低则影响了抑癌基因P53及细胞周期调控基因P21(P21WAF1/CIP1)基因蛋白的表达,从而使细胞生长及增殖受到抑制,细胞则出现凋亡或死亡。HB-EGF在多种组织和细胞中表达,如血管内皮细胞、骨骼肌细胞、膀胱上皮细胞、角质细胞和肿瘤细胞等,对多种细胞具有促分裂增殖的作用。HB-EGF对膀胱肿瘤细胞具有较强的促其增生的作用,而APF具有强烈抑制HB-EGF功能和分泌的作用,从而抑制膀胱肿瘤细胞生长及增生。通过四唑盐比色法(3-(4,5)-dimethylthiahiazo(-z-yl)-3,5-di-phenytetrazoliumromide, MTT)检测APF对膀胱癌细胞生长及增殖影响;通过Western blot方法检测不同浓度的有活性APF和无活性APF对膀胱癌细胞中c-jun与HB-EGF的影响,从而进一步探讨APF对膀胱癌细胞生长及增殖的影响。
     方法
     培养膀胱癌细胞T-24细胞系,将有活性APF及无活性APF取不同浓度分为实验组和对照组,作用于膀胱癌T-24细胞。通过MTT用酶联免疫检测仪OD490m处测量各组的吸光值来检测膀胱癌细胞增殖率;通过Western blot方法得到c-jun与HB-EGF的电泳图像,根据电泳图象所得条带的宽度和亮度进行半定量分析来检测APF对膀胱癌T-24细胞中c-jun与HB-EGF蛋白表达的影响。
     结果
     MTT得出结果用酶联免疫检测仪OD490nm处测量各孔的吸光值,显示随着有活性APF浓度的增加,OD490nm处吸光值明显减低,其吸光值减低有统计学意义(P<0.05);而加入无活性APF吸光值无明显变化,与实验对照组比较无统计学意义(P>0.05)。根据电泳图象所得条带的宽度和亮度进行半定量分析,显示随着有活性APF浓度增加,c-jun与HB-EGF表达逐渐减少,不同有活性APF浓度组之间差异有统计学意义(P<0.05),无活性APF组与有活性APF0μg组之间无统计学意义(P>0.05)。
     结论
     APF可能影响AP-1中的c-jun的表达,c-jun直接作用于细胞桥接使细胞生长停滞,APF作用细胞后,其c-jun的水平明显下降,从而导致AP-1的整体水平下降,其活性降低,则影响了抑癌基因P53及细胞周期调控基因P21基因蛋白的表达,从而抑制了膀胱癌细胞的生长及增殖,同时也能影响HB-EGF的表达,且随着有活性APF浓度的增加,对两者的抑制作用增强,从而增强对膀胱癌细胞生长及增殖的抑制作用。而无活性的APF并不能影响c-jun与HB-EGF的表达,也对细胞的生长无抑制作用。提示APF对治疗膀胱癌患者具有重要的价值,是治疗膀胱癌的一条新途径。
Objective
     Antiproliferative Factor (APF) is a by nine amino acids and galactose linked to the small molecular weight, heat-stable polypeptide of the sialic acid sugar, it contains the Frizzled 8 transmembrane segments, mainly in interstitial the urine of patients with bladder inflammation, with a strong anti-bladder epithelial cell growth, while anti-bladder cancer was found with a role in cell growth, especially for T-24 cells (bladder cancer). AP-1 in tumor formation and development process, by promoting cell proliferation, inhibit differentiation and promote invasion and metastasis of tumor cells play a role in such processes。APF role in normal bladder epithelial cells, its levels of c-jun decreased, resulting in activated protein-1 (Activator Protein-1, AP-1) decline in the overall level of its activity decreased, AP-1 regulation of target genes expression, including cell proliferation, differentiation, inflammation, host response and malignant transformation, while the AP-1 activity reduces the impact of the tumor suppressor gene P53 and cell cycle control gene P21 (P21WAF1/CIP1) gene expression, so that cell growth and proliferation was inhibited, the cells appeared apoptosis or death. HB-EGF was expressed in a variety of tissues and cells, such as vascular endothelial cells, skeletal muscle cells, bladder epithelial cells, keratinocytes and tumor cells, and so on, on a variety of cells and promote proliferation of the role of. HB-EGF in bladder tumor cells has a strong role in promoting their proliferation, while the APF has a strong inhibiting HB-EGF function and the role of secretion and thus inhibit bladder cancer cell growth and proliferation. The influence of APF on bladder cancer cell growth and proliferation by MTT. By Western blot, were found in different concentrations of APF activity and no activity of APF on bladder transitional cell cancer cells in vitro. To explore the role of APF in bladder transitional cells (T-24) cell line c-jun and HB-EGF protein expression and its significance.
     Method
     Cultured bladder cancer cell T-24 cell line, there will be a non-active activity of APF and APF to take different concentrations were divided into experimental and control groups, effect on T-24 cells. Enzyme unite immunodetection equipment measure the extinction value of each group in OD 490nm by MTT, and to detect the cell growth rate of bladder tumor. Detected by Western blot,the influence of the different concentration of active and inactive APF on c-jun and HB-EGF in bladder cancer cells to further explore the APF on bladder cancer cell growth and proliferation.
     Result
     The result which is gotten by MTT measure the extinction value of each hole in OD 490nm by enzyme unite immunodetection equipment. It shows that to follow the increasing of APF density, the extinction value in OD 490nm degrade obviously, and the degrade of entinction value has statistical significance (P<0.05); But the extinction value of adding incompetence APF has not marked change, and it has not statistical significance compare to experiment control group (P>0.05). According to electrophoretic bands derived from the width of the image and brightness of the semi-quantitative analysis shows that with the increase in the concentration with APF activity, c-jun and HB-EGF expression gradually decreased APF activity of different concentrations of a difference between groups was statistically significant (P<0.05), a non-active APF group and the APF Oμg no statistical significance between groups (P> 0.05).
     Conclusion
     APF may affect the AP-1 in the c-jun expression, c-jun direct role in cell growth arrest bridging the cells, APF role of the cells, the c-jun levels significantly decreased, resulting in the overall level of AP-1 decline in, its activity decreased, then the impact of the tumor suppressor gene P53 and cell cycle regulation of gene expression of P21 protein, which inhibits bladder cancer cell growth and proliferation, but also may affect the expression of HB-EGF and APF activity as there is concentration increased, inhibition of cell growth and proliferation are also gradually. Without APF activity and not affect the expression of c-jun and HB-EGF, but also no inhibitory effect on cell growth. Tip APF for the treatment of bladder cancer patients has important value in the treatment of bladder cancer, a new way.
引文
1 Keay S, Zhang C-0, Chai T, et al. Antiproliferative factor, heparin-binding epidermal growth factor-like growth factor, and epidermal growth factor in men with interstitial cystitis versus chronic pelvic pain syndrome. Urology.2004 Jan; 63(1):22-6.
    2 Keay S, Zhang C-O, Shoenfelt JL, et al. Decreased in proliferation of epithelial cells from patients with interstitial cystitis. Urology.2003; Vol.61(6) 1278-1284.
    3 Zhang C-O, Li Z-L, Shoenfelt JL, et al. Comparison of APF activity epithelial growth factor levels in urine from Chinese, African American and Caucasian American IC patients. Urology. 2003; Vol 61(5):897-901.
    4 Bouchelouche K, Nordling J. Recent developments in the management of interstitial cystitis. Curr Opin Urol.2003 Jul; 13(4):309-13. Review.
    5 Keay S, Seillier-Moiseiwitsch, Zhang C-O, et al. Changes in human bladder epithelial cell gene expression associated with interstitial cystitis or antiproliferative factor treatment. Physiol Genomics.2003 Jul; 14(2):107-15.
    6 Erickson DR. Urine markers of interstitial cystitis. Urology.2001 Jun; 57(6 Suppl 1):15-21.
    7 Chai TC, Zhang C-O, Shoenfelt JL, et al. Bladder stretch alters urinary hepatin-binding epidermal growth factor and antiproliferative factor in patients with interstitial cystitis. J of Urology.2000; Vol.163(5):1440-1444.
    8 Conrads TP, Tocci GM, Hood BL et al. CKAP4/P63 is a receptor for the frizzled-8 protein-related antiproliferative factor from interstitial cystitis patients. J Biol Chem.2006; 281: 37836-43.
    9 Vesely PW, Staber PB, Hoefler G, et al. Translational regulation mechanisms of AP-1 proteins. Mutat Res.2009; [Epub ahead of print].
    10 Kwon B, Goltz M, Houpt TA. Expression of AP-1 family transcription factors in the amygdale during conditioned taste aversion learning:Role for Fra-2. Brain Res.2008; 1207: 128-110275-S(epithiostanol).
    11 周长春,刘芝华,齐军.AP-1和肿瘤的关系研究进展.世界华人消化杂志.2006;14(1):1-5.
    12 Taihao Quan, Tianyuan He, John J.Voorhees, et al. Ultraviolet irradiation induces Smad7 via induction of transcription factor AP-1 in human skin fibroblasts. The Journal of Biological Chemistry.2005; 280(9):8079-8085.
    13 Iwamoto R, Mekada E. Heparin-binding EGF-like growth factor:a juxtacrine growth factor. Cytokine Growth Factor Rev.2000; 11(4):335-344.
    14 Sun Y, Chen M, Lowentritt BH, et al. EGF and HB-EGF modulate inward potassium current in human bladder urothelial cells from normal and interstitial cystitis patients. Am J Physiol Cell Physiol.2007; 292 (1):C106-C114.
    15 Kim J, Adam RM, Freeman MR. Trafficking of nuclear heparin-binding epidermal growth factor-like growth factor into an epidermal growth factor receptor-dependent autocrine loop in response to oxidative stress. Cancer Res.2005; 65:8242-9.
    16 Kim J, Keay SK, Freeman MR. Heparin-binding epidermal growth factor-like growth factor functionally antagonizes interstinial cystitis antiproliferative factor via mitogen-activated protein kinase pathway activation. BJU Int.2009 Feb; 103(4):541-6.
    17 Barchi JJ Jr, Kaczmarek P. Short and sweet:evolution of a small glyopetide from a bladder disorder to an anticancer lead. Mol interv.2009 Feb; 9(1):14-7.
    1 Keay S, Zhang C-O, Chai T, et al. Antiproliferative factor, heparin-binding epidermal growth factor-like growth factor,and epidermal growth factor in men with interstitial cystitis versus chronic pelvic pain syndrome. Urology.2004 Jan; 63(1):22-6.
    2 Keay S, Zhang C-O, Shoenfelt JL, et al. Decreased in proliferation of epithelial cells from patients with interstitial cystitis. Urology.2003; Vol.61(6) 1278-1284.
    3 Zhang C-O, Li Z-L, Shoenfelt JL, et al. Comparison of APF activity epithelial growth factor levels in urine from Chinese, African American and Caucasian American IC patients. Urology. 2003; Vol 61(5):897-901.
    4 Bouchelouche K, Nordling J. Recent developments in the management of interstitial cystitis. Curr Opin Urol.2003 Jul; 13(4):309-13.Review.
    5 Keay S, Seillier-Moiseiwitsch, Zhang C-O, et al. Changes in human bladder epithelial cell gene expression associated with interstitial cystitis or antiproliferative factor treatment. Physiol Genomics.2003 Jul; 14(2):107-15.
    6 Erickson DR. Urine markers of interstitial cystitis. Urology.2001 Jun; 57(6 Suppl 1):15-21.
    7 Chai TC, Zhang C-O, Shoenfelt JL, et al. Bladder stretch alters urinary hepatin-binding epidermal growth factor and antiproliferative factor in patients with interstitial cystitis. J of Urology.2000; Vol.163(5):1440-1444.
    8 Keay S, Szekely Z, Comrad TP, et al. An antiproliferative factor from interstitial cystitis patients is a frezzled 8 protein-realted sialoglycopeptide.Proc Natl Sci USA.2004 Aug 10; 10(32):11083-8.
    9 王建中.HB-EGF的研究现状.国外医学免疫学分册.1995;4:217-218.
    10 Iwamoto R, Mekada E. Heparin-binding EGF-like growth factor:a juxtacrine growth factor. Cytokine Growth Factor Rev.2000; 11(4):335-344.
    11 Sun Y, Chen M, Lowentritt BH, et al. EGF and HB-EGF modulate inward potassium current in human bladder urothelial cells from normal and interstitial cystitis patients. Am J Physiol Cell Physiol.2007; 292(1):C106-C114.
    12 Nishi E, Prat A, Hospital V, et al. N-arginine dibasic convertase is a specific receptor for heparin-binding EGF-like growth factor that mediates cell migration. EMBO J.2001; 20(13): 3342-50.
    13 Elenius K, Paul S, Allison G, et al. Activation of HER4 by heparin-binding EGF-like growth factor stimulates chemotaxis but not proliferation, EMBO J.1997; 16(6):1268-78.
    14 Ongusaha PP, Kwak JC, Zwible AJ, et al. HB-EGF is a Potent Inducer of Tumor Growth and Angiogenesis. Cancer Res.2004; 64(15):5283-90.
    15 Fang L, Li G, Liu G, et al. p53 induction of heparin-binding EGF-like growth factor counteracts p53 growth suppression through activation of MAPK and PI3K/Akt signaling cascades. EMBO J.2001; 20(8):1931-9.
    16 Arkonac BM, Foster LC, Sibinga NE, et al. Vascular endothelial growth factor induces heparin-binding epidermal growth factor-like growth factor in vascular endothelial cells. J Biol Chem.1998; 273(8):4400-5.
    17 McCarthy SA, Samuels ML, Pritchard CA, et al. Rapid induction of heparin-binding epidermal growth factor/diphtheria toxin receptor expression by Raf and Ras oncogenes. Genes Dev. 1995; 9(16):1953-64.
    18 Fu S, Bottoli I, Goller M, et al. Heparin-binding epidermal growth factor-like growth factor, a v-Jun target gene, induces oncogenic transformation. Proc Natl Acad Sci USA.1999; 96(10): 5716-21.
    19 El-Assal ON, Besner GE, HB-EGF enhances restitution after intestinal ischemia/reperfusion viaPI3K/Akt and MEK/EPK1/2 activation. Gastroen-terology.2005; 129(2):609-25.
    20 Cribbs RK, Harding PA, Luquette MH, et al. Endogenous production of heparin-binding EGF-like growth factor during murine partial-thickness burn wound healing. J Burn Care Rehabil.2002; 23(2):116-25.
    21 Jin k, Mao XO, Sun Y, et al. Heparin-binding epidermal growth factor-like growth factor: hypoxia-inducible expression in vitro and stimulation of neurogenesis in vitro and in vivo. J Neuro-sci.2002; 22(13):5365-73.
    22 Frank GD, Mifune M, Inaqami T, et al. Distinct mechanisms of receptor and nonreceptor tyrosine kinase activation by reactive oxygen species in vascular smooth muscle cells:role of metalloprotease and protein kinase C-delta. Mol Cell Biol.2003; 23(5):1581-9.
    23 Ellis PD, Hadfield KM, Pascall JC, et al. Heparin-binding epidermal-growth-factor-like growth factor gene expression is induced by scrape-wounding epithelial cell monolayers:involvement of mitogen-activated protein kinase cascades. Biochem J.2001; 354(pt 1):99-106.
    24 Vesely PW, Staber PB, Hoefler G, et al. Translational regulation mechanisms of AP-1 proteins. Mutat Res.2009; [Epub ahead of print].
    25 罗非君.AP-1信号转导通路与肿瘤.国外医学·生理、病理科学与临床分册.2001;21(5):332-334.
    26周长春,刘芝华,齐军.AP-1和肿瘤的关系研究进展.世界华人消化杂志.2006;14(1):1-5.
    27 Elkeles A, Juven-Gershon T, Israeli D, et al. The c-fos proto-oncogene is target for transactivation by the p53 tumor suppressor. Mol Cell Biol.1999; 19(4):2594-600.
    28 Hess J, Angel P, Schorpp-Kistner M. AP-1 subunits:quarrel and harmony among siblings. J Cell Sci.2004; 117(Pt25):5965-73.
    29周兴,梅骅,刘春晓.细胞周期调控基因——P21WAF1/CIP1及抑癌基因失活与膀胱癌的关系.《国外医学》泌尿系统分册.1998;18(5):217-220.
    30文进,葛根,黄国华等.P21和p-gp在膀胱移行细胞癌中的表达及相关性研究.中华泌尿外
    科杂志.2001:22(6):378.
    31 李向荣,林星余,肖忠秀等.P21结构功能与研究新进展.医学综述.2008;14(14):2094-2097.
    32李作生,李保庆.p21和p27基因多态性与肿瘤的相关性[J].国际遗传学杂志.2006;29(4):317-320.
    33 Brabletz T, Hlubek F, Spaderna S, et al. Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissue Organs.2005; 179(1-2):56-65.
    34傅诚强.E-cadherin及其相关蛋白catenins与癌肿浸润和转移.国外医学外科学分册.1996;23(5):283-285.
    35 Shiozaki H, Lihara K,Oka H, et al. Immunohistochenical detection of a-catenin expression in human cancer. Am J Path..1999; 144(4):667-674.
    36 Brabletz T, Jung A, Spaderna S, et al. Opinion:migrating cancer stem cells-an integrated concept of malignant tumour progression. Nat Rev cancer.2005; 5(9):744-9.
    37 Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science (Washington).1991; 251(8):1451-1455.
    38张科.E-cadherin与恶性肿瘤.重庆医科大学学报.2000;25(4):443-445.
    39 Cheng L, Nagabhushan M, Pretlow TP, et al. Expression of E-cadherin in primary and metastatic prostate cancer. Am J Path.1996; 148(5):1375-1380.
    40 Richmond PJ, Karayiannakis AJ, Naqafuchi A, et al. Aberrant E-cadherin and alpha-catenin expression in prostate cancer:correlation with patient survival. Cancer Res.1997; 57(15): 3189-93.
    41 Moll R, Mitze M, Frixen UH, et al. Differential loss of E-cadherin expression in infiltrating ductal and lobular breast carcinoma. Am J Pathol.1993; 143(9):1731-1742.
    42 Siitonen SM, Kononen JT, Helin HJ, et al. Reduced E-cadherin expression is associated with invasiveness and unfavorable prognosis in breast cancer. Am J Clin Path.1996; 105(10): 394-402.
    43 Takichi M. Cadherin cell adhesion receptor as a morphogenetic regulator. Science.1991; 251(5000):1451-1455.
    44 Stevenson B R, Siliciano J D, Mooseker M S, et al. Identification of ZO-1:a high molecular weight polypep tide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol.1986; 103(3):755.
    45 Fanning A S, Jameson B J, Jesaitis L A, et al. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton J Biol Chem.1998; 273 (45):29745-53.
    46 Fanning AS, Ma TY, Anderson JM. Isolation and functional characterization of the actin binding region in the tight junction protein ZO-1. FASEB J.2002; 16(13):1835-7.
    47闫洪顺.胞质紧密粘连蛋白1的研究现状.医学综述.2008;14(7):2589-2591.
    48 Sawada N, Murata M, Kikuchi K, et al. Tight junctions and human diseases. Med Electron Microsc.2003; 36(3):147-56.
    49 Fallon MB, Fallon AR, Balda MS, et al. Altered hepatic localization and expression of occludin after common bile duct ligation. Am J Physiol.1995; 269(4 Pt 1):C1057-62.
    50 Yonemura S, Itoh M, Nagafuchi A, et al. Cell-to-cell adherens junction formation and actin filament organization:similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J Cell Sci.1995; 108(Pt 1):127-42.
    51李秋霞,李茹柳,罗茂林等.紧密连接蛋白ZO-1研究概述.广州中医药大学学报.2007;24(6):523-526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700