载脂蛋白E转基因鼠脑的基本形态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默氏病(Alzheimer’s disease,AD)是一种与衰老相关的神经退行性疾病,是痴呆的一种主要形式,占所有痴呆病例的60%-70%。老龄是散发性AD发生的重要危险因子。
     载脂蛋白E(Apolipoprotein E,ApoE)对胆固醇和甘油三酸酯的代谢和分配起着重要的作用,主要在肝脏和脑的星型胶质细胞中表达。人类的载脂蛋白E基因具有多态性,有三个不同的等位基因(ε2,ε3,ε4),产生了六个不同的显型(E2/2, E2/3,E2/4,E3/3, E3/4和E4/4)。大量研究表明ApoE基因亚型与AD的发病密切相关,其中ApoE4等位基因被认为是AD患病的高风险因子。
     作为AD及其相关疾病的动物模型,Glial Fibrillary Acidic Protein (GFAP) -apoE转基因鼠已经被广泛地用于研究领域。但是令人惊讶的是关于GFAP-apoE转基因鼠脑形态学的基本信息非常有限.本研究的目的在于通过硫堇(Thionin)染色和苏木精-伊红(HE)染色,这两个传统的染色方法,观察在正常衰老过程中不同GFAP-apoE转基因鼠脑的大体形态学的基本特征,并特别观察了海马神经元数目和大小以及脑微血管形态学的变化。结果发现,在apoE3/3和apoE4/4型转基因鼠中,大脑皮层分层的一般形态学无差异。在不同年龄的ApoE3/3和ApoE4/4型鼠之间,海马CA1-CA3亚区的神经元数目没有明显差异性。ApoE3/3和ApoE4/4型鼠的CA1亚区细胞胞体面积随年龄的增高而降低(P<0.001)。在老年组中,ApoE4/4型鼠的细胞胞体面积小于ApoE3/3鼠(P<0.05)。三只老年ApoE4/4型鼠的丘脑都显示了不同程度微血管损伤,损伤度分别为5.24%; 1.41%;3.97%。但是在三只老年ApoE3/3型鼠中只有一只表现出微血管损伤,损伤度为0.85%。本研究提示GFAP-apoE转基因鼠海马CA1区细胞大小随着衰老而减小,但不受apoE基因型的影响。老年apoE4型鼠海马CA1区细胞萎缩要大于老年apoE型鼠;老年apoE4/4型鼠丘脑微血管损伤大于apoE3/3型鼠。上述研究结果为在转基因动物中研究apoE与AD的发病机制之间的关系提供了脑大体形态学基础。
Alzheimer’s disease (AD) is a kind of age related neurodegenerative disease, a most common format of dementia, constituting 60% to 70% of all cases. Age is an important factor for onset of sporadic AD.
     Apolipoprotein E (ApoE) plays an important role in the distribution and metabolism of cholesterol and triglycerides. ApoE is synthesized by the liver, brain (primarily astrocytes).in humans. The ApoE gene shows polymorphism, with three different alleles (ε2,ε3,ε4), and gives rise to six different phenotypes (E2/2, E2/3, E2/4, E3/3, E3/4, E4/4). Large studies have shown that isoforms of ApoE gene is associated with onset of AD. ApoE4 allele is believed as a major genertic risk factor of AD.
     To our surprise, although GFAP-apoE transgenic mice have been widely used in the study of AD and other related diseases, there is limited information on the general brain morphology in the transgenic mice. In the present study, we aimed to investigate the effect of ApoE isoforms on the number and size of cells in hippocampus and the morphology of blood vessels in the brain of GFAP-apoE transgenic mice with age by the two conventional staining methods, thionin staining and HE stainging. In our results,We did not observe apparent differences in the cortical layer between apoE3/3 and apoE4/4 mice. Our results showed that the number of hippocampus cells in CA1–CA3 areas was not significantly different between apoE3/3 and apoE4/4 mice among different age groups. We observed that the size of cells in CA1 area decreased in GFAP-apoE mice with aging; in 20-21 months, this cellular atrophy in apoE4/4 mice was more significantly evident than that in apoE3/3 mice(P<0.05). In 20-21months,old apoE4 mice all showed microvascular lesion in varying degrees in thalamus, the lesion degrees were 5.24%; 1.41%; 3.97%, respectively. But there were only one of three old apoE3/3 mice, which showed microvascular lesion in thalamus, and the lesion degree was 0.85%. The current study suggests that the CA1 cellular size in hippocampus decreases with aging, which is not affected by the apoE genotype. The CA1 cell atrophy is more severe in old apoE4/4 mice as compared with age-matched apoE3/3 mice. These morphological studies will provide a basis of brain morphology for studying the relation between apoE and the mechanism of AD in GFAP-apoE transgenic mice
引文
1. Shih, S.J., et al., Duplicated downstream enhancers control expression of the human apolipoprotein E gene in macrophages and adipose tissue. J Biol Chem, 2000. 275(41): p. 31567-72.
    2. McLean, J.W., et al., Human apolipoprotein E mRNA. cDNA cloning and nucleotide sequencing of a new variant. J Biol Chem, 1984. 259(10): p. 6498-504.
    3. Zannis, V.I., et al., Synthesis, intracellular processing, and signal peptide of human apolipoprotein E. J Biol Chem, 1984. 259(9): p. 5495-9.
    4. Weisgraber, K.H., S.C. Rall, Jr., and R.W. Mahley, Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J Biol Chem, 1981. 256(17): p. 9077-83.
    5. Ruiz, J., et al., The apoE isoform binding properties of the VLDL receptor reveal marked differences from LRP and the LDL receptor. J Lipid Res, 2005. 46(8): p. 1721-31.
    6. Wilson, C., et al., Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science, 1991. 252(5014): p. 1817-22.
    7. Weisgraber, K.H., Apolipoprotein E: structure-function relationships. Adv Protein Chem, 1994. 45: p. 249-302.
    8. Segrest, J.P., et al., The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res, 1992. 33(2): p. 141-66.
    9. Dong, L.M., et al., Human apolipoprotein E. Role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms. J Biol Chem, 1994. 269(35): p. 22358-65.
    10. Elshourbagy, N.A., et al., Apolipoprotein E mRNA is abundant in the brain and adrenals, as well as in the liver, and is present in other peripheral tissues of rats and marmosets. Proc Natl Acad Sci U S A, 1985. 82(1): p. 203-7.
    11. Williams, D.L., et al., Apolipoprotein E synthesis in peripheral tissues of nonhuman primates. J Biol Chem, 1985. 260(4): p. 2444-51.
    12. Lin, C.T., et al., Immunoreactive apolipoprotein E is a widely distributed cellular protein. Immunohistochemical localization of apolipoprotein E in baboon tissues. J Clin Invest, 1986. 78(4): p. 947-58.
    13. Boyles, J.K., et al., Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J Clin Invest, 1985. 76(4): p. 1501-13.
    14. Basu, S.K., et al., Mouse macrophages synthesize and secrete a protein resembling apolipoprotein E. Proc Natl Acad Sci U S A, 1981. 78(12): p. 7545-9.
    15. Werb, Z. and J.R. Chin, Endotoxin suppresses expression of apoprotein E by mouse macrophages in vivo and in culture. A biochemical and genetic study. J Biol Chem, 1983. 258(17): p. 10642-8.
    16. Driscoll, D.M., et al., Regulation of apolipoprotein E synthesis in rat ovarian granulosa cells. J Biol Chem, 1985. 260(15): p. 9031-8.
    17. Majack, R.A., et al., Expression of apolipoprotein E by cultured vascular smooth muscle cells is controlled by growth state. J Cell Biol, 1988. 107(3): p. 1207-13.
    18. Gordon, D.A., et al., Synthesis and secretion of apolipoprotein E by cultured human keratinocytes. J Invest Dermatol, 1989. 92(1): p. 96-9.
    19. Boyles, J.K., et al., A role for apolipoprotein E, apolipoprotein A-I, and low density lipoprotein receptors in cholesterol transport during regeneration and remyelination of the rat sciatic nerve. J Clin Invest, 1989. 83(3): p. 1015-31.
    20. Grehan, S., E. Tse, and J.M. Taylor, Two distal downstream enhancers direct expression of the human apolipoprotein E gene to astrocytes in the brain. J Neurosci, 2001. 21(3): p. 812-22.
    21. Pitas, R.E., et al., Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim Biophys Acta, 1987. 917(1): p. 148-61.
    22. Uchihara, T., et al., ApoE immunoreactivity and microglial cells in Alzheimer's disease brain. Neurosci Lett, 1995. 195(1): p. 5-8.
    23. Xu, Q., et al., Isolation and characterization of apolipoproteins from murine microglia. Identification of a low density lipoprotein-like apolipoprotein J-rich but E-poor spherical particle. J Biol Chem, 2000. 275(41): p. 31770-7.
    24. Page, K.J., R.D. Hollister, and B.T. Hyman, Dissociation of apolipoprotein and apolipoprotein receptor response to lesion in the rat brain: an in situ hybridization study. Neuroscience, 1998. 85(4): p. 1161-71.
    25. Xu, P.T., et al., Specific regional transcription of apolipoprotein E in human brain neurons. Am J Pathol, 1999. 154(2): p. 601-11.
    26. Nishio, M., et al., Neuronal apolipoprotein E is not synthesized in neuron after focal ischemia in rat brain. Neurol Res, 2003. 25(4): p. 390-4.
    27. Harris, F.M., et al., Astroglial regulation of apolipoprotein E expression in neuronal cells. Implications for Alzheimer's disease. J Biol Chem, 2004. 279(5): p. 3862-8.
    28. Huang, Y., et al., Apolipoprotein E: diversity of cellular origins, structural and biophysical properties, and effects in Alzheimer's disease. J Mol Neurosci, 2004. 23(3): p. 189-204.
    29. Huang, Y., Molecular and cellular mechanisms of apolipoprotein E4 neurotoxicity and potential therapeutic strategies. Curr Opin Drug Discov Devel, 2006. 9(5): p. 627-41.
    30. Huang, Y., Apolipoprotein E and Alzheimer disease. Neurology, 2006. 66(2 Suppl 1): p. S79-85.
    31. Xu, Q., et al., Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J Neurosci, 2006. 26(19): p. 4985-94.
    32. Mahley, R.W., Apolipoprotein E: cholesterol transport protein with expanding role in cellbiology. Science, 1988. 240(4852): p. 622-30.
    33. Ashford, J.W., APOE genotype effects on Alzheimer's disease onset and epidemiology. J Mol Neurosci, 2004. 23(3): p. 157-65.
    34. Cole, G.M., et al., Lipoprotein effects on Abeta accumulation and degradation by microglia in vitro. J Neurosci Res, 1999. 57(4): p. 504-20.
    35. Finch, C.E. and R.M. Sapolsky, The evolution of Alzheimer disease, the reproductive schedule, and apoE isoforms. Neurobiol Aging, 1999. 20(4): p. 407-28.
    36. Teter, B., et al., The presence of apoE4, not the absence of apoE3, contributes to AD pathology. J Alzheimers Dis, 2002. 4(3): p. 155-63.
    37. Herz, J. and H.H. Bock, Lipoprotein receptors in the nervous system. Annu Rev Biochem, 2002. 71: p. 405-34.
    38. May, P., J. Herz, and H.H. Bock, Molecular mechanisms of lipoprotein receptor signalling. Cell Mol Life Sci, 2005. 62(19-20): p. 2325-38.
    39. Herz, J., et al., Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. Embo J, 1988. 7(13): p. 4119-27.
    40. Takahashi, S., et al., Rabbit very low density lipoprotein receptor: a low density lipoprotein receptor-like protein with distinct ligand specificity. Proc Natl Acad Sci U S A, 1992. 89(19): p. 9252-6.
    41. Kim, D.H., et al., Human apolipoprotein E receptor 2. A novel lipoprotein receptor of the low density lipoprotein receptor family predominantly expressed in brain. J Biol Chem, 1996. 271(14): p. 8373-80.
    42. Johnson, E.B., R.E. Hammer, and J. Herz, Abnormal development of the apical ectodermal ridge and polysyndactyly in Megf7-deficient mice. Hum Mol Genet, 2005. 14(22): p. 3523-38.
    43. Kim, D.H., et al., A new low density lipoprotein receptor related protein, LRP5, is expressed in hepatocytes and adrenal cortex, and recognizes apolipoprotein E. J Biochem, 1998. 124(6): p. 1072-6.
    44. Hey, P.J., et al., Cloning of a novel member of the low-density lipoprotein receptor family. Gene, 1998. 216(1): p. 103-11.
    45. Brown, S.D., et al., Isolation and characterization of LRP6, a novel member of the low density lipoprotein receptor gene family. Biochem Biophys Res Commun, 1998. 248(3): p. 879-88.
    46. Liu, C.X., et al., LRP-DIT, a putative endocytic receptor gene, is frequently inactivated innon-small cell lung cancer cell lines. Cancer Res, 2000. 60(7): p. 1961-7.
    47. Raychowdhury, R., et al., Autoimmune target in Heymann nephritis is a glycoprotein with homology to the LDL receptor. Science, 1989. 244(4909): p. 1163-5.
    48. Rebeck, G.W., et al., Apolipoprotein E in sporadic Alzheimer's disease: allelic variation and receptor interactions. Neuron, 1993. 11(4): p. 575-80.
    49. Swanson, L.W., et al., Localization of mRNA for low density lipoprotein receptor and a cholesterol synthetic enzyme in rabbit nervous system by in situ hybridization. Proc Natl Acad Sci U S A, 1988. 85(24): p. 9821-5.
    50. Moestrup, S.K., J. Gliemann, and G. Pallesen, Distribution of the alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein in human tissues. Cell Tissue Res, 1992. 269(3): p. 375-82.
    51. Christie, R.H., et al., Expression of the very low-density lipoprotein receptor (VLDL-r), an apolipoprotein-E receptor, in the central nervous system and in Alzheimer's disease. J Neuropathol Exp Neurol, 1996. 55(4): p. 491-8.
    52. Clatworthy, A.E., et al., Expression and alternate splicing of apolipoprotein E receptor 2 in brain. Neuroscience, 1999. 90(3): p. 903-11.
    53. Herz, J., The LDL receptor gene family: (un)expected signal transducers in the brain. Neuron, 2001. 29(3): p. 571-81.
    54. Trommsdorff, M., et al., Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell, 1999. 97(6): p. 689-701.
    55. Bacskai, B.J., et al., The endocytic receptor protein LRP also mediates neuronal calcium signaling via N-methyl-D-aspartate receptors. Proc Natl Acad Sci U S A, 2000. 97(21): p. 11551-6.
    56. Ohkubo, N., et al., Apolipoprotein E4 stimulates cAMP response element-binding protein transcriptional activity through the extracellular signal-regulated kinase pathway. J Biol Chem, 2001. 276(5): p. 3046-53.
    57. Qiu, Z., et al., alpha 2-Macroglobulin exposure reduces calcium responses to N-methyl-D-aspartate via low density lipoprotein receptor-related protein in cultured hippocampal neurons. J Biol Chem, 2002. 277(17): p. 14458-66.
    58. Aono, M., et al., Protective effect of apolipoprotein E-mimetic peptides on N-methyl-D-aspartate excitotoxicity in primary rat neuronal-glial cell cultures. Neuroscience, 2003. 116(2): p. 437-45.
    59. Beffert, U., et al., Modulation of synaptic plasticity and memory by Reelin involvesdifferential splicing of the lipoprotein receptor Apoer2. Neuron, 2005. 47(4): p. 567-79.
    60. Hoe, H.S., D.C. Harris, and G.W. Rebeck, Multiple pathways of apolipoprotein E signaling in primary neurons. J Neurochem, 2005. 93(1): p. 145-55.
    61. Weeber, E.J., et al., Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem, 2002. 277(42): p. 39944-52.
    62. Beffert, U., et al., Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J Biol Chem, 2002. 277(51): p. 49958-64.
    63. LaDu, M.J., et al., Apolipoprotein E receptors mediate the effects of beta-amyloid on astrocyte cultures. J Biol Chem, 2000. 275(43): p. 33974-80.
    64. Laskowitz, D.T., et al., Downregulation of microglial activation by apolipoprotein E and apoE-mimetic peptides. Exp Neurol, 2001. 167(1): p. 74-85.
    65. LaDu, M.J., et al., Apolipoprotein E and apolipoprotein E receptors modulate A beta-induced glial neuroinflammatory responses. Neurochem Int, 2001. 39(5-6): p. 427-34.
    66. Beffert, U., et al., The neurobiology of apolipoproteins and their receptors in the CNS and Alzheimer's disease. Brain Res Brain Res Rev, 1998. 27(2): p. 119-42.
    67. Mahley, R.W., B.P. Nathan, and R.E. Pitas, Apolipoprotein E. Structure, function, and possible roles in Alzheimer's disease. Ann N Y Acad Sci, 1996. 777: p. 139-45.
    68. Srivastava, R.A., et al., Estrogen up-regulates apolipoprotein E (ApoE) gene expression by increasing ApoE mRNA in the translating pool via the estrogen receptor alpha-mediated pathway. J Biol Chem, 1997. 272(52): p. 33360-6.
    69. Stone, D.J., et al., Astrocytes and microglia respond to estrogen with increased apoE mRNA in vivo and in vitro. Exp Neurol, 1997. 143(2): p. 313-8.
    70. Cedazo-Minguez, A., et al., Regulation of apolipoprotein E secretion in rat primary hippocampal astrocyte cultures. Neuroscience, 2001. 105(3): p. 651-61.
    71. Baskin, F., et al., Altered apolipoprotein E secretion in cytokine treated human astrocyte cultures. J Neurol Sci, 1997. 148(1): p. 15-8.
    72. Ignatius, M.J., et al., Expression of apolipoprotein E during nerve degeneration and regeneration. Proc Natl Acad Sci U S A, 1986. 83(4): p. 1125-9.
    73. Boschert, U., et al., Apolipoprotein E expression by neurons surviving excitotoxic stress. Neurobiol Dis, 1999. 6(6): p. 508-14.
    74. Schmechel, D.E., et al., Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci U S A, 1993. 90(20): p. 9649-53.
    75. Dolev, I. and D.M. Michaelson, A nontransgenic mouse model shows inducible amyloid-beta (Abeta) peptide deposition and elucidates the role of apolipoprotein E in the amyloid cascade. Proc Natl Acad Sci U S A, 2004. 101(38): p. 13909-14.
    76. Hartman, R.E., et al., Apolipoprotein E4 influences amyloid deposition but not cell loss after traumatic brain injury in a mouse model of Alzheimer's disease. J Neurosci, 2002. 22(23): p. 10083-7.
    77. Wisniewski, T., et al., Acceleration of Alzheimer's fibril formation by apolipoprotein E in vitro. Am J Pathol, 1994. 145(5): p. 1030-5.
    78. LaDu, M.J., et al., Isoform-specific binding of apolipoprotein E to beta-amyloid. J Biol Chem, 1994. 269(38): p. 23403-6.
    79. Bales, K.R., et al., Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A, 1999. 96(26): p. 15233-8.
    80. Holtzman, D.M., et al., Expression of human apolipoprotein E reduces amyloid-beta deposition in a mouse model of Alzheimer's disease. J Clin Invest, 1999. 103(6): p. R15-R21.
    81. Bogdanovic, N., et al., APOE polymorphism and clinical duration determine regional neuropathology in Swedish APP(670, 671) mutation carriers: implications for late-onset Alzheimer's disease. J Cell Mol Med, 2002. 6(2): p. 199-214.
    82. Nilsson, L.N., et al., Cognitive impairment in PDAPP mice depends on ApoE and ACT-catalyzed amyloid formation. Neurobiol Aging, 2004. 25(9): p. 1153-67.
    83. Cam, J.A. and G. Bu, Modulation of beta-amyloid precursor protein trafficking and processing by the low density lipoprotein receptor family. Mol Neurodegener, 2006. 1: p. 8.
    84. Sagare, A., et al., Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med, 2007. 13(9): p. 1029-31.
    85. Ye, S., et al., Apolipoprotein (apo) E4 enhances amyloid beta peptide production in cultured neuronal cells: apoE structure as a potential therapeutic target. Proc Natl Acad Sci U S A, 2005. 102(51): p. 18700-5.
    86. Levi, O., et al., Intraneuronal amyloid-beta plays a role in mediating the synergistic pathological effects of apoE4 and environmental stimulation. J Neurochem, 2007. 103(3): p. 1031-40.
    87. Goedert, M., et al., Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron, 1989.3(4): p. 519-26.
    88. Himmler, A., et al., Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol Cell Biol, 1989. 9(4): p. 1381-8.
    89. Morishima-Kawashima, M., et al., Proline-directed and non-proline-directed phosphorylation of PHF-tau. J Biol Chem, 1995. 270(2): p. 823-9.
    90. Vulliet, R., et al., Proline-directed phosphorylation of human Tau protein. J Biol Chem, 1992. 267(31): p. 22570-4.
    91. Sergeant, N., A. Delacourte, and L. Buee, Tau protein as a differential biomarker of tauopathies. Biochim Biophys Acta, 2005. 1739(2-3): p. 179-97.
    92. Tesseur, I., et al., Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice. Am J Pathol, 2000. 156(3): p. 951-64.
    93. Brecht, W.J., et al., Neuron-specific apolipoprotein e4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J Neurosci, 2004. 24(10): p. 2527-34.
    94. Rahman, A., et al., High cholesterol diet induces tau hyperphosphorylation in apolipoprotein E deficient mice. FEBS Lett, 2005. 579(28): p. 6411-6.
    95. Strittmatter, W.J., et al., Hypothesis: microtubule instability and paired helical filament formation in the Alzheimer disease brain are related to apolipoprotein E genotype. Exp Neurol, 1994. 125(2): p. 163-71; discussion 172-4.
    96. Harris, F.M., et al., Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer's disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc Natl Acad Sci U S A, 2003. 100(19): p. 10966-71.
    97. Rapp, A., B. Gmeiner, and M. Huttinger, Implication of apoE isoforms in cholesterol metabolism by primary rat hippocampal neurons and astrocytes. Biochimie, 2006. 88(5): p. 473-83.
    98. Michikawa, M., et al., Apolipoprotein E exhibits isoform-specific promotion of lipid efflux from astrocytes and neurons in culture. J Neurochem, 2000. 74(3): p. 1008-16.
    99. Reid, P.C., et al., Alzheimer's disease: cholesterol, membrane rafts, isoprenoids and statins. J Cell Mol Med, 2007. 11(3): p. 383-92.
    100. Jarvik, G.P., et al., Interactions of apolipoprotein E genotype, total cholesterol level, age, and sex in prediction of Alzheimer's disease: a case-control study. Neurology, 1995. 45(6): p. 1092-6.
    101. Notkola, I.L., et al., Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer's disease. Neuroepidemiology, 1998. 17(1): p. 14-20.
    102. Roher, A.E., et al., Amyloid and lipids in the pathology of Alzheimer disease. Amyloid, 1999. 6(2): p. 136-45.
    103. Jick, H., et al., Statins and the risk of dementia. Lancet, 2000. 356(9242): p. 1627-31.
    104. Wolozin, B., et al., Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol, 2000. 57(10): p. 1439-43.
    105. Simons, M., et al., Treatment with simvastatin in normocholesterolemic patients with Alzheimer's disease: A 26-week randomized, placebo-controlled, double-blind trial. Ann Neurol, 2002. 52(3): p. 346-50.
    106. Zerbinatti, C.V. and G. Bu, LRP and Alzheimer's disease. Rev Neurosci, 2005. 16(2): p. 123-35.
    107. Wolozin, B., Cyp46 (24S-cholesterol hydroxylase): a genetic risk factor for Alzheimer disease. Arch Neurol, 2003. 60(1): p. 16-8.
    108. Chen, S., et al., Association of heat shock proteins and neuronal membrane components with lipid rafts from the rat brain. J Neurosci Res, 2005. 81(4): p. 522-9.
    109. Riddell, D.R., et al., Compartmentalization of beta-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr Biol, 2001. 11(16): p. 1288-93.
    110. Wahrle, S., et al., Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol Dis, 2002. 9(1): p. 11-23.
    111. Kalvodova, L., et al., Lipids as modulators of proteolytic activity of BACE: involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro. J Biol Chem, 2005. 280(44): p. 36815-23.
    112. Abad-Rodriguez, J., et al., Neuronal membrane cholesterol loss enhances amyloid peptide generation. J Cell Biol, 2004. 167(5): p. 953-60.
    113. Ehehalt, R., et al., Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol, 2003. 160(1): p. 113-23.
    114. Kawahara, M. and Y. Kuroda, Intracellular calcium changes in neuronal cells induced by Alzheimer's beta-amyloid protein are blocked by estradiol and cholesterol. Cell Mol Neurobiol, 2001. 21(1): p. 1-13.
    115. Yip, C.M., et al., Cholesterol, a modulator of membrane-associated Abeta-fibrillogenesis and neurotoxicity. J Mol Biol, 2001. 311(4): p. 723-34.
    116. Verkhratsky, A. and E.C. Toescu, Neuronal-glial networks as substrate for CNSintegration. J Cell Mol Med, 2006. 10(4): p. 826-36.
    117. Forero, D.A., et al., Synaptic dysfunction and oxidative stress in Alzheimer's disease: emerging mechanisms. J Cell Mol Med, 2006. 10(3): p. 796-805.
    118. Valastro, B., et al., AMPA receptor regulation and LTP in the hippocampus of young and aged apolipoprotein E-deficient mice. Neurobiol Aging, 2001. 22(1): p. 9-15.
    119. Buttini, M., et al., Expression of human apolipoprotein E3 or E4 in the brains of Apoe-/- mice: isoform-specific effects on neurodegeneration. J Neurosci, 1999. 19(12): p. 4867-80.
    120. Veinbergs, I. and E. Masliah, Synaptic alterations in apolipoprotein E knockout mice. Neuroscience, 1999. 91(1): p. 401-3.
    121. Tannenberg, R.K, et al., Selective loss of synaptic proteins in Alzheimer's disease: evidence for an increased severity with APOE varepsilon4. Neurochem Int.2006. 49(7): p. 631-9.
    122. Trommer, B.L., et al., ApoE isoform affects LTP in human targeted replacement mice. Neuroreport, 2004. 15(17): p. 2655-8.
    123. Tolar, M., et al., Truncated apolipoprotein E (ApoE) causes increased intracellular calcium and may mediate ApoE neurotoxicity. J Neurosci, 1999. 19(16): p. 7100-10.
    124. Cedazo-Minguez, A., M. Huttinger, and R.F. Cowburn, Beta-VLDL protects against A beta(1-42) and apoE toxicity in human SH-SY5Y neuroblastoma cells. Neuroreport, 2001. 12(2): p. 201-6.
    125. DeMattos, R.B., L.K. Curtiss, and D.L. Williams, A minimally lipidated form of cell-derived apolipoprotein E exhibits isoform-specific stimulation of neurite outgrowth in the absence of exogenous lipids or lipoproteins. J Biol Chem, 1998. 273(7): p. 4206-12.
    126. Hayashi, H., et al., Apolipoprotein E-containing lipoproteins protect neurons from apoptosis via a signaling pathway involving low-density lipoprotein receptor-related protein-1. J Neurosci, 2007. 27(8): p. 1933-41.
    127. Buttini, M., et al., Dominant negative effects of apolipoprotein E4 revealed in transgenic models of neurodegenerative disease. Neuroscience, 2000. 97(2): p. 207-10.
    128. Huang, Y., et al., Apolipoprotein E fragments present in Alzheimer's disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc Natl Acad Sci U S A, 2001. 98(15): p. 8838-43.
    129. Hatters, D.M., et al., Amino-terminal domain stability mediates apolipoprotein E aggregation into neurotoxic fibrils. J Mol Biol, 2006. 361(5): p. 932-44.
    130. Skoog, I., et al., 15-year longitudinal study of blood pressure and dementia. Lancet, 1996. 347(9009): p. 1141-5.
    131. Skoog, I., The relationship between blood pressure and dementia: a review. Biomed Pharmacother, 1997. 51(9): p. 367-75.
    132. Hofman, A., et al., Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer's disease in the Rotterdam Study. Lancet, 1997. 349(9046): p. 151-4.
    133. Breteler, M.M., Vascular involvement in cognitive decline and dementia. Epidemiologic evidence from the Rotterdam Study and the Rotterdam Scan Study. Ann N Y Acad Sci, 2000. 903: p. 457-65.
    134. de la Torre, J.C., Critical threshold cerebral hypoperfusion causes Alzheimer's disease? Acta Neuropathol, 1999. 98(1): p. 1-8.
    135. Farkas, E., et al., Similar ultrastructural breakdown of cerebrocortical capillaries in Alzheimer's disease, Parkinson's disease, and experimental hypertension. What is the functional link? Ann N Y Acad Sci, 2000. 903: p. 72-82.
    136. Farkas, E., et al., Are Alzheimer's disease, hypertension, and cerebrocapillary damage related? Neurobiol Aging, 2000. 21(2): p. 235-43.
    137. Costa, D.C., et al., CBF tomograms with [99mTc-HM-PAO in patients with dementia (Alzheimer type and HIV) and Parkinson's disease--initial results. J Cereb Blood Flow Metab, 1988. 8(6): p. S109-15.
    138. Komatani, A., et al., Assessment of demented patients by dynamic SPECT of inhaled xenon-133. J Nucl Med, 1988. 29(10): p. 1621-6.
    139. Montaldi, D., et al., Measurements of regional cerebral blood flow and cognitive performance in Alzheimer's disease. J Neurol Neurosurg Psychiatry, 1990. 53(1): p. 33-8.
    140. Eberling, J.L., et al., Reduced temporal lobe blood flow in Alzheimer's disease. Neurobiol Aging, 1992. 13(4): p. 483-91.
    141. O'Brien, J.T., et al., A study of regional cerebral blood flow and cognitive performance in Alzheimer's disease. J Neurol Neurosurg Psychiatry, 1992. 55(12): p. 1182-7.
    142. Ohnishi, T., et al., High-resolution SPECT to assess hippocampal perfusion in neuropsychiatric diseases. J Nucl Med, 1995. 36(7): p. 1163-9.
    143. Ishii, K., et al., Demonstration of decreased posterior cingulate perfusion in mild Alzheimer's disease by means of H215O positron emission tomography. Eur J Nucl Med, 1997. 24(6): p. 670-3.
    144. Imran, M.B., et al., Tc-99m HMPAO SPECT in the evaluation of Alzheimer's disease: correlation between neuropsychiatric evaluation and CBF images. J Neurol NeurosurgPsychiatry, 1999. 66(2): p. 228-32.
    145. Kalaria, R.N., et al., Production and increased detection of amyloid beta protein and amyloidogenic fragments in brain microvessels, meningeal vessels and choroid plexus in Alzheimer's disease. Brain Res Mol Brain Res, 1996. 35(1-2): p. 58-68.
    146. Vinters, H.V., Cerebral amyloid angiopathy. A critical review. Stroke, 1987. 18(2): p. 311-24.
    147. Coria, F. and I. Rubio, Cerebral amyloid angiopathies. Neuropathol Appl Neurobiol, 1996. 22(3): p. 216-27.
    148. Opeskin, K., Cerebral amyloid angiopathy. A review. Am J Forensic Med Pathol, 1996. 17(3): p. 248-54.
    149. Buee, L., P.R. Hof, and A. Delacourte, Brain microvascular changes in Alzheimer's disease and other dementias. Ann N Y Acad Sci, 1997. 826: p. 7-24.
    150. Scheibel, A.B., Alterations of the cerebral capillary bed in the senile dementia of Alzheimer. Ital J Neurol Sci, 1987. 8(5): p. 457-63.
    151. Hashimura, T., T. Kimura, and T. Miyakawa, Morphological changes of blood vessels in the brain with Alzheimer's disease. Jpn J Psychiatry Neurol, 1991. 45(3): p. 661-5.
    152. Kimura, T., T. Hashimura, and T. Miyakawa, Observations of microvessels in the brain with Alzheimer's disease by the scanning electron microscopy. Jpn J Psychiatry Neurol, 1991. 45(3): p. 671-6.
    153. Miyakawa, T., et al., Morphological changes of microvessels in the brain with Alzheimer's disease. Jpn J Psychiatry Neurol, 1988. 42(4): p. 819-24.
    154. Higuchi, Y., et al., Ultrastructural changes of blood vessels in the cerebral cortex in Alzheimer's disease. Jpn J Psychiatry Neurol, 1987. 41(2): p. 283-90.
    155. Fullerton, S.M., et al., Impairment of the blood-nerve and blood-brain barriers in apolipoprotein e knockout mice. Exp Neurol, 2001. 169(1): p. 13-22.
    156. Mulder, M., et al., Apolipoprotein E protects against neuropathology induced by a high-fat diet and maintains the integrity of the blood-brain barrier during aging. Lab Invest, 2001. 81(7): p. 953-60.
    157. Methia, N., et al., ApoE deficiency compromises the blood brain barrier especially after injury. Mol Med, 2001. 7(12): p. 810-5.
    158. Hafezi-Moghadam, A., K.L. Thomas, and D.D. Wagner, ApoE deficiency leads to a progressive age-dependent blood-brain barrier leakage. Am J Physiol Cell Physiol, 2007. 292(4): p. C1256-62.
    159. Yip, A.G., et al., APOE, vascular pathology, and the AD brain. Neurology, 2005. 65(2): p.259-65.
    160. Zipser, B.D., et al., Microvascular injury and blood-brain barrier leakage in Alzheimer's disease. Neurobiol Aging, 2007. 28(7): p. 977-86.
    161. Salloway, S., et al., Effect of APOE genotype on microvascular basement membrane in Alzheimer's disease. J Neurol Sci, 2002. 203-204: p. 183-7.
    162. Weisgraber, K.H., et al., Human apolipoprotein E. Determination of the heparin binding sites of apolipoprotein E3. J Biol Chem, 1986. 261(5): p. 2068-76.
    163. Huang, D.Y., et al., Interaction of apolipoprotein E with laminin increases neuronal adhesion and alters neurite morphology. Exp Neurol, 1995. 136(2): p. 251-7.
    164. Attems, J., F. Lintner, and K.A. Jellinger, Amyloid beta peptide 1-42 highly correlates with capillary cerebral amyloid angiopathy and Alzheimer disease pathology. Acta Neuropathol, 2004. 107(4): p. 283-91.
    165. Thal, D.R., et al., Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol, 2002. 61(3): p. 282-93.
    166. Attems, J. and K.A. Jellinger, Only cerebral capillary amyloid angiopathy correlates with Alzheimer pathology--a pilot study. Acta Neuropathol, 2004. 107(2): p. 83-90.
    167. Folin, M., et al., Apolipoprotein-E modulates the cytotoxic effect of beta-amyloid on rat brain endothelium in an isoform-dependent specific manner. Int J Mol Med, 2006. 17(5): p. 821-6.
    168. Schachter, F., et al., Genetic associations with human longevity at the APOE and ACE loci. Nat Genet, 1994. 6(1): p. 29-32.
    169. Deary, I.J., et al., Apolipoprotein e gene variability and cognitive functions at age 79: a follow-up of the Scottish mental survey of 1932. Psychol Aging, 2004. 19(2): p. 367-71.
    170. Brookmeyer, R., S. Gray, and C. Kawas, Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset. Am J Public Health, 1998. 88(9): p. 1337-42.
    171. Corder, E.H., et al., Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science, 1993. 261(5123): p. 921-3.
    172. Corder, E.H., et al., Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet, 1994. 7(2): p. 180-4.
    1. Mahley, R.W., Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science, 1988. 240(4852): p. 622-30.
    2. Driscoll, D.M. and G.S. Getz, Extrahepatic synthesis of apolipoprotein E. J Lipid Res, 1984. 25(12): p. 1368-79.
    3. Elshourbagy, N.A., et al., Apolipoprotein E mRNA is abundant in the brain and adrenals, as well as in the liver, and is present in other peripheral tissues of rats and marmosets. Proc Natl Acad Sci U S A, 1985. 82(1): p. 203-7.
    4. Weisgraber, K.H., S.C. Rall, Jr., and R.W. Mahley, Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J Biol Chem, 1981. 256(17): p. 9077-83.
    5. Weisgraber, K.H. and R.W. Mahley, Human apolipoprotein E: the Alzheimer's disease connection. Faseb J, 1996. 10(13): p. 1485-94.
    6. Hatters, D.M., C.A. Peters-Libeu, and K.H. Weisgraber, Apolipoprotein E structure: insights into function. Trends Biochem Sci, 2006. 31(8): p. 445-54.
    7. Saunders, A.M., et al., Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology, 1993. 43(8): p. 1467-72.
    8. Corder, E.H., et al., Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science, 1993. 261(5123): p. 921-3.
    9. Alberts, M.J., et al., ApoE genotype and survival from intracerebral haemorrhage. Lancet, 1995. 346(8974): p. 575.
    10. Tardiff, B.E., et al., Preliminary report of a genetic basis for cognitive decline after cardiac operations. The Neurologic Outcome Research Group of the Duke Heart Center. Ann Thorac Surg, 1997. 64(3): p. 715-20.
    11. Slooter, A.J., et al., Apolipoprotein E epsilon4 and the risk of dementia with stroke. A population-based investigation. Jama, 1997. 277(10): p. 818-21.
    12. Piedrahita, J.A., et al., Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci U S A, 1992. 89(10): p. 4471-5.
    13. Plump, A.S., et al., Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell, 1992. 71(2): p. 343-53.
    14. Masliah, E., et al., Neurodegeneration in the central nervous system of apoE-deficient mice. Exp Neurol, 1995. 136(2): p. 107-22.
    15. Fullerton, S.M., et al., Impairment of the blood-nerve and blood-brain barriers in apolipoprotein e knockout mice. Exp Neurol, 2001. 169(1): p. 13-22.
    16. Laskowitz, D.T., et al., Apolipoprotein E-deficient mice have increased susceptibility to focal cerebral ischemia. J Cereb Blood Flow Metab, 1997. 17(7): p. 753-8.
    17. Tesseur, I., et al., Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice. Am J Pathol, 2000. 156(3): p. 951-64.
    18. Raber, J., et al., Isoform-specific effects of human apolipoprotein E on brain function revealed in ApoE knockout mice: increased susceptibility of females. Proc Natl Acad Sci U S A, 1998. 95(18): p. 10914-9.
    19. Sun, Y., et al., Glial fibrillary acidic protein-apolipoprotein E (apoE) transgenic mice: astrocyte-specific expression and differing biological effects of astrocyte-secreted apoE3 and apoE4 lipoproteins. J Neurosci, 1998. 18(9): p. 3261-72.
    20. Hartman, R.E., et al., Behavioral phenotyping of GFAP-apoE3 and -apoE4 transgenic mice: apoE4 mice show profound working memory impairments in the absence of Alzheimer's-like neuropathology. Exp Neurol, 2001. 170(2): p. 326-44.
    21. Buttini, M., et al., Expression of human apolipoprotein E3 or E4 in the brains of Apoe-/-mice: isoform-specific effects on neurodegeneration. J Neurosci, 1999. 19(12): p. 4867-80.
    22. Bermejo-Pareja, F., et al., Incidence and subtypes of dementia in three elderly populations of central Spain. J Neurol Sci, 2008. 264(1-2): p. 63-72.
    23. Di Carlo, A., et al., Incidence of dementia, Alzheimer's disease, and vascular dementia in Italy. The ILSA Study. J Am Geriatr Soc, 2002. 50(1): p. 41-8.
    24. Deary, I.J., et al., Searching for genetic influences on normal cognitive ageing. Trends Cogn Sci, 2004. 8(4): p. 178-84.
    25. Hixson, J.E. and D.T. Vernier, Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res, 1990. 31(3): p. 545-8.
    26. Jessberger, S. and F.H. Gage, Stem-cell-associated structural and functional plasticity in the aging hippocampus. Psychol Aging, 2008. 23(4): p. 684-91.
    27. Mahley, R.W. and Y. Huang, Apolipoprotein E: from atherosclerosis to Alzheimer's disease and beyond. Curr Opin Lipidol, 1999. 10(3): p. 207-17. [29] Buée L, Hof PR, Delacourte A. Brain microvascular changes in Alzheimer's disease and other dementias. Ann N Y Acad Sci 1997, 826: 7-24.
    28 Mancardi GL, Perdelli F, Rivano C, Leonardi A, Bugiani O. Thickening of the basement membrane of cortical capillaries in Alzheimer's disease. Acta Neuropathol 1980, 49(1): 79-83.
    29 Scheibel AB, Duong TH, Jacobs R. Alzheimer's disease as a capillary dementia. Ann Med 1989, 21(2): 103-107.
    30 de Jong GI, de Weerd H, Schuurman T, Traber J, Luiten PG. Microvascular changes in aged rat forebrain. Effects of chronic nimodipine treatment. Neurobiol Aging 1990, 11(4): 381-389.
    31 de Jong GI, Jansen AS, Horvath E, Gispen WH, Luiten PG. Nimodipine effects on cerebral microvessels and sciatic nerve in aging rats. Neurobiol Aging 1992, 13(1): 73-81.
    32 Keuker JI, Luiten PG, Fuchs E. Capillary changes in hippocampal CA1 and CA3 areas of the aging rhesus monkey. Acta Neuropathol 2000, 100(6): 665-672.
    33 Whael K, Stefanache F, Hodorog DN. [Clinical and prognostic considerations in thalamic hemorrhage. Clinical study on 117 cases]. Rev Med Chir Soc Med Nat Iasi 2008, 113(2): 366-370.
    34 Farkas E, Luiten PG. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog Neurobiol 2001, 64(6): 575-611.
    35 Erusalimsky JD, Skene C. Mechanisms of endothelial senescence. Exp Physiol 2009, 94(3): 299-304.
    37 Shah GN, Mooradian AD. Age-related changes in the blood-brain barrier. Exp Gerontol 1997, 32(4-5): 501-519.
    38. Casserly, I. and E. Topol, Convergence of atherosclerosis and Alzheimer's disease: inflammation, cholesterol, and misfolded proteins. Lancet, 2004. 363(9415): p. 1139-46.
    39. Downs, J.R., et al., Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. Jama, 1998. 279(20): p. 1615-22.
    40. Eichner, J.E., et al., Relation of apolipoprotein E phenotype to myocardial infarction and mortality from coronary artery disease. Am J Cardiol, 1993. 71(2): p. 160-5.
    41. Wang, C.X. and A. Shuaib, Critical role of microvasculature basal lamina in ischemic brain injury. Prog Neurobiol, 2007. 83(3): p. 140-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700