螺旋藻的优化培养与抗肿瘤作用初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋藻因其富含蛋白质、多糖、不饱和脂肪酸、维生素、矿物质等多种营养成分,而被FAO和WHO分别誉为“21世纪最理想的食品”和“人类21世纪的最佳保健品”。现今的工业化生产仅以螺旋藻的生物量为指标,各种活性成分的产量低,远不能满足市场需求。而螺旋藻代谢产物与培养环境密切相关,故本课题研究了营养盐、光照、温度和植物生长调节剂对螺旋藻生物量、蛋白、胞内多糖(intracellular polysaccharide,IPS)、胞外多糖(extracellular polysaccharide,EPS)和超氧化物歧化酶(superoxide dismutases,SOD)含量的影响,以期找到高产各种成分的螺旋藻的最佳培养条件。同时,初步研究了螺旋藻EPS、IPS和PC对Hela细胞的抑制作用和机理。
     研究结果表明,当C、N、P、NaCl的浓度(g/L)配比为A(18,2.5,0.5,1.0),生物量提高了0.69倍;B(14,2.5,0.5,0.5),EPS提高了0.49倍;C(10,2.5,0.8,1.5)时,IPS提高了0.71倍;D(18,2.5,0.2,1.5),蛋白含量提高了0.33倍。极大螺旋藻438的最适培养条件为:光强4000lux~5000lux,温度30~35℃,蛋白和IPS积累的条件与螺旋藻最适生长条件一致。对极大螺旋藻生长不利的温度、光照条件,会促进螺旋藻EPS的分泌和SOD的活性,即高温和弱光更利于胞外多糖的积累,低温和强光显著提高SOD酶活力。低浓度植物生长调节剂显著促进了螺旋藻的生长和蛋白的含量,高浓度对其生长有抑制作用。但高浓度有利于EPS的产生,提高了SOD酶活力。此研究结果确定了螺旋藻生长和有利于多糖、蛋白质和SOD累积的最佳培养条件,为通过优化培养条件,调控活性物质提供了理论依据。
     体外实验证明IPS、EPS和PC对Hela细胞增殖都有抑制作用,且存在明显的剂量效应。三者抑制率随浓度的增加而升高,在最佳剂量80μg/mL、100μg/mL、120μg/mL的作用下,抑制率分别达到为47.92%、42.95%、31.22%。采用Caspase-3试剂盒检测它们对Hela细胞Caspase-3的活性的影响,发现经过36h、24h、12h后Caspase-3活性达到最高,分别为对照组的4.06倍、6.64倍、5.70倍。推断其抗肿瘤的机制可能是通过启动Caspase途径从而诱导HeLa细胞的凋亡。
Spirulina were hailed as "the perfect food in the 21st century"and "the optimal health product in the 21st century" by FAO and WHO due to its nutritional value and the ability to produce valuable chemical compounds,such as protein,polysaccharide, unsaturated fatty acids,vitamins,etc.In recent years,there is a great market demand for Spirulina.The biomass was consideed as the sole indicator in the current culture, so the output of active ingredient is far from satisfying the needs of the market. Microalgal biomass and metabolites are close related to its culture conditions. Therefore,it is significant to optimize the cultural conditions of spirulina for realizing the high biomass and achieving nutritional ingredients from Spirulina for different purpose.The effects of medium,temperature,light intensity and phytohormones on the growth and the metabolites of protein,intracellular polysaccharide(IPS), extracellular polysaccharide(EPS),superoxide dismutases(SOD) were studied in a systematic way.At the same time,the anti-tumor effect of EPS,IPS and PC was preliminary studied.
     The results showed that,when the concentration of sodium bicarbonate,nitrogen sources,phosphate,and sodium chloride in the medium was proportioned as A(g/L)(18,2.5,0.5,1.0),B(14,2.5,0.5,0.5),C(10,2.5,0.8,1.5),D(18,2.5,0.2,1.5), the metabolites of biomass,EPS,IPS and protein in the Spirulina was as 0.69,0.49, 0.71,0.33 times those of original medium respectively.It was evident that the biomass,IPS,EPS and protein of Spirulina all increased outstandingly through optimization of the medium ingredient.It was found that the light intensity was at the range of 4000 lux to 5000 lux and the temperature was in the range of 30~35℃was the optimum condition for the growth of Spirulina.The optimum temperature and light for excreting of IPS were consistent with optimum condition for the growth of Spirulina.Illumination and temperture unsuitable for the gowth of Spirulina would raise EPS content and SOD activity.That is,high temperature and feeble illumination were favorable to the excreting of EPS.SOD activity was increased notably under the condition of low temperature and strong light.Lower concentration of phytohormones significantly promoted the growth and protein content of Spirulina,higher concentrations inhibited its growth but accelerated EPS and enhanced SOD activity. The optimized cultural conditions were ascertained,so as to provid the theory and practical parameters of scale-up exploitation protein,polysaccharides and SOD form Spirulina in the functional food and pharmacy.
     The antitumor function of IPS,EPS and PC by MTT assay indicated that the optimum dosage were 80μg/mL,100μg/mL,120μg/mL and the inhibition rates were achieved 47.92%,42.95%and 31.22%respectively.Caspase-3 activity was measured by Caspase-3 kit.Caspase-3 activity achieved to the highest,that was as 4.06,6.64, 5.70 times as the control group respectively at 36h,24h,12h after being added the IPS, EPS and PC.It can be inferred that the mechanism of antitumor effect of three extracts of Spirulina was through activating the Caspase-3 protease family,thus inducing cell apoptosis.
引文
[1]Orio C.Let them eat algae[J].New Scientist,1981,24:810-812.
    [2]Richmond A.In micro-algal biotechnology,Borowitzka M A & Borowitzka L J[M].UK,Cambridge University Press,1988,85-121.
    [3]Rich F.Notes on Arthrospira platensis[J].Revue Agologique,1931,6:75-76.
    [4]Boussiba A,Richmond A.C-phycocyanin as a storage protein in the blue- green alga Spirulina platensis[J].Archives of Microbiology,1980,125:143-147.
    [5]苏必忠.螺旋藻的营养治疗[J].广西中医学院学报,2002,2:56-59.
    [6]彭照文.螺旋藻及其多糖的开发应用[J].福建轻纺,2002,3:6-10.
    [7]胡一兵,胡鸿钧.从一种富含藻胆蛋白的螺旋藻中大量提取和纯化藻蓝蛋白的研究[J].武汉植物学研究,2002,20(4):299-302.
    [8]Guillard R R L,Stein J R.Division rates[M].In:hand book of phycologieal methods:cultured methods and growth mea surements.London:Cambridge University,1973,289-312.
    [9]汤朝晖,蒋加伦.钝顶姗旋藻藻胆蛋白的提取及其特性初报[J].东海海洋,1993,(12):49-54.
    [10]郑江.藻蓝蛋白的提取纯化研究进展田[J].食品科学,2002,23(11):159-161.
    [11]方昭希,张爱琴.螺旋藻藻蓝蛋白研究初探[J].营养学报,1989,11(1):146-150.
    [12]朱玉琴.螺旋藻藻蓝蛋白的临床医学研究[J].中国畜牧杂志,1989,25(5):30-35.
    [13]殷钢,刘铮,李深,等,螺旋藻多糖成分的研究[J].高等学校化学学报,1999,20(4):565-568.
    [14]孔令明,冯作山.螺旋藻中糖脂成分的侧定研究[J].新疆农业大学学报,2000,23(2):71-74.
    [15]蒋春.健康食品材料一螺旋藻的特征及其应用[J].日本食品科学,1998,19(1):27-29.
    [16]Carr N G,et al.The biology of cyanobaeteria.Blackreil[J].Scientific,Publications L ondon,1982,263-305.
    [17]阮继红,庞启深,郭宝红.螺旋藻抗辐射的研究[J].遗传,1988,10(2):27-30.
    [18]庞启深,郭宝江,阮继红.螺旋藻抗辐射多糖的提纯和分析[J].生物化学与生物物理报,1989,21(5):445-448.
    [19]沙珍霞,石晓勇.用均匀设计方法优化螺旋藻培养基配方的研究[J].海洋水产研究,2000,21(2):41-47.
    [20]董育红.螺旋藻培养基中碳、氮、磷最佳配比及效应[J].西北农业学报,2001,10(1):75-78.
    [21]夏建荣,高坤山.高浓度CO_2对极大螺旋藻生长和光合作用的影响[J].水生生物学报,2001,25(5):474-480.
    [22]Francisco J L,Gordillo,Carlos Jimenez et al.Elects of increased atmospheric CO_2and N supply on photosynthesis,growth and cell composition of the cyanobacterium Spirulina platensis(Arthrospira)[J].Journal of Applied Phycology,1999,10:461-496.
    [23]陈峰,姜悦.微藻生物技术[M].北京:中国轻工业出版社,1999,103-132.
    [24]张诚,邹景忠.尖刺拟菱形藻吸收动力学以及氮磷限制下的增殖特征[J].海洋与湖沼,1997,28(6):599-603.
    [25]齐雨藻,楚建华,黄奕华.诱发海洋褐胞藻赤潮的环境因素分析[J].海洋通报,1993,12(2):30-34.
    [26]洪君超,黄秀清,蒋晓山.长江口赤潮多发区的一次中肋骨条藻赤潮现象观察 [J].海洋环境科学,1992,11(3):75-79.
    [27]洪君超,黄秀清,蒋晓山,等.长江口中肋骨条藻赤潮发生过程环境要素分析-营养盐状况[J].海洋与湖沼,1994,25(2):179-184.
    [28]李文权,郑爱榕,李淑英.海水养殖与生态环境关系的研究(Ⅰ)无机氮对浮游植物生长的影响[J].热带海洋,1993,12(3):46-51.
    [29]焦念志.海洋浮游生物氮吸收动力学及其粒级特征[J].海洋与湖沼,1995,26(2):191-198.
    [30]Antia N J.Comparative evaluation of certain organic and inorganic sources of nitrogen for phototrophic growth of marine microalgae[J].J.Mar.Biol.Ass.U K,1975,55:519-539.
    [31]Turner M F.Nutrition of some marine microalgae with special reference to vitamin requirements and utilization of nitrogen and carbon sources[J].J.Mar.Biol.Ass.U.K,1979,59:535-552.
    [32]王正方,张庆,卢勇,等.氮、磷、维生素和微量金属对赤潮生物海洋原甲藻的增殖效应[J].东海海洋,1996,14(3):33-38.
    [33]黄晓航,史冬梅,张京浦,等.赤潮发生机理研究-海洋原甲藻的氮营养生理特征[J].海洋与湖沼,1997,28(1):33-38.
    [34]沙珍霞,石晓勇.钝顶螺旋藻营养生理的研究[J].钝顶螺旋藻对无机氮的吸收利用[J].海洋水产研究,2000,21(3):17-22.
    [35]Jorge A V C,Karla L C,et al.Diferent nitrogen sources and growth responses of Spirulina platensls in microenvironments[J].World Journal of Microbiology &Biotechnology,2001,17:439-442.
    [36]张成武,唐乐同.硫酸铵对钝顶螺旋藻(Spirulina platensis)生长的影响[J].海洋 湖沼通报,1992,2:35-39.
    [37]张欣华,杨海波.不同培养条件对海洋微藻多糖含量的影响[J].生物学杂志,2000,17(6):17-18.
    [38]Hiroaki Sudo.Sulfated exopolysaccharide production by the halophilic Cyanobacterium Aphanocapsa halophyuo.Curient Micociobiology,1995,30:219-222.
    [39]马美萍.螺旋藻高产多糖与生产条件优化研究及分子机理初探[D].浙江大学,2003.
    [40]Smith S V.Phosphorus versus nitrogen limitation in the marine environment[J].Limnoi Oceanogr,1984,29(6):1149-1160.
    [41]陈慈美,包建军,吴瑜端.纳污海域营养物质形态、含量与浮游植物增殖竞争关系(Ⅱ)[J].海洋环境科学,1990,9(2):1-7.
    [42]陈慈美,包建军,吴瑜端.纳污海域营养物质形态及含量水平与浮游植物增殖竞争关系(Ⅰ)[J].海洋环境科学,1990,9(1):6-12.
    [43]林琼芳.国外赤潮调查研究概况[J].海洋环境科学,1988,7(1):26-33.
    [44]张宜辉,连玉武.磷对赤潮生物塔马亚历山大藻的增殖效应[J].海洋环境科学,1999,18(4):24-27.
    [45]唐森铭,庄栋法,林显,等.围隔生态系内富营养对水体营养盐结构的扰动[J].海洋学报,1993,15(2):135-139.
    [46]郑爱榕,李淑英.几种藻类对氮、磷的同化率与其营养成分的关系[J].海洋科学,1994,(3):44-48.
    [47]刘东艳,孙军.不同氮、磷比对球等鞭金藻生长的影响[J].海洋水产研究,2003,23(1):29-32.
    [48]刘东艳,孙军.不同氮磷比对中肋骨条藻生长特性的影响[J].海洋湖沼通报,2002.2:39-44.
    [49]Zarnowski J.Preparation of chloride -free potassium salts by conversion in an aqueous solution[J].Pr Nauk Akad Ekon im Oskara Langego Wroclawiu,1988,22:149-161.
    [50]沈同,王竞岩.生物化学(第二版)[M].北京:高等教育出版社,1989,367-378
    [51]Kavita Vema,Prasanna Mohanty.Alterations in the structure of Phycobilisomes of the cyanobacterium,Spirulina platensis in response to enhanced Na~+level[J].Word Joural of Microbiology & Biotechnology,2000,16:795-798.
    [52]Lu Congming,Vonshak Avigad.Efects of salinity stress on Photosystem Ⅱ function in cyanobacterial Spirulina platensis cell[J].Physiologia Plantarum,2002,114(3):405-413.
    [53]Mi H,Endo T,Schreiber U,et al.Plant and cell physiology[J].Oxford Journals,1994,35(2):163-173.
    [54]Kebede E.Optimum growth condition and light utilization efficiency of Spirulina platensis from lake Chitu(Ethiopia)[J].Hydrologia,1996,332(2):99-109.
    [55]史成颖.影响螺旋藻生长的理化因子[D].安徽农业大学,2003.
    [56]徐明芳,周远志,区德洪.光生物反应器中光衰减特征与螺旋藻生长动力学研究[J].海洋科学,2001,25(11):32-36.
    [57]尤珊,郑必胜,郭祀远.光照对螺旋藻生长和形态的影响[J].微生物学杂志,2002,2(6):58-59.
    [58]李乐农,郭宝江.光照时间对螺旋藻生长的影响[J].海洋科学,1998,3:3-4.
    [59]张义明,陈峰,郭祀远.光照度及葡萄糖浓度对螺旋藻生长的影响[J].华南理大 学学报(自然科学版),1996,24(2):141-146.
    [60]Miguel O,Eirik O D.Effects of light intensity and quality on the growth rate and quality of Spirulina plarensis[J].J Appl Phycol,1990,2:97-104.
    [61]董育红,张振兰.螺旋藻蛋白质含量与培养液温度关系[J].陕西农业科学,1998,(4):29.
    [62]殷养涛.培养条件对钝顶螺旋藻(Sp)NS-90020脂肪酸组成和含量的影响[J].武汉植物学研究,1997,15(1):59-65.
    [63]鞠宝,王长海.光强、循环速度和温度对螺旋藻生长的影响[J].海洋通报,1999,18(3):35-40.
    [64]李叙风,王长海.螺旋藻培养条件的研究[J].食品与发酵工业,1999,25(4):13-17.
    [65]徐明芳,吴青.在光生物反应器培养螺旋藻中pH值的调控作用分析[J].食品与发酵工业,2001,27(2):8-12.
    [66]Sharenkova K,A&Semeaenko V E.The quantity of nitrogen fertilizer relative to sugar beet yield[J].Fiziol rast,1982,29(3):572-577.
    [67]Carlos E N,Sassano Joao C M C.Kinetics and bioenergetics of Spirulina platensis cultivation by fed-batch addition of urea as nitrogen source[J].Humana Press Inc,2004,3:5-25.
    [68]熊凡,赤霉素对加速小球藻繁殖的试验[J].植物生理学通讯,1964,(6):40-41.
    [69]向曙光,刘思俭,黄韧,等.植物生长调节剂处理海水单细胞藻的研究[J].湛江水产学院学报,1986,(1):39-45.
    [70]Torre L,Kinetin.Effect on growth of Chlorella yrenoidosa(Chlorophyta) and its relation with phosphorus content[J].Physis-B,1987,108:1-7.
    [71]沈银武.2,4-D对鱼腥藻增殖的效应[J].武汉植物学研究,1991,1:259-262.
    [72]侯和胜,陈敏资.油菜素内酯对两种单细胞藻生长和某些生理活性的影响[J].海洋与湖沼,1997,28(4):371-375.
    [73]Ken S,Facundo J M,Naomichi N.Effect of 5-aminolevulinic acid on the growth Spirulina platensis[J].J Ferment Bioeng,1979,5:453-495.
    [74]周光正.螺旋藻的物理化学因子和营养物对其生长的影响[J].海洋科学,1994,6:67-68.
    [75]曾晓春,吴晓玉.2,4-D和6-BA对提高钝顶螺旋藻生物产量的效应[J].江西农业大学学报,1998,4:437-439.
    [76]王勇,钱峰,钱凯先,等.藻蓝蛋白抗癌活性研究[J].浙江大学学报,2001,35(6):672-675.
    [77]张成武,刘宇峰,王习霞,等.螺旋藻藻蓝蛋白对人血癌细胞株HL60、K562和U937的生长影响[J].海洋科学报,2000,24(1):45-48.
    [78]Reddy MC,Subhashini J,Mahipal SV,et al.C-phycocyanin,a selective cyclooxygenase-2 inhibitor,induces apoptosis in lipopolysaccharide-sitimulated RAW264.7 macrophages[J].Biochem Biochys Res Comun,2003,304(2):385-392.
    [79]Lijima N,Fuji N.Shimamatsu Antitumor alagents containing phycobiuin[J].Dainippon Iuk Chem,1983,4(1):6-7.
    [80]唐书明,黄芳,窦昌贵,等.基因重组别藻蓝蛋白对小鼠S180肉瘤的抑制作用[J].药物生物技术,1999,6(3):168-170.
    [81]张成武,曾昭琪.藻蓝蛋白对小鼠粒单系祖细胞生成的影响[J].中国海洋药物,1996,60(4):252-281.
    [82]Reddy C.C -Phycocyanin,as elective cyclooxygenase-2 inhibitor,induces apoptosis in lipopolysaccharide-stimulated RAW 264.7macrophages[J].Biochemical and Biophysical Research Communications,2003,304:385-392.
    [83]Subhashini J.Molecular mechanisms in C-Phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562[J].Biochemical Pharmacology,2004,68:453-462.
    [84]Pardhasaradhi BV.Phycocyanin-mediated apoptosis in AK-5 tumor cells involves down-regulation of Bcl-2 and generation of ROS[J].Molecular Cancer Therapeutics,2002,1165-1170.
    [85]He J A,Hu Y Z,Jiang L J.Photodynamic action of phybiliproteins in situ generation of reactive oxygensp ecies[J].Btochim Biophys Acta:Bioenergetics,1997,1320(1):165-174.
    [86]Morcos N C,Bems M,HenryW L.Phycocyanin:laser activation,cytotoxic elects,and uptake in humanat heroscleroticp laque[J].Lasers Surg Med,1988,8(1):10-17.
    [87]Morcos.Medical uses for phycocyanin[P].United States,Potent 4886831,1989.
    [88]蔡心涵,何立明,蒋家伦,等.螺旋藻藻蓝蛋白对癌激光疗法增敏作用的实验研究[J].中国海洋药物,1995,53(1):15-18.
    [89]辛华雯,王润帮,欧阳沙怀,等.藻蓝蛋白对氨甲蝶呤和顺铂的体外增效作用[J].湖北医科大学学报,1998,19(1):22-24.
    [90]刘力生,郭宝红,阮继红.螺旋藻多糖对移植性癌细胞的抑制作用及其机理研究[J].海洋科学,1991,5:33.
    [91]于红,张学成.螺旋藻多糖对Hela细胞生长的影响[J].中国海洋药物,2003,22(1):26-29.
    [92]阎博民,于红.螺旋藻多糖抑制人肝癌细胞株IGF-2mRNA表达的研究[J].实用 癌症杂志,2003,18(5):490-491.
    [93]蒙凌华,蒋超,刘兆乾,等.螺旋藻提取物对DNA拓扑异构酶活性的抑制及DNA的直接影响[J].癌症,2000,19(8):768-711.
    [94]蒋超,蒙凌华,齐清,等.螺旋藻提取物对表皮生长因子受体酪氨酸激酶的抑制作用及诱导HL-60细胞凋亡[J].癌症,2000,19(12):1101-1104.
    [95]Palier G.An anticaer actlivity of polysacchride from Spirulina platensis[J].Appl Phycol,1993,5:343-345.
    [96]左绍远,马涧泉.螺旋藻多糖对小鼠巨噬细胞及K细胞ADDC活性的影响[J].人理医学院学,1996,5(1):1-4.
    [97]Hayashi O,Katoh T,Okuwaki Y.Enhancement of antibody production in mice by dietary Spirulina[J].Nutr Sci Vitaminol,1994,40(5):431-441.
    [98]曾波航,王光明,曾亚仑.钝顶螺旋藻多糖对白血病患者外周血LAK细胞活性的影响[J].中国海洋药物,2000,2:39-41.
    [99]李敏,黄惟立,叶颖,等.螺旋藻不同组份对小鼠脾细胞分泌IL-2的促进作用.中国海洋药物,2001,20(3):36-38.
    [100]王友顺,黎露刚,吴侃,等.螺旋藻多糖对给予环磷酰胺BALB/C小鼠的保护作用研究[J].海洋科学,1997,6:36-38.
    [101]刘晓梅,张洪泉.螺旋藻多糖对荷瘤小鼠化疗后造血细胞增殖、凋亡及Bcl-2表达的影响[J].药学学报,2002,37(8):616-620.
    [102]Mastrangelo A J,Betenbaugh M J.Overcoming apoptosis:new methods for improving protein-expression systems[J].Trends Biotechnol,1998,16(2):88-95.
    [103]Schultz D R,Harrington W J.Apoptosis:programmed cell death at a molecular level[J].Semin Arthritis Rheum,2003,32(6):345-369.
    [104]Kuida K.Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice[J].Nature,1996,384:368-372.
    [105]Wilson M R.Apoptotic signal trans duction:emerging pathway biochem cell[J].Biol,1998,76:573-582.
    [106]Fesik S W.Insights into programmed cell death through structural biology[J].Cell,2000,103:273-282.
    [107]Coffey R,Watson R,Fitzpartick J.Signaling for the caspases:their role in prosatate cell apoptosis[J].Urol,2001,165:5-14.
    [108]Enari Ml.A caspases-activated dnase that degrades DNA during apoptosis,and its inhibitor ICAD[J].Nature,1998,391:43-50.
    [109]潘秋文,高向东,盛海林.螺旋藻多糖的提取工艺研究[J].医药导报,2004,23(9):667-668.
    [110]于丽娟.混合营养培养对螺旋藻生长与多糖含量影响的研究[D].贵州工业大学,2004.
    [111]Xu X Q,Beardall J.Effect of salinity on fatty acid composition of a green microalgae from an Antarctic hypersaline lake[J].Phytochemistry,1997,454:655-658.
    [112]Eugenia J,Olguin,Sonia Galicia,et al.The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp[J].(Arthrospira) grown on Bioresource Technology,2001,77:19-24.
    [113]Mishra N P,Mishra R K,Singhal G S.Changes in the activities of antioxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperature of intact in the presence of protein synthesis inhibitors[J].Plant Physiol, 1993,102:903-910.
    [114]Vonshak A.Spirulina platensis(Arhrospira) physiology[J].Taylor Francis Ltd,1997,205-212.
    [115]尤珊.螺旋藻胞外多糖积累规律的研究[J].海湖盐与化工,2004,33(1):24-28.
    [116]Oliveira M A C L D E,Monteiro M P C.Growth and chemical composition of Spirutina maxima and Spirutina biomass at diferent temperatures[J].Aquaculture International,1997,7:261-275.
    [117]Singh T N,Aspinall D,Paley L G.Proline accumulation and varietal adaptability to drought in barly:a potential metabolic measure of drought resistance[J].Nature New Biol,1972,236:188-190.
    [118]Bow LERSR,MCKERSIE B D.Relationships among freezing,low temperature flooding,and ice encasement tolerance in alfalfa[J].Can.J.Plant sci,1990,70:227-235.
    [119]张景飞,王晓蓉.二氯苯酚低浓度长期暴露对鲫鱼肝脏抗氧化酶系统的影响[J].环境科学,2003,24(5):136-140.
    [120]蔡传杰,陈善娜.植物激素的研究进展[J].云南大学学报(自然科学版),2001,23:99-101.
    [121]雅可夫,莱什姆.植物生调节的分子及激素基础[M].中国:科学出版社,1980,95-107.
    [122]Leshem Y Y,Wurzburger J,Orosman S.et al.Cytokinin interaction with free radical metabolism and senescence:effect on endogenous lipoxygenase and purine oxidation[J].Physiol Plant,1981,53:9-12.
    [123]Dhindsa R S,Dhindsa P P,Reid D M.Leaf senescence and lipid peroxidation: effect of some phytohorms ones,and scavengers of free radicals and single oxygen[J].Physiol Plant,1982,56:453-457.
    [124]李伯林,梅慧生.燕麦叶片衰老与活性氧代谢的关系[J].植物生理学报,1989,15(1):6-12.
    [125]杨艳华.外源6-BA对缺镁胁迫下两优培九幼苗的缓解效应[J].广西植物,2003,23(4):347-351.
    [126]Schattner E J.Apoptosis in lymhoytic leukemias and lymphomas[J].Cancer Invest,2002,20:737-748.
    [127]Stuart L,Hughes J.Apotosos and autoimmunity[J].Nephrol.Dial.Trasplant,2002,17(5):697-700.
    [128]Dockrell D H.Apoptotic cell death in the pathogenesis of infectious dieases[J].Infect,2001,42(4):227-234.
    [129]Grobholz R,Zentaraf H,Kohrman KU.Bax,Bcl,Fas and Fas antigen expression in human seminoma:correlation with the apoptotic index[J].APMIS,2002,110(10):724-732.
    [130]Haunstetter A,Izumo S.Apoptosis basic mechanisms and implications for cardiovascular disease[J].Circulation Research,1998,82(11):1111-1129.
    [131]Nicholson DW.Caspase structure,proteolytic substrates,and function during apoptotic cell death[J].Cell Death Diff,1999,6:1028-1042.
    [132]朱劲华.极大螺旋藻胞内多糖对体外肿瘤细胞抑制作用的实验研究[J].海洋科学,2007,1(31):1-5.
    [133]马宇翔.盐泽螺旋藻藻蓝蛋白和多糖的分离纯化及其抑制肿瘤活性的初步研究[D].南京师范大学,2003.
    [134] Reddy M C, Subhashinil, Mahipal S V, et al. C-phycocyanin,as elective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharide-stimulated RAW 264.7 macrophages[J]. Biochem Biaphys Res Commun, 2003, 34(2): 385-39.
    [135] Rimbau V, Camins A, Pubill D, et al. C -phycocyanin protects cerebellar granule c ells from low potassium/serum deprivation-induced apoptosis[J]. Naunyn Schmiedebergs Arch Pharmacol, 2001, 364(2): 96-104.
    [136] Green D R. Apoptotic pathways: the roads to ruin Cell[J]. Cell, 1998, 94(6): 695-698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700