雷达辐射源信号智能识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达辐射源信号识别是电子情报侦察(ELINT)、电子支援侦察(ESM)和雷达威胁告警(RWR)系统中的关键处理过程,也是电子干扰的前提和基础,其识别水平是衡量雷达对抗设备技术先进程度的重要标志。随着现代电子战的激烈对抗,复杂体制雷达辐射源迅速增加并逐渐占居主导地位,复杂多变的信号形式大大弱化并逐渐使传统识别方法失去其有效性。雷达辐射源信号识别已面临前所未有的挑战。目前,我国识别复杂体制雷达辐射源信号的水平与美国等发达国家相比,差距十分明显。其根本原因在于我国在此方面的理论研究水平较低,缺乏支撑雷达对抗装备技术改进的理论根据。作为我国电子对抗的核心科研基地,西南电子设备研究所的专家们在现代电子装备的研究中深深感到,当前雷达对抗装备的技术水平难以适应复杂体制雷达辐射源占主导地位的电子对抗环境,雷达辐射源信号识别的现有方法滞后于迅速发展的雷达技术。因此,复杂体制雷达辐射源信号识别成为电子对抗领域中迫切需要解决的关键问题,只有探索出有效的识别新方法,才能从根本上提高ELINT、ESM和RWR系统的技术水平
     近年来,尽管雷达辐射源信号识别受到电子对抗人员的高度重视,并提出了多种识别方法,但是,采用常规五参数的传统识别方法及其改进方法在识别新体制雷达辐射源信号时遇到严重困难,而现有的脉内细微特征分析法主要对少数两三种雷达辐射源信号进行定性分析,且很少考虑噪声的影响,难以满足现代信息战对电子对抗侦察系统智能化的要求。对于识别复杂多变的新体制雷达辐射源信号的难题,首先需要从不同角度采用多种方法探索新体制复杂辐射源信号的有效特征,然后对高维特征进行筛选、降维,再用高效的分类器实现自动分类识别。通过系统的理论研究,形成能对雷达辐射源信号识别的技术改进予以有效支持的理论方法体系。
     针对我国雷达对抗信号处理研究工作中迫切需要解决的关键理论问题,本文对雷达辐射源信号智能识别的模型结构和算法进行了探索性和系统性研究,获得了如下的研究成果:
     1 提出一种新的雷达辐射源信号识别模型结构,以一种崭新的思路研
Radar emitter signal recognition is one of the key procedure of signal processing in ELectronic INTelligence (ELINT), Electronic Support Measures (ESM) and Radar Warning Receiver (RWR) systems in electronic warfare. It is also the precondition and foundation of electronic interfering. The state of the art of radar emitter signal recognition corresponds to the technical merit of electronic reconnaissance equipment. As countermeasure activities in modern electronic warfare become more and more drastic, advanced radars increase rapidly and become the main component of radars gradually. Complex and changeful signal waveform weakens greatly the validity of traditional recognition methods and makes the validity lose gradually. Radar emitter signal recognition has been confronted with strange challenges. At present, there is a big gap between the state of the art of recognizing advanced radar emitter signals in our country and that in some advanced countries such as the United States of America. The prime reason lies in low level of theoretic research about radar emitter signal recognition in our country and lack of theoretic basis for improving counter-radar equipments. Southwest Institute of Electronic Equipment (SWIEE) is a key base of scientific research in electronic warfare in our country. In the process of studying modern electronic equipment, the experts of SWIEE profoundly point out that the currently technical merit of counter-radar equipments cannot adapt the complex environment of modern electronic warfare in which advanced radars will have a decisive influence, and the existing methods for recognizing radar emitter signals lag behind rapid-development radar technique. Therefore, the recognition of advanced radar emitter signals becomes a key problem to solve urgently in electronic warfare. Only some new and valid approaches are explored, can the technical merit of ELINT, ESM and RWR systems be enhanced radically.In recent years, although radar emitter signal recognition is paid much attention and some recognition methods were presented, using conventional 5 parameters, traditional recognition methods and their improved methods
    encounter serious difficulties in identifying advanced radar emitter signals. Unfortunately, the existing intrapulse characteristic extraction approaches only analyze qualitatively two or three radar emitter signals without considering the effects of noise nearly. So the approaches cannot meet the intelligentized requirements of modern information warfare for electronic warfare reconnaissance systems. For the difficult problem of recognizing complicatedly and changefully advanced radar emitter signals, multiple methods need be used to extract the valid features from radar emitter signals from multiple different views firstly. The features construct a high-dimensional feature vector. Then, some feature selection methods are proposed to select the most discriminatory features and to eliminate redundant features so as to lower the dimensionality of the feature vector. Finally, efficient classifiers are designed to fulfill automatic recognition of radar emitter signals. Through theoretic research systematically, the theory can be established to improving the techniques for recognizing radar emitter signals effectively.Aiming at the key issue to solve urgently in signal processing of electronic warfare in our country, intelligent recognition model and algorithms for advanced radar emitter signals are studied systematically and exploringly in this dissertation. Theoretical fruits are as follows.1 A new model structure for recognizing radar emitter signals is proposed and consequently a fire-new thinking is introduced to solve the difficult problem of advanced radar emitter signal recognition. The existing matching technique using 5 conventional parameters identifies advanced radar emitter signals difficultly. According to the characteristics of advanced radar emitter signals and the drawbacks of the existing methods, this dissertation uses a new way, including feature analysis and extraction, feature evaluation and selection, classifier design, to solve the difficult issue of radar emitter signal recognition. The algorithms for implementing the proposed model structure and testing experiments validate that the new model structure is more effective than the current model structure.2 When Signal-to-Noise Rate (SNR) varies in a certain range, Several
    features of radar emitter signals are analyzed and studied quantificationally. From different views, different feature extraction methods are used to explore the intrinsical characteristics. Several methods including resemblance coefficient feature extraction, entropy feature extraction, complexity feature extraction and wavelet packet transform feature extraction are proposed to extract features from radar emitter signals. Noise-suppression performances of resemblance coefficient features, entropy features and complexity features are analyzed qualitatively or quantificationally. Experimental results show that these features are not nearly affected by noise and have good stability when SNR is above 5 dB or 6 dB. Using the several feature extraction methods, two resemblance coefficient features, two entropy features (approximate entropy and norm entropy), 8 wavelet packet decomposition features and 4 complexity features (Lempel-Ziv complexity, information dimension, box dimension and correlation dimension) are extracted from multiple radar emitter signals. Furthermore, the time complexities of the feature extraction methods, the within-class clustering and between-class separability of these features are used to evaluate comparatively the performances of the methods and the qualities of the features.3 After the features are extracted adequately from radar emitter signals, models and algorithms for exploring intrinsical features of radar emitter signals are studied further. Five feature selection methods, including class-separability, satisfactory rate of feature set, resemblance coefficient, rough set theory and discriminability coefficient, are proposed to analyze and evaluate the extracted features from different aspects and to eliminate redundant features so as to lower the dimensionality of feature space. Also, a large number of comparative experiments are made and it is proved that the several proposed methods are superior to several feature selection methods in the existing literatures greatly.Rough set theory can only deal with discreted attributes. The existing discretization definition based on cut-splitting is extended to generalized discretization definition based on class-separability. A novel method is presented to discretize interval-valued continuous attributes that cannot be processed effectively by the existing discretization methods. Also, time complexity of the
    method is analyzed qualitatively.In the process of feature selection using class-separability, satisfactory rate of feature set and resemblance coefficient, a novel quantum genetic algorithm is proposed to search the best feature subset from original feature set. Comparing with traditional genetic algorithms, the novel quantum genetic algorithm has stronger searching capability, faster convergence speed, shorter computing time and better capability to avoid too-early convergence.4 Four classifier design methods, including Rough Set Neural Network (RSNN), Combination Support Vector Machine (CSVM), Huffman Tree Support Vector Machine (HTSVM) and Rough Set Support Vector Machine (RS-SVM), are proposed to recognize radar emitter signals automatically. The validities and superiorities of the 4 classifiers are shown in the comparative experiments.A large number of comparative experiments are made and several conclusions can be drawn: RSNN is superior to Radial Basis Function Neural Network (RBFNN), Probability Neural Network (PNN) and Back-Propagation Neural Network (BPNN) in classification capability and recognition efficiency; three popular multiclass classification Support Vector Machines (SVMs) including One-Against-All (OAA), One-Against-One (OAO) and Binary Tree Architecture (BTA), have better classification capabilities than RBFNN, PNN and BPNN; CSVM is superior to OAA, OAO and BTA greatly in classification capability and efficiency; HTSVM has faster recognition speed than OAA, OAO and BTA instead of lowering its classification performance; the introduction of rough set theory not only strengthens greatly classification capability of SVMs, but also enhances the generalization capability of SVMs.Unknown radar emitter signal recognition is also an important issue. This dissertation also discusses the applications of Competitive Learning Neural Network (CLNN) and Self-Organizing feature Map Neural Network (SOMNN) to recognizing radar emitter signals.5 One hundred and fifty-five radar emitter signals with different signal parameters are chosen to make recapitulative experiments to test the validity of the proposed model structure. Each of the 155 signals has one of 8 intrapulse
    modulations. Experimental results show that the proposed model structure can recognize the advanced radar emitter signals more effectively than the current model structure, which proves that the introduced model structure is more practical than the current model structure. Also, CSVM and the feature subsets obtained by using respectively 4 feature selection methods including class-separability, satisfactory rate of feature set, resemblance coefficient and rough set theory are employed to make comparative experiments to identify the advanced radar emitter signals. About 88%, 85%, 93% and 91% correct recognition rates are achieved respectively, which testifies again that the validities and practicalities of the feature selection methods and CSVM. Moreover, some experiments are also made using CLNN and SOMNN respectively. Unsatisfying experimental results indicate that the performances of CLNN and SOMNN need improve further in future research.This work was supported partially by Electronic Warfare Technology Pre-research Foundation (NEWL51435QT220401), by the National EW Laboratory Foundation (No.51435030101ZS0502), and also supported by Doctorial Innovation Foundation (2003.12).
引文
[1] 崔衍松.电子战概论.北京:空军司令部电子对抗部出版,2001.
    [2] Schroer R. Electronic warfare. IEEE Aerospace Electronic Systems Magazine, 2003, 18(7): 49-54.
    [3] Luke V. Battle of the beams: the new case for electronic warfare. 2002 Edition of Defense News. www.crows.org.
    [4] 林锋.电子对抗.北京:科学出版社,1987.
    [5] 林象平.ECM=电子对抗,电子对抗≠电子战——论电子战、电子对抗的科学定义及其技术内涵.航天电子对抗,1994,(4):38-41.
    [6] Lighart V A, Logvin A I. A survey of radar ECM and ECCM, IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(3): 1110-1120.
    [7] 林象平.雷达对抗原理.西安:西北电讯工程学院出版社,1985.
    [8] Vaccaro D D. Electronic warfare receiver systems. Norwood, MA: Artech House, Inc., 1993.
    [9] 胡来招.雷达侦察接收机.北京:国防工业出版社,2000.
    [10] 戚世权,姜秋喜.电子战数字接收机及其信号处理.航天电子对抗.1994,(4):47-50.
    [11] Granger E, Rubin M A, Grossberg, et al. A what-and where fusion neural network for recognition and tracking of multiple radar emitters. Neural Networks, 2001, 14(3): 325-344.
    [12] Wiley R G. Electronic intelligence: the analysis of radar signals. Norwood, MA: Artech House, Inc., 1982.
    [13] Lee J P Y. A multi-channel digital receiver for intrapulse analysis and direction-finding. Proceedings of IEEE Pacific Rim Conference on Communication, Computers and Signal Processing, 1999, 589-592.
    [14] Zhang G X, Rong H N, Jin W D, Hu L Z. Radar emitter signal recognition based on resemblance coefficient features, Lecture Notes in Computer Science, 2004, vol.3066, 665-670.
    [15] 黄知涛,周一宇,姜文利,基于相对无模糊相位重构的自动脉内调制特性分析.通信学报,2003,24(4):153-160.
    [16] Xin G, Xiao Y, You H. Research on technology of radar emitter recognition. Proceedings of International Conference on Machine Learning and Cybernetics, 2004, 1841-1844.
    [17] 肖先赐.信号分选的最佳方法.电子对抗,1981,no.6,1-10.
    [18] Ford B P, Middlebrook V S. Using a knowledge based system for emitter classification and ambiguity resolution. Proceedings of the IEEE 1989 National Aerospace and Electronics Conference, 1989, 1739-1746.
    [19] 张葛祥,胡来招,金炜东,雷达辐射源信号脉内特征分析.红外与毫米波学报,2004,23(6):477-480.
    [20] 徐欣.雷达截获系统实时脉冲列去交错技术研究[博士论文].长沙:国防科技大学,2001.
    [21] Hassan H E. A new algorithm for radar emitter recognition. Proceedings of the 3rd international symposium on image and signal processing and analysis, 2003, 1097-1101.
    [22] 电子情报研究报告——信息战及其装备技术发展研究.电子工业部科学技术情报研究所,1998.
    [23] 李祖新.雷达对抗面临严重挑战.舰船电子对抗,1999,(1):5-8
    [24] Elbirt A J. Information warfare: are you at risk. IEEE Technology and Society Magazine, 2003, 22(4): 13-19.
    [25] Stein F, Garska J, Mcindoo P L. Network-centric warfare: impact on army operations. EUROCOMM: Information Systems for Enhanced Public Safety and Security, 2000, 288-295.
    [26] Waltz E.信息战原理与实践.吴汉平译.北京:电子工业出版社,2004.
    [27] 桑炜森,顾耀平.综合电子战新技术新方法.北京:国防工业出版社,1996.
    [28] Langley L E. Specific emitter identification (SEI) and classical parameter fusion technology. Proceedings of the WESCON, 1993, pp377-381.
    [29] Matuszewski J, Paradowski L. The knowledge based approach for emitter identification. Proceedings of 12th International Conference on Microwaves and Radar, 1998, 810-814.
    [30] Xin G, Xiao Y, You H. A novel radar emitter recognition algorithm based on fuzzy comprehensive evaluation. Proceedings of the International Computer Congress on Wavelet Analysis and its Applications, and Active Media Technology, 2004, 228-233.
    [31] Therrien C W. Application of feature extraction to radar signature classification. Proceedings of the 2nd International Pattern Recognition Symposium, 1974, 125-132.
    [32] 牛海,马颖.小波-神经网络在辐射源识别中的应用研究.系统工程与电子技术,2002,24(5):55-57.
    [33] 刘刚.雷达指纹分析的基本理论探讨.电子对抗.2002,(6):1-6.
    [34] Davies C L, Hollands H. Automatic processing for ESM. IEE Proceedings, Part F: Radar & Signal Process, 1982, 129(3): 146-171.
    [35] Andrews R S. ESM processing using 3D memory mapping and adaptive pattern formation algorithms. Military Microwaves Transactions, 1984, 27-36.
    [36] Mardia H K. Adaptive multi-dimensional clustering for ESM. Proceedings of IEE Colloquium on Signal Processing for ESM Systems, 1988, 5/1-5/4.
    [37] Gregoire D G, Singletary G B. Advanced ESM AOA and location technique. Proceedings of IEEE National Aerospace and Electronics Conference, 1989, 917-924.
    [38] 王乃和.关于ESM中雷达信号分选识别问题的探讨.电子对抗,1991,(3):44-51.
    [39] 余农,潘联安.雷达告警系统的信号识别.航天电子对抗,1991,(2):22-26.
    [40] Turner, B. High level modeling tools for tactical ELINT systems. Proceedings of IEE Colloquium on Electronic Warfare Systems, 1991, 9/1-9/6.
    [41] Zhang G X, Hu L Z, Jin W D. Complexity feature extraction of radar emitter signals. Proceedings of the third Asia-Pacific conference on Environmental Electromagnetics, 2003, 495-498.
    [42] 肖先赐.电子侦察中的关键技术.电子对抗,1991,(4):1-6.
    [43] 黄知涛,卢启中,姜文利等.基于双门限检测的辐射源识别方法.系统工程与电子技术,2001,23(11):62-66.
    [44] Roe J. A review applications of artificial intelligence techniques to navel ESM signal processing. Proceedings of IEE Colloquium on the Applications of artificial intelligence techniques to Signal Processing, 1989, 5/1-5/5.
    [45] Roe A L. Artificial neural networks for ESM emitter identification-an initial study. Proceedings of IEE Colloquium on Neural Networks for Systems: Principles and Applications, 1991, 4/1-4/3.
    [46] Roe J. Pudner A. The real-time implementation of emitter identification for ESM. Proceedings of IEE Colloquium on Signal Processing in Electronic Warfare, 1994, 7/1-7/6.
    [47] Ford B P, Middlebrook V S. Using a knowledge based system for emitter classification and ambiguity resolution. Proceedings of the IEEE National Aerospace and Electronics Conference, 1989, 1739-1746.
    [48] Whalley G W. Signal processing requirements for future ESM systems. Proceedings of IEE Colloquium on Signal Processing for ESM Systems, 1988, 2/1-2/4.
    [49] Anderson J A, Gately M T, Penz P A, et al. Radar signal categorization using a neural network. Proceedings of the IEEE, 1990, 78(10): 1646-1657.
    [50] Matuszewski J, Paradowski L. The knowledge based approach for emitter identification. Proceedings of 12th International Conference on Microwaves and Radar, 1998, 810-814.
    [51] Dudczyk J, Matuszewski J, Wnuk M. Applying the relational modeling and knowledge based techniques to the emitter database design. Proceedings of 14th International Conference on Microwaves, Radar and Wireless Communications, 2002, 172-175.
    [52] 张小飞,徐大专.基于知识库的雷达辐射源识别专家系统.现代雷达.2003,25(10):1-4.
    [53] 陈锡明,祝正威,卢显良.新型雷达辐射源识别专家系统的研究与实现.系统工程与电子技术,2000,22(8):58-62.
    [54] 梁百川.神经元网络用于辐射源分选、识别.航天电子对抗.1994,(2):34-40.
    [55] Granger E, Rubin M A, Grossberg S, et al. Radar ESM with a what-and where fusion neural network. Proceedings of the 2001 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing, 2001, Ⅺ: 539-548.
    [56] 王建华,赵莉萍,虞平良等.模糊神经网络的舰载雷达辐射源识别方法.哈尔滨理工大学学报,1999,14(2):67-69.
    [57] Shieh C S, Lin C T. A vector network for emitter identification, IEEE Transaction on Antennas and Propagation, 2002, 50(8): 1120-1127.
    [58] 唐斌,胡光锐.基于免疫RBF网络的雷达信号分类识别.数据采集与处理,2002,17(4):371-375.
    [59] 张国柱,姜文利,周一宇.基于神经网络的辐射源识别系统设计.系统工程与电子技术,2004,26(2):268-272.
    [60] 张国柱,周一宇,姜文利.基于贝叶斯理论的辐射源分类识别方法研究.信号处理,2004,20(4):350-352.
    [61] Perdriau B. Modulation domain offers a new view of radar performance. MSN, 1990, April, 27-43.
    [62] 阎向东,张庆荣,林象平.脉压信号的脉内调制特征提取.电子对抗,1991,(4):23-31.
    [63] 顾燕铧.几种新体制雷达信号脉内提取和识别仿真.舰船电子对抗.2003,26(2):14-18.
    [64] 朱拥建.一种简单高效的雷达信号脉内特征提取算法.电子侦察干扰.2003,(3):7-8.
    [65] 阎向东,张庆荣,林象平.一种脉压雷达信号的识别方法.航天电子对抗,1994,(1):45-48.
    [66] Roome S J. Classification of radar signals in modulation domain. Electronics Letters, 1992, 28(8): 704-705.
    [67] 李丕根,李吉孚.特殊雷达信号脉内特征的提取.电子对抗.1992,(4): 8-14.
    [68] 穆世强.雷达信号细微特性分析.电子对抗,1992,(1):1-11.
    [69] 何自强.雷达信号脉内特征提取技术评述.电子对抗,1992,(4):1-7.
    [70] 李玉才,杨绍全.脉冲多普勒雷达识别中的信号调制信息提取.航天电子对抗,20044,(3):17-20.
    [71] 魏东升,巫胜洪,唐斌.雷达信号脉内细微特征的研究,舰船科学技术.1994,(3):23-30.
    [72] 巫胜洪.雷达脉内特征提取方法的研究.舰船电子对抗.2002,25(1):25-28.
    [73] 刘东霞.脉内调制信号的分析与自动识别[硕士论文].西安:西安电子科技大学,2002.
    [74] Ray P S. Radar waveform modulation recognition by neural processing. Proceedings of International Symposium on Signal Processing and its Applications, 1996, 121-124.
    [75] 魏东升,徐东晖,林象平.雷达信号脉内细微特征的时频分析.电子对抗.1993,(4):7-13.
    [76] 赵拥军,黄洁.雷达信号细微特征时频分析法.现代雷达.2003,25(12):26-28.
    [77] 曲长文,乔治国.雷达信号脉内特征的小波分析.上海航天,1996,(5):15-19.
    [78] Liu W K, Zhu D J, Zhang C H. The extraction of modulation characteristics of radar signal using wavelet transform. Proceedings of the 4th International Conference on Signal Processing, 1998, 288-291.
    [79] 刘爱霞,赵国庆.雷达信号包络特征的检测与分析.电子对抗技术,2002,17(3):12-16.
    [80] 梁百川.利用小波变换识别脉内调制信号.电子对抗.1998,(3):1-12.
    [81] 郁春来,何明浩,裴立志.基于改进小波脊线法的LFM信号脉内特征提取.航天电子对抗,2004,(4):38-42.
    [82] 那云虓,司锡才,蒯冲.二相编码信号调制分析与识别.系统工程与电子技术,2004,26(3):298-230.
    [83] 韩国成,吴顺君.雷达信号脉内调制特征的时频分析.航天电子对抗, 2004, (3): 34-37.
    [84] Kawalec A, Owczarek R. Radar emitter recognition using intrapulse data. Proceedings of 15th International Conference on Microwaves, Radar and Wireless Communications, 2004, 2: 435-438.
    [85] Dudczyk J, Matuszewski J, Wnuk M. Applying the radiated emission to the specific emitter identification. Proceedings of 15th International Conference on Microwaves, Radar and Wireless Communications, 2004, 2: 431-434.
    [86] 边肇祺,张学工.模式识别(第二版).北京:清华大学出版社,2000.
    [87] 张葛祥,金炜东,胡来招.雷达辐射源信号智能识别方法研究.2004年全国博士生学术论坛电子信息领域信息与通信工程分论坛论文集,2004,387-392.
    [88] Zhang G X, Hu L Z, Jin W D. Resemblance coefficient based intrapulse feature extraction approach for radar emitter signals. Chinese Journal of Electronics, 2005, 14(2): 337-341.
    [89] 张葛祥,胡来招,金炜东.基于熵特征的雷达辐射源信号识别.电波科学学报.(已录用,将在2005年刊出)
    [90] Pincus S M. Approximate entropy: a complexity measure for biological time series data. Proceedings of the IEEE 17th Annual Northeast Bioengineering Conference, 1991, 35-36.
    [91] Wang K Q, Xu L S, Li Z G, et al. Approximate entropy based pulse variability analysis. Proceedings of the 16th IEEE Symposium on Computer-Based Medical Systems, 2003, 1-6.
    [92] Moraru L, Cimponeriu L, Bezerianos A. Heart period dynamics following an asphyxia experiment in rats. Proceedings of 14th International Conference on Digital Signal Processing, 2002, 2: 1165-1168.
    [93] Hong B, Yang F S, Tang Q Y, et al. Approximate entropy and its preliminary application in the field of EEG and cognition. Proceedings of the 20th annual international conference of the IEEE Engineering in Medicine and Biology Society, 1998, 20(4): 2091-2094.
    [94] 杨福生,廖旺才.近似熵:一种适用于短数据的复杂性度量.中国医疗 器械杂志,1997,21(5):283-286.
    [95] 洪波,唐庆玉,杨福生,陈天祥.近似熵、互近似熵的性质、快速算法及其在脑电与认知研究中的初步应用.信号处理,1999,15(2):100-108.
    [96] 胥永刚,李凌军,何正嘉.近似熵及其在机械设备故障诊断中的应用.信息与控制,2002,31(6):547-551.
    [97] Camastra F, Vinciarelli A. Intrinsic dimension estimation of data: An approach based on Grassberger-Procaccia's algorithm. Neural Processing Letters, 2001, 14(1): 27-34.
    [98] 汪慰军,陈进,吴昭同,姜鸣.关联维数的计算及其在大机组故障诊断中的应用.上海交通大学学报,2000,34(9):1265-1268.
    [99] 滕丽娜,刘天雄,佟德纯,陈兆能.关联维数在设备状态监测中的应用研究.振动工程学报,2002,15(4):399-403.
    [100] 赵玉成,张玉莲,张亚红,许庆余.时间序列关联维数在非线性系统运动性态识别中的应用.航空学报.2003,24(1):28-31.
    [101] Suyama H, Burioka N, Sako T, et al. Reduction of correlation dimension in human respiration by inhaling a mixture gas of 5% carbon dioxide and 95% oxygen. Biomedicine & Pharmacotherapy, 2003, 57: 116-121.
    [102] Zhang G X, Jin W D, Hu L Z. Radar Emitter Signal Recognition Based on Complexity Features. Journal of Southwest Jiaotong University, 2004, 12(2): 116-122.
    [103] Montesino Otero M E, Rolo Naranjo A, Azoy Carralero A. The attractor dimension determination applied to monitoring and surveillance in nuclear power plants. Progress in Nuclear Energy. 2003, 43(1): 389-395.
    [104] Emin Z,Bashar A T, Zahawi A,etal. Quantification of the Chaotic Behavior of Ferroresonant Voltage Transformer Circuits. IEEE Transactions on Circuits and Systems-Ⅰ: Fundamental Theory And Applications, 2001, 48(6): 757-760.
    [105] 姚纪欢.分形理论在雷达信号处理中的应用.运城高等专科学校学报.1999,17(3):5-7.
    [106] 谢和平,薛秀谦.分形应用中的数学基础与方法.北京:科学出版社,1997.
    [107] 王东生,曹磊.混沌,分形及其应用.合肥:中国科学技术大学出版社,1995.
    [108] Dai M F, Tian L X. Fractal properties of refined box dimension on functional graph. Chaos, Solitons and Fractals, 2005, 23: 1371-1379.
    [109] Tolle C R, McJunkin T R, Gorsich D J. Suboptimal minimum cluster volume cover-based method for measuring fractal dimension. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(1): 32-41.
    [110] Lu T J, Guo S B, Xiao X C. Study on fractal features of modulation signals. Science in China (Series F), 2001, 44(2): 152-158.
    [111] 吕铁军,郭双冰,肖先赐.调制分形特征研究.中国科学.2001,31(6):508-513.
    [112] 吕铁军,魏平,肖先赐.基于分形和测度理论的信号调制识别.电波科学学报,2001,16(1):123-127.
    [113] 吕铁军,郭双冰,肖先赐.基于复杂度特征的调制信号识别.通信学报.2002,23(1):111-115.
    [114] 陈国,胡修林,张蕴玉,朱耀庭.基于短时分形维数的汉语语音自动分段技术研究.通信学报.2000,21(10):6-13.
    [115] Tolle C R, McJunkin T R, Gorsich D J. Suboptimal minimum cluster volume cover-based method for measuring fractal dimension. IEEE Transactions on Pattern Analysis And Machine Intelligence, 2003, 25(1): 32-41.
    [116] Song L, Chen J, Li B. Research on chaos performance of vortex signal. Proceedings of the 5th World Congress on Intelligent Control and Automation, 2004, 3876-3878.
    [117] Emin Z, AlZahawi B A T, Tong Y K, Ugur M. Quantification of the chaotic behavior of ferroresonant voltage transformer circuits. IEEE Transactions on Circuits and Systems—Ⅰ: Fundamental Theory and Applications, 2001, 48(6): 757-760.
    [118] Ashkenazy Y. The use of generalized information dimension in measuring fractal dimension of time series. Physica A, 1999, 271: 427-447.
    [119] Keller G. A new estimator for information dimension with standard errors and confidence interval. Stochastic Processes and their Applications. 1997, 71: 187-206.
    [120] Gilbert E N, Kadota T T. The algorithm and message complexity. IEEE Transactions on Information Theory, 1992, 38(6): 1839-1842.
    [121] Nagarajan R. Quantifying Physiological Data With Lempel-Ziv Complexity-Certain Issues. IEEE Transactions on Biomedical Engineering, 2002, 49(11): 1371-1373.
    [122] Uyematsu T, Kuzuoka S. Conditional complexity and its application to source coding theorem with side information. Proceedings of International Symposium on Information Theory, 2003, 142.
    [123] Zozor S, Ravier P, Buttelli O. On complexity for multidimensional data analysis. Physica A, 2005, 345: 285-302.
    [124] Chen X, Zhuang T G, Hua Y Q. Discrimination of ground glass opacity on lung HRCT images using visual complexity measurement, Proceedings of the second Joint EMBS/BMES Conference, 2002, 1116-1117.
    [125] Zhang X S, Roy R J, Jensen E W. EEG complexity as a measure of depth of anesthesia for patients. IEEE Transactions on Biomedical Engineering, 2001, 48(12): 1424-1433.
    [126] Yan R Q, Gao R X. Complexity as a Measure for Machine Health Evaluation. IEEE Transactions on Instrumentation and Measurement, 2004, 53(4): 1327-1334.
    [127] Szczepanski J, Amigo J M, Wajnryb E, et al. Characterizing spike trains with complexity. Neurocomputing, 2004, 58: 79-84.
    [128] 吕铁军.通信信号调制识别研究[博士论文].成都:电子科技大学,2000.
    [129] 蔡立羽,王志中,张海虹.基于复杂性度量的表面肌电信号分类方法.生物物理学报,2003,16(1):119-125.
    [130] 杨斯环,杨秦飞,石继明,刘仁.不同生理状态时脑电时间序列的三种复杂度计算比较.生物物理学报,1996,12(3):437-440.
    [131] 姜建东,屈梁生.大机组振动信号复杂性的定量描述.西安交通大学 学报,1998,32(6):31-35.
    [132] Ye Z G, Wu B, Sadeghian A. Current signature analysis of induction motor mechanical fault by wavelet packet decomposition. IEEE Transaction on Industrial Electronics, 2003, 50(6): 1217-1228.
    [133] Zhang G X, Jin W D, Hu L Z. Application of Wavelet Packet Transform to Signal Recognition. Proceedings of International Conference on Intelligent Mechatronics and Automation, 2004, 542-547.
    [134] Rajpoot N M, Wilson R G., Meyer F G, et al. Adaptive wavelet packet basis selection for zero tree image coding. IEEE Transactions On Image Processing, 2003, 12(12): 1460-1472.
    [135] 张葛祥,胡来招,金炜东.基于小波包变换和特征选择的雷达辐射源信号识别.电路与系统学报.(已录用,即将刊出)
    [136] 胡昌华,张军波,夏军,张伟.基于MATLAB的系统分析与设计.西安:西安电子科技大学出版社,2001.
    [137] Hu X G, Wang F, Zhao H L, Ji Y C. The mechanical fault diagnosis for HV breakers on the wavelet packet analysis. Proceedings of Instrumentation and Measurement Technology Conference. 2003, 415-419.
    [138] 张静远,张冰,蒋兴舟,基于小波变换的特征提取方法分析.2000,16(2):156-162.
    [139] 李世玲,李治,李合生,基于小波包能量特征的滚动轴承故障监测方法.系统仿真学报,2003,15(1):76-83.
    [140] Cocchi M, Seeber R, Ulrici A. WPTER: wavelet packet transform for efficient pattern recognition of signals. Chemometrics and Intelligent Laboratory Systems, 2001, 57: 97-119.
    [141] Hu X G, Wang F, Zhao H L, Ji Y C. The mechanical fault diagnosis for HV breakers on the wavelet packet analysis. Proceedings of Instrument and Measurement Technology Conference, 2003, 415-419.
    [142] Zhang G X, Hu L Z, Jin W D. Quantum Computing Based Machine Learning Method and Its Application in Radar Emitter Signal Recognition. Lecture Notes in Artificial Intelligence, 2004, vol. 3131, 92-103.
    [143] Shi D, Shu W H, Liu H T. Feature selection for handwritten Chinese character recognition based on genetic algorithms. Proceedings of IEEE International Conference on System, Man, and Cybernetics. 1998, 4201-4206.
    [144] Mitra P, Murthy C A, Pal S K. Unsupervised feature selection using feature similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 301-312.
    [145] Molina L C, Belanche L, Nebot A. Feature selection algorithms: a survey and experimental evaluation. Proceedings of International Conference on Data Mining, 2002, 306-313.
    [146] Liu H Q, Li J Y, Wong L S. A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Informatics, 2002, 13: 51-60.
    [147] Zaffalon M, Hutter M. Robust feature selection by mutual information distributions. Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, 577-584.
    [148] Guo G D, Dyer C R. Simultaneous selection and classifier training via linear programming: a case study for face expression recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003, 346-352.
    [149] Bressan M, Vitria J. On the selection and classification of independent features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1312-1317.
    [150] 吕铁军,王河,肖先赐.新特征选择方法下的信号调制识别.电子与信息学报,2002,24(5):661-666.
    [151] Sun Z H, Yuan X J, Bebis G, Louis S. Neural-network-based gender classification using genetic search for eigen-feature selection. Proceedins of International Joint Conference on Neural Networks, 2002, vol.3, 2433-2438.
    [152] Jack L B, Nandi A K. Genetic algorithms for feature selection in machine condition monitoring with vibration signals, IEE Proceedings on Visual Image Signal Processing, 2000, 147(3): 205-121.
    [153] Zhang G X, Hu L Z, Jin W D. Resemblance coefficient and a Quantum Genetic Algorithm for Feature Selection. Lecture Notes in Artificial Intelligence, 2004, vol. 3245: 155-168.
    [154] 靳蕃.神经计算智能基础:原理.方法.成都:西南交通大学出版社,2000.
    [155] Cover T M, Vancompenhon J M. On the possible ordering in the measurement selection problem. IEEE Transactions on System, Man and Cybernetics, 1977, 7(9): 657-667.
    [156] Zhang G X, Jin W D, Hu L Z. A novel feature selection approach and its application. Lecture Notes in Computer Science, 2004, vol. 3314, 665-671.
    [157] 靳蕃,胡飞.模糊神经计算的满意输出原理.铁道学报,1996,18(2):102-107.
    [158] 席裕庚.复杂工业过程的满意控制.信息与控制,1995,24(1):14-20.
    [159] 金炜东.满意优化问题与列车操纵优化方法研究[博士学位论文].成都:西南交通大学,1998.
    [160] Weidonh Jin, Chongwei Li, Fei Hu, Fan Jin. A study on intelligent computation of methods of optimization for train. Proceedings of International Workshop on Autonomous Decentralized System, 2000, 97-102.
    [161] Weidong Jin, Duo Zhao, Gang Li. The Application of Multi-Criterion Satisfactory Optimization in FIR Digital Filter Design. Proceedings of International Workshop on Autonomous Decentralized System, 2000, 227-230.
    [162] 金炜东,陈立,李岗.遗传算法用于控制器参数的满意优化.西南交通大学学报,1998,33(6):699-704.
    [163] 金炜东,靳蕃.线性型满意度及其组合运算.铁道学报,1997,19(5):49-55.
    [164] 金炜东,靳蕃,李崇维,胡飞,苟先太.列车优化操纵速度模式曲线生成的智能计算研究.铁道学报,1998,20(5):47-52.
    [165] 金炜东,王自力,李崇维,苟先太,靳蕃.列车节能操纵优化方法研究. 铁道学报,1997,19(5):58-62.
    [166] 金炜东,赵舵.多目标满意优化在数字滤波器设计中的应用.铁道学报,2002,24(5):62-66.
    [167] Zhao D, Jin W D. The application of multi-criterion satisfactory optimization in fuzzy controller design. Proceedings of International Workshop on Autonomous Decentralized System, 2002. 162-167.
    [168] 赵舵,金炜东.多目标满意优化在模糊控制器设计中的应用.电力系统及其自动化学报,2003,15(5):64-69.
    [169] 张葛祥,金炜东,胡来招.多变量系统控制器参数满意优化设计研究.控制理论与应用,2004,21(3):362-366.
    [170] Gexiang Zhang, Weidong Jin, Fan Jin. Multi-criterion satisfactory optimization method for designing ⅡR digital filters, Proceeding of the International Conference on Communication Technology, 2003, vol. 2: 1484-1490.
    [171] Gexiang Zhang, Heng Liu, Weidong Jin, Laizhao Hu, Multi-criterion satisfactory optimization method for designing FIR digital filters, Proceedings of IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, 2003, 1339-1344.
    [172] Gexiang Zhang, Zhong Tang, Weidong Jin, Laizhao Hu. Multi-criterion satisfactory optimization method and its application in control systems, Proceedings of the 7th World Multiconference on Systems, Cybernetics and Informatics, 2003, vol. Ⅸ: 281-286.
    [173] 黄洪钟,姚新胜,周仲荣.满意度原理研究与应用的现状与展望.控制与决策,2003,18(6):641-645.
    [174] Gexiang Zhang, Yajun Gu, Weidong Jin, Laizhao Hu. A novel genetic algorithm and its application to digital filter design, Proceedings of the IEEE 6th International Conference on Intelligent Transportation Systems, 2003, vol.2: 1600-1605.
    [175] Chiu C C, Hsu P L. A constraint-based genetic algorithm approach for mining classification rules. IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, 2005, 35(2): 205-220.
    [176] Chu M, Allstot D J. Elitist nondominated sorting genetic algorithm based RF IC optimizer. IEEE Transactions on Circuits and Systems—I: Regular Papers, 2005, 52(3): 535-545.
    [177] Cao T C, Li T H. A combination of numeric genetic algorithm and tabu search can be applied to molecular docking. Computational Biology and Chemistry 2004, 28(4): 303-312.
    [178] Peng S H, Xu Q H, Ling X F B, et al. Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines. Federation of European Biochemical Societies Letters, 2003, 555(3): 358-362.
    [179] Hey T. Quantum Computing: an introduction. Computing & Control Engineering Journal, 1996,10(3): pp105-112.
    [180] Bandyopadhyay S. Computing with spins: from classical to quantum computing. Superlattices and Microstructures, 2005, 37(1): 77-86.
    [181] Narayanan A. Quantum computing for beginners. Proceedings of the 1999 Congress on Evolutionary Computation, 1999, 2231-2238.
    [182] Berggren K K. Quantum computing with superconductors. Proceedings of the IEEE, 2004, 92(10): 1630-1638.
    [183] Han K H, Kim J H. Genetic quantum algorithm and its application to combinatorial optimization problems. Proceedings of the 2000 IEEE Conference on Evolutionary Computation, 2000, 1354-1360.
    [184] Han K H, Park K H, Lee C L, et al. Parallel quantum-inspired genetic algorithm for combinatorial optimization problems. Proceedings of the IEEE Conference on Evolutionary Computation, 2001, 1442-1429.
    [185] Han K H, Kim J H. On setting the parameters of QEA for practical applications: some guidelines based on empirical evidence. Lecture Notes in Computer Science, 2003, vol.2723, 427-428.
    [186] Han K H, Kim J H. On setting the parameters of quantum-inspired evolutionary algorithm for practical applications. Proceedings of IEEE, 2003, 178-184.
    [187] Han K H, Kim J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation, 2002, 6(6): 580-593.
    [188] Li B, Zhuang Z Q. Genetic Algorithm Based-On the Quantum Probability Representation. Lecture Notes in Computer Science, 2002, vol. 2412, 500-506.
    [189] Yang J A, Li B, Zhuang Z Q. Research of quantum genetic algorithm and its application in blind source separation. Journal of Electronics, 2003, 20(1): 62-68.
    [190] 李映,焦李成.一种有效的基于并行量子进化算法的图像边缘检测方法.信号处理,2003,19(1):69-74.
    [191] Narayanan A, Moore M. Quantum-inspired genetic algorithm. Proceedings of IEEE International Conference on Evolutionary Computation, 1996, 61-66.
    [192] 张葛祥,李娜,金炜东,胡来招.一种新量子遗传算法及其应用.电子学报,2004,32(3):476-479.
    [193] Lin T Y. Introduction to the special issue on rough sets. International Journal of Approximate Reasoning, 1996, 15(4): 287-289.
    [194] 王国胤.Rough理论与知识获取.西安:西安交通大学出版社,2001.
    [195] Walczak B, Massart D L. Rough sets theory. Chemometrics and Intelligent Laboratory Systems, 1999, 47(1): 1-16.
    [196] Pawlak Z. Rough sets. Informational Journal of Information and Computer Science, 1982, 11(5): 341-356.
    [197] Zhang G X, Hu L Z, Jin W D. Discretization of Continuous Attributes in Rough Set Theory and Its Application. Lecture Notes in Computer Science, 2004, vol. 3314: 1020-1026.
    [198] Shen L X, Tay F E H, Qu L S, et al. Fault diagnosis using rough set theory. Computers in Industry, 2000, 43(1): 61-72.
    [199] Dai J H, Li Y X. Study on discretization based on rough set theory. Proceedings of the first Int. Conference on Machine Learning and Cybernetics, 2002, 1371-1373.
    [200] Roy A, Pal S K. Fuzzy discretization of feature space for a rough set classifier. Pattern Recognition Letter, 2003, 24(6): 895-902.
    [201] Susmaga R. Analyzing discretizations of continuous attributes given a monotonic discrimination function. Intelligent Data Analysis, 1997, 1(3): 157-179.
    [202] Li M X, Wu C D, Han Z H, Yue Y. A hierarchical clustering method for attribute discretization in rough set theory. Proceedings of the 3rd International Conference on Machine Learning and Cybernetics, 2004, 3650-3654.
    [203] Dai J H. A genetic algorithm for discretization of decision systems. Proceedings of the 3rd International Conference on Machine Learning and Cybernetics, 2004, 1319-1323.
    [204] Jensen R, Shen Q. Fuzzy-rough attribute reduction with application to web categorization. Fuzzy Sets and Systems, 2004, 141: 469-485.
    [205] Swiniarski R W, Skowron A. Rough set methods in feature selection and recognition. Pattern Recognition Letters, 2003, 24: 833-849.
    [206] Zhu W, Wang F Y. Reduction and axiomization of covering generalized rough sets. Information Science, 2003, 152: 217-230.
    [207] 傅清祥,王晓东.算法与数据结构.北京:电子工业出版社,1998.
    [208] Jin F, Fan J B, Hu F. A humanoid intelligent system for high-speed recognitions. Proceedings of International Conference on Intelligent Information Processing and System, 1992, 412-414.
    [209] 任立勇,卢显良.基于串-并行计算BP网络拓扑结构的研究与实现.电子科技大学学报,2000,29(2):197-200.
    [210] Riedmiller M., Braun H. A direct adaptive method for faster back propagation learning: The RPROP algorithm. Proceedings of the IEEE International Conference on Neural Networks, 1993, 586-591.
    [211] Fraser A M, Hengartner N W, Vixie K R, et al. Incorporating invariants in Mahalanobis distance based classifiers: application to face recognition. Proceedings of the International Joint Conference on Neural Networks, 2003, 3118-3123.
    [212] Jing X Y, Zhang D. Face recognition based on linear classifiers combination. Neurocomputing, 2003, 50(1): 485-488.
    [213] Rueda L, Oommen B J. On optimal pairwise linear classifiers for normal distributions: the d-dimensional case. Pattern Recognition, 2003, 36: 13-23.
    [214] Rueda L. Selecting the best hyperplane in the framework of optimal pairwise linear classifiers. Pattern Recognition Letter, 2004, 25: 49-62.
    [215] Gonzalez-Barrios J M, Quiroz A J. A clustering procedure based on the comparison between the k nearest neighbors graph and the minimal spanning tree. Statistics & Probability Letters, 2003, 62(1): 23-34.
    [216] Pernkopf F. Bayesian network classifiers versus selective k-NN classifier. Pattern Recognition, 2005, 38(1): 1-10.
    [217] Zhang B, Srihari S N. Fast k-nearest neighbor classification using cluster-based trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(4): 525-528.
    [218] Domeniconi C, Peng J, Gunopulos D. Locally adaptive metric nearnest- neighbour classification. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2002, 24(9): 1281-1285.
    [219] Safavian S R, Landgrebe D. A survey of decision tree classifier methodology. IEEE Transactions on System, Man, and Cybernetics, 1991, 21(3): 660-674.
    [220] Pedrycz W, Sosnowski Z A. Genetically optimized fuzzy decision trees. IEEE Transactions on System, Man, and Cybernetics—Part B: Cybernetics, 2005, 35(3): 633-641.
    [221] Sheng Y, Rovnyak S M. Decision trees and wavelet analysis for power transformer protection. IEEE Transactions on Power delivery, 2002, 17(2): 429-433.
    [222] Marchant J A, Onyango C M. Comparison of a Bayesian classifier with a multilayer feed-forward neural network using the example of plant/weed/soil discrimination. Computers and Electronics in Agriculture, 2003, 39:3-22.
    [223] Zhang G P. Neural Networks for Classification: a Survey. IEEE Transactions on System, Man, and Cybernetics-Part C: Application and Reviews, 2000, 30(4): 451-462.
    [224] Kavdir I, Guyer D E. Comparison of artificial neural networks and statistical classifiers in apple sorting using textural features. Biosystems Engineering, 2004, 89(3): 331-344.
    [225] Marchant J A, Onyango C M. Comparison of a Bayesian classifier with a multilayer feed-forward neural network using the example of plant/weed/soil discrimination. Computers and Electronics in Agriculture, 2003, 39(1): 3-22.
    [226] Lanitis A, Draganova C, Christodoulou C. Comparing different classifiers for automatic age estimation. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 2004, 34(1): 621-628.
    [227] 王守觉,王柏南.人工神经网络的多维空间几何分析及其应用[J].电子学报.2002,30(1):1-4.
    [228] Vapnik V. The Nature of Statistical Learning Theory. New York: Springer Verlag, 1998.
    [229] Foody G M, Mathur A. A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(6): 1335-1343.
    [230] Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines. IEEE Transactions On Neural Networks, 2002, 13(2): 415-425.
    [231] Furnkranz, J. Round robin classification. 2002, 2(2): 721-747.
    [232] Rifkin R M. Everything old is new again: a fresh look at historical approaches in machine learning. Boston: Massachusettes Institute of Technology, 2002.
    [233] Rifkin R, Klautau, A.: In defence of one-vs-all classification. Journal of Machine Learning Research, 2004, 5(1): 101-141.
    [234] Platt J C, Cristianini N, Shawe-Taylor J. Large margin DAG's for multiclass classification. Advances in Neural Information Processing Systems, 2000, vol. 12, 547-553.
    [235] Cheong S M, Oh S H, Lee S Y. Support vector machines with binary tree architecture for multi-class classification. Neural Information Processing-Letters and Reviews, 2004, 2(3): 47-51.
    [236] Guo G D, Li S Z. Content-based audio classification and retrieval by support vector machines. IEEE Trans. on Neural Networks. 2003, 14(1): 209-215.
    [237] Huo X M, Chen J H, Wang S C, et al. Support vector trees: simultaneously realizing the principles of maximal margin and maximal purity. Technical report, 2002, 1-19 (Available: www.isye.gatech.edu/research/files/tsui-2002-01.pdf)
    [238] Jain A K, Duin R P W, Mao J C. Statistical pattern recognition: a review. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37.
    [239] Mahanty R N, Dutta-Gupta P B. Application of RBF neural network to fault classification and location in transmission lines. IEE Proceedings, Gener. Transm. Distrib., 2004, 151(2): 201-212.
    [240] Wu S T, T W S Chow. Induction machine fault detection using SOM-based RBF neural networks. IEEE Transactions on Industrial Electronics, 2004, 51(1): 183-194.
    [241] Tian B, Azimi-Sadjadi M R, Haar T H V, et al. Temporal updating scheme for probabilistic neural network with application to satellite cloud classification. IEEE Transactions on Neural Networks, 2000, 11(4): 903-920.
    [242] Mao K Z, Tan K C, Ser W. Probabilistic neural-network structure determination for pattern classification. IEEE Transactions on Neural Networks, 2000, 11(4): 1009-1016.
    [243] Zhang G X, Hu L Z, Jin W D. Radar Emitter Signal Recognition Based on Feature Selection Algorithm. Lecture Notes in Artificial Intelligence, 2004, vol. 3339, 1108-1114.
    [244] Vapnik V N.统计学习理论的本质.张学工译.北京:清华大学出版社,2000.
    [245] Cristianini N,Shawe-Taylor J.支持向量机导论.李国正,王猛,曾华 军译.北京:电子工业出版社,2004.
    [246] Mukherjee S, Niyogi P, Poggio T, Rifkin R. Statistical learning: stability is sufficient for generalization. Massachusetts Institute of Technology: Computer Science and Artificial Intelligence Laboratory, 2003.
    [247] 张葛祥,荣海娜,金炜东,胡来招.支持向量机在雷达辐射源信号识别中的应用.西南交通大学学报.(已录用,即将刊出)
    [248] Zhang G X, Jin W D, Hu L Z. Radar Emitter Signal Recognition based on support vector machines. Proceedings of the 8th International Conference on Control, Automation, Robotics and Vision, 2004, 826-831.
    [249] 方勇,戚飞虎.一种新的多类模式识别方法.红外与毫米波学报,2004,23(6):418-422.
    [250] Bennett K P, Cristianini N, Shawe-Taylor J, et al. Enlarging the margins in the perceptron decision tree. Machine Learning, 2000, 41(3): 295-313.
    [251] Tian X, Deng F Q. An improved multi-class SVM algorithm and its application to the credit scoring model. Proceedings of the 5th World Congress on Intelligent Control and Automation, 2004, 1940-1944.
    [252] 严蔚敏,吴伟民.数据结构(第二版).北京:清华大学出版社,1995.
    [253] Potvin J Y, Robillard C. Clustering for vehicle routing with a competitive neural network. Neurocomputing, 1995, 8(2): 125-139.
    [254] Khanmohammadi S, Hassanzaseh I, Zarei Poor H R. Fault diagnosis competitive neural network with prioritized modification rule of connection weights. Artificial Intelligence in Engineering, 2000, 14(2): 127-132.
    [255] Meyer-Baese A, Pilyugin S S, Chen Y. Global exponential stability of competitive neural networks with different time scales. IEEE Transactions on Neural Networks, 2003, 14(3): 716-719.
    [256] 马文驷,梁继民,杨万海.一种新的结构自适应竞争神经网络.系统工程与电子技术,2002,24(10):93-95.
    [257] Dong J Y, Wang W J, Zhang J Y. Accumulative competition neural network for shortest path tree computation. Proceedings of the 2nd International Conference on Machine Learning and Cybernetics, 2003, 1157-1161.
    [258] Park D C. Centroid Neural Network for Unsupervised Competitive Learning. IEEE Transactions on Neural Networks, 2000, 11(2): 520-528.
    [259] Simoes M G, Furukawa C M, Mafra A T, Adamowski J C. A novel competitive learning neural network based acoustic transmission system for oil-well monitoring. IEEE Transactions on Industry Applications, 2000, 36(2): 484-491.
    [260] Beckers M L M, Melssen W J, Buydens L M C. A self-organizing feature map for clustering nucleic acids application to a data matrix containing A-DNA and B-DNA dinucleotides. Computer Chemistry, 1997, 21(6): 377-390.
    [261] Su M C, Chang H T. Fast self-organizing feature map algorithm. IEEE Transactions on Neural Networks, 2000, 11(3): 721-733.
    [262] Hsieh K H, Tien F C. Self-organizing feature map for solving locationallocation problems with rectilinear distances. Computers & Operation Research, 2004, 31(7): 1017-1031.
    [263] Hu Y C, Chen R S, Hsu Y T, Tzeng G H. Grey self-organizing feature maps. Neurocomputing, 2002, 48: 863-877.
    [264] Sangole A, Knopf G K. Visualization of randomlyordered numeric data sets using spherical self-organizing feature maps. Computers & Graphics, 2003, 27: 963-976.
    [265] De A, Chatterjee N. Recognition of impulse fault patterns in transformers using kohonen's self-organizing feature map. IEEE Transactions on Power Delivery, 2002, 17(2): 489-494.
    [266] 兵器工业研究所《世界军用侦察手册》编辑部.世界军用侦察手册.兵器工业出版社,1992.
    [267] 机械电子工业部第十四研究所.世界地面雷达手册.机电部第14所研究所情报信息中心,1992.
    [268] 第三机械工业部六0七、六二八所编.国外机载雷达手册,1976.
    [269] 南京船舶雷达研究所编.国外舰载雷达手册.1982.
    [270] 季节,许云剑.世界机载雷达手册.航空工业出版社,1989.
    [271] Streetly M. JANE's Radar and Electronic Warfare Systems. 1994-1995, 1996-1997, 1998-1999, 2000-2001, 2002-2003.
    [272] Dube F P "Buck". International Electronic Countermeasures Handbook. Norwood: Horizon House Publications, 1999, 2001.
    [273] 吴正大,杨林耀,张永瑞.信号与线性系统分析(第三版).北京:高等教育出版社,2001.
    [274] Erwin Kreysizg著.泛函分析导论及应用.蒋正新,吕善伟等译.北京:航空学院出版社,1990.
    [275] 李敏强,寇纪淞,林丹等.遗传算法的基本理论与应用.北京:科学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700