自体成体干细胞移植治疗兔眼外肌机械性损伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章肌卫星细胞的体外分离、原代培养和免疫荧光特性
     目的:研究眼外肌卫星细胞的体外生长特点;比较其与骨骼肌卫星细胞免疫荧光特性的异同。
     方法:采用肌块组织酶原消化法体外分离并原代培养眼外肌卫星细胞和骨骼肌卫星细胞,光镜下动态观察两种细胞的生长变化。免疫荧光法检测肌管及新生纤维标记物(新生型肌球蛋白重链)、肌源性标记物(结蛋白、肌生成素)、肌纤维母细胞标记物(α-平滑肌肌动蛋白)、肌细胞标记物(肌球蛋白轻链)、眼外肌特异性肌球蛋白等5类6种抗体在细胞的染色情况,比较两种细胞免疫荧光特性的异同。
     结果:眼外肌卫星细胞与骨骼肌卫星细胞在体外生长和增殖的过程中形态学变化一致:肌纤维种植后第1天起大量析出,1周内培养皿内呈小梭形细胞样贴壁、迅速增殖并呈相互融合趋势,2周后肌纤维旁赘生大细胞团和细胞团外放射状的肌管形成(表现为新生型肌球蛋白重链的染色阳性),并形成三维的网状结构(表现为α-平滑肌肌动蛋白染色阳性)。两种细胞的免疫荧光染色:结蛋白、肌生成素α-平滑肌肌动蛋白、肌球蛋白轻链均表达阳性;眼外肌特异性肌球蛋白抗体的染色结果,在眼外肌卫星细胞表达阳性而骨骼肌卫星细胞表达阴性。
     结论:眼外肌卫星细胞可用酶消化法成功提取,其细胞生长的形态学特点与免疫荧光特性与骨骼肌卫星细胞一致。这两种肌源性干细胞都具有体外增殖并向成肌方向定向分化的能力。
     第二章机械性损伤兔眼外肌动物模型的建立和自体成体干细胞移植对模型动物的治疗
     目的:建立机械性损伤大白兔眼外肌的动物模型,观察眼外肌自然修复规律;用自体成体干细胞移植治疗模型动物,观察治疗后眼外肌的修复规律。
     方法:用割裂法建立眼外肌机械性损伤模型,取肌肉标本行冰冻切片后给予Masson染色、影像学定量(ImageProPlus软件),观察切片中肌肉组织含量(muscle,M)、胶原含量(collagen,C)、非胶原含量(non-collagen,NC)及细胞核数量(nuclei,N)等指标的变化。体外分离扩增骨髓间充质干细胞(简称骨髓干细胞)。将自体骨髓干细胞和肌卫星细胞用CM-DiI(长效细胞示踪剂)标记并移植到受伤区域,观察外源性供体细胞注入眼外肌组织后的转归及组织相容性。随后用同样两种细胞移植于受伤1周的模型动物,设立移植组2组(两种干细胞移植)和对照组3组(阳性对照组、阴性对照1组和阴性对照2组)等5组,分析各组目标肌肉的组织学变化,对M、C、NC、N等指标进行统计学分析。
     结果:眼外肌机械性受损后初期以胶原组织增生为特点,1周后纤维化程度逐渐加重:2周时广泛纤维化和疤痕形成,细胞核数量也达到高峰,纤维化进行性加重。CM-DiI标记的移植细胞在体内存留至少14天:第1天即与受体组织相融合,第14天注射区域大片肌纤维着染。各时间点各组肌肉组织含量相对恒定。移植组与阳性对照组相比,后者胶原和非胶原组织含量明显增加,有统计学差异P<0.05。移植组与阴性对照组间没有统计学差异P>0.05。5组术后两周胶原与非胶原组织的增生与前期比均达到高峰,有明显统计学差异P<0.05。细胞核数量表现波动,在移植后第7天为低值,第3和第14天均为高值。骨髓干细胞移植和肌卫星细胞移植对眼外肌修复过程的影响没有统计学差异P>0.05。
     结论:机械性眼外肌损伤导致肌肉及周围结缔组织的退行性变、纤维化和疤痕形成。骨髓间充质干细胞和骨骼肌卫星细胞移植到眼外肌微环境后均有很好的局部组织相容性,且能明显减轻机械性损伤导致的肌肉退形性变,促进再生和抗纤维化的修复过程。
Chapter 1:Isolation,primary culture,and characterizing the immunofluorescence of muscle satellite cells
     Objective:To identify the morphological changes of extraocular muscle satellite cells(ESC)in vitro.To compare the expression of immunofluorescene of ESC with that of skeletal muscle satellite cells (SSC).
     Methods:To isolate and culture ESC in vitro by muscle block enzyme digestion.Light microscopy was used to monitor the morphological changes of the cells during the period of their growth.And to compare immunofluorescene characters of ESC with that of SSC, which are the marker of myotube(Mosin heavy chain-neonatal,MyHC-n), myogenic markers(Desmin and Myogenin,F5D),marker of myoblast (α-smooth muscle actin,α-SMA),marker of striated muscle(light meromyosin,MF20),and marker of extraocular muscle(myosin heavy chain-extraocular specific,N2.261).
     Results:ESC and SSC had the same appearance on the morphological changes while growing in vitro.They came out from first day after seeding the muscle fibers.The cells adhered to the matrix in 1 week,expanded,and fused to each other.Cell mass also found after 2 weeks,which located nearby one of the residual independent myofibril and myotube formed radially on it(MyHC-n were stained positive). 3-dimensional meshwork formed shortly after myotube merged,which showedα-SMA positive.Both ESC and SSC stained as positive results in those antibodies,such as Desmin,Myogenin,α-SMA,and MF20.It was only differed in N2.261 staining between ESC and SSC,while ESC+ and SSC-.
     Conclusion:ESC has been isolated and cultured in vitro successfully. The morphological and immuno-fluorescene characters are intact features of ESC just as SSC are.Both of the two myogenic cells are able to be self-expanded and differentiated to form myofibril,they have same features of regeneration and myogenic potential in vitro.
     Chapter 2:Establishing laceration model of extraocular muscle in rabbit and treating those rabbits by transplanting autologous adult stem cells
     Objective:To establish laceration model of extraocular muscle in rabbits and find its nature of wound healing.To evaluate the effect of auto-transplantation by adult stem cell on the process of wound healing in this model.
     Methods:Established the model of wound healing in eye by lacerating the extraocular muscle.The muscle samples were harvested, frozen,sliced and stained by Masson's trichrome staining.Imaging processing(using software of ImageProPlus,IPP)was used to quantify the process of natural healing.4 targets were analyzed.They were: muscle(M,collagen(C),non-collagen(NC)and nuclei(N).Bone marrow mesenchymal stem cells(MSC)were isolated,cultured and expanded in vitro by a putative method.ESC and SSC were labeled by Cell tracker CM-DiI,and transplanted and traced the destiny of transplanted cells in the traumatic area.Both ESC and SSC transplantation were performed to the wound area 1 week after trauma.5 groups were set up as two treatment groups(MSC and SSC transplantation)and three control groups,which were:negative control group 1 and 2,positive control group.The morphological changes were recorded by Masson's staining and analyzed by IPP.
     Results:Laceration accelerated the formation of collagen in early stage of wound healing process.Apparent fibrosis showed up just one week after being suffered laceration.Diffused fibrosis and scar emerged dramatically after two weeks.Number of nuclei reached its peak at day 14.Inflammatory cells and fibrosis developed heavier than ever.CM-DiI labeled cells could fuse to adjacent muscles from first day on and stayed in site at least for 14 days.Positive stained muscle fibers were found abounded in the wound area at day 14.Cell transplantation resulted of consistent muscle area at different time points of all groups.In comparison of treatment groups and positive control groups,the later got significant higher amount of non-muscle connective tissue(including collagen and non-collagen part)statistically(P<0.05),while they showed the same level of increasing amount of non-muscle tissue(P>0.05). Non-muscle tissue proliferated dramatically after 2 weeks of transplantation while compared with earlier stages(P<0.05)in all groups. Number of nuclei fluctuated within these 2 weeks,which showed low level at day 7 and high level at day 3 or 14.SSC and MSC played similar way in benefiting the mechanical trauma of extraocular muscle.
     Conclusions:Laceration could lead to degeneration of both muscle and the surrounding connective tissue,which act as fibrosis and scar formation.Both MSC and SSC has good consistent with traumatic muscle in ocular environment.And they could slow down the development of fibrosis and scar formation,and also benefit the process of wound healing of extraocular muscle in the way of upgrading the regeneration and downgrading the fibrosis.
引文
[1] Huard J., Li Y., and Fu F.H., Muscle injuries and repair: current trends in research. J Bone Joint Surg Am, 2002. 84-A(5). 822-32.
    [2] Hurme T. and Kalimo H., Activation of myogenic precursor cells after muscle injury. Med Sci Sports Exerc, 1992. 24(2). 197-205.
    [3] Mitterberger M., Pinggera G.M., Marksteiner R., et al., Adult stem cell therapy of female stress urinary incontinence. Eur Urol, 2008. 53(1). 169-75.
    [4] Garrett WE Jr B.T., Anatomy, physiology, and mechanics of skeletal muscle. Orthopaedic basic science., ed. S. SR. 1994, Rosemont, IL: American Academy of Orthopaedic Surgeons. 89-125.
    [5] Hurme T., Kalimo H., Lehto M., et al., Healing of skeletal muscle injury: an ultrastructural and immunohistochemical study. Med Sci Sports Exerc, 1991. 23(7). 801-10.
    [6] McLoon L.K. and Wirtschafter J.D., Continuous myonuclear addition to single extraocular myofibers in uninjured adult rabbits. Muscle Nerve, 2002. 25(3). 348-58.
    [7] Khanna S., Merriam A.P., Gong B., et al., Comprehensive expression profiling by muscle tissue class and identification of the molecular niche of extraocular muscle. Faseb J, 2003.17(10). 1370-2.
    [8] Niemann C.U., Krag T.O., and Khurana T.S., Identification of genes that are differentially expressed in extraocular and limb muscle. J Neurol Sci, 2000. 179(S1-2). 76-84.
    [9] Periasamy M., Wydro R.M., Strehler-Page M.A., et al., Characterization of cDNA and genomic sequences corresponding to an embryonic myosin heavy chain. J Biol Chem, 1985. 260(29). 15856-62.
    
    [10] Khurana T.S., Prendergast R.A., Alameddine H.S., et al., Absence of extraocular muscle pathology in Duchenne's muscular dystrophy: role for calcium homeostasis in extraocular muscle sparing. J Exp Med, 1995. 182(2). 467-75.
    [11] Andrade F.H., Porter J.D., and Kaminski H.J., Eye muscle sparing by the muscular dystrophies: lessons to be learned? Microsc Res Tech, 2000. 48(3-4). 192-203.
    [12] Rosenblatt J.D., Lunt A.I., Parry D.J., et al., Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim, 1995. 31(10). 773-9.
    [13] Mauro A., Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol, 1961. 9. 493-5.
    [14] Gibson M.C. and Schultz E., Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve, 1983. 6(8). 574-80.
    [15] Schultz E. and McCormick K.M., Skeletal muscle satellite cells. Rev Physiol Biochem Pharmacol, 1994. 123. 213-57.
    [16] Goldring K., Partridge T., and Watt D., Muscle stem cells. J Pathol, 2002. 197(4). 457-67.
    [17] Christiansen S.P. and McLoon L.K., The effect of resection on satellite cell activity in rabbit extraocular muscle. Invest Ophthalmol Vis Sci, 2006. 47(2). 605-13.
    [18] Ugalde I., Christiansen S.P, and McLoon L.K., Botulinum toxin treatment of extraocular muscles in rabbits results in increased myofiber remodeling. Invest Ophthalmol Vis Sci, 2005. 46(11). 4114-20.
    [19] Lee J.Y., Qu-Petersen Z., Cao B., et al., Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol, 2000. 150(5). 1085-100.
    [20] Bonavaud S., Agbulut O., D'Honneur G, et al., Preparation of isolated human muscle fibers: a technical report. In Vitro Cell Dev Biol Anim, 2002. 38(2). 66-72.
    [21] Kjellgren D., Thornell L.E., Andersen J., et al., Myosin heavy chain isoforms in human extraocular muscles. Invest Ophthalmol Vis Sci, 2003.44(4). 1419-25.
    [22] Magro G., Fraggetta F., Colombatti A., et al., Myofibroblasts and extracellular matrix glycoproteins in palmar fibromatosis. Gen Diagn Pathol, 1997. 142(3-4). 185-90.
    [23] Stromer M.H., The cytoskeleton in skeletal, cardiac and smooth muscle cells. Histol Histopathol, 1998.13(1). 283-91.
    [24] Rudnicki M.A. and Jaenisch R., The MyoD family of transcription factors and skeletal myogenesis. Bioessays, 1995.17(3). 203-9.
    [25] Murry C.E., Kay M.A., Bartosek T., et al., Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD. J Clin Invest, 1996. 98(10). 2209-17.
    [26] Grounds M.D., Age-associated changes in the response of skeletal muscle cells to exercise and regeneration. Ann N Y Acad Sci, 1998. 854. 78-91.
    [27] Bladt F., Riethmacher D., Isenmann S., et al., Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature, 1995. 376(6543). 768-71.
    [28] Bockhold K.J., Rosenblatt J.D., and Partridge T.A., Aging normal and dystrophic mouse muscle: analysis of myogenicity in cultures of living single fibers. Muscle Nerve, 1998. 21(2). 173-83.
    [29] Jarvinen T.A., Kaariainen M., Jarvinen M., et al., Muscle strain injuries. Curr Opin Rheumatol, 2000. 12(2). 155-61.
    [30] Menetrey J., Kasemkijwattana C., Day C.S., et al., Growth factors improve muscle healing in vivo. J Bone Joint Surg Br, 2000. 82(1). 131-7.
    [31] Kasemkijwattana C., Menetrey J., Somogyl G., et al., Development of approaches to improve the healing following muscle contusion. Cell Transplant, 1998. 7(6). 585-98.
    [32] Fukushima K., Badlani N., Usas A., et al., The use of an antifibrosis agent to improve muscle recovery after laceration. Am J Sports Med, 2001. 29(4). 394-402.
    [33] Pittenger M.F., Mackay A.M., Beck S.C., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411). 143-7.
    [34] Li Y. and Huard J., Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle. Am J Pathol, 2002. 161(3). 895-907.
    [35] Chan Y.S., Li Y., Foster W., et al., Antifibrotic effects of suramin in injured skeletal muscle after laceration. J Appl Physiol, 2003.95(2). 771-80.
    [36] Foster W., Li Y., Usas A., et al., Gamma interferon as an antifibrosis agent in skeletal muscle. J Orthop Res, 2003.21(5). 798-804.
    [37] Horan P.K., Muirhead K.A., Gorton S., et al., Aseptic aspiration of rabbit bone marrow and enrichment for cycling cells. Lab Anim Sci, 1980. 30(1). 76-9.
    [38] Powsner E.R. and Fly M.N., Aseptic aspiration of bone marrow from the living rabbit. J Appl Physiol, 1962. 17. 1021-2.
    [39] Arosio E., Albani A.P., Campanati L., et al., Photoconversion to identify Dil-marked cells after hepatocellular transplantation. Transplant Proc, 1994. 26(6). 3387-8.
    [40] Markus P.M., Koenig S., Krause P., et al., Selective intraportal transplantation of Dil-marked isolated rat hepatocytes. Cell Transplant, 1997. 6(5). 455-62.
    [41] Soriano H.E., Lewis D., Legner M., et al., The use of Dil-marked hepatocytes to demonstrate orthotopic, intrahepatic engraftment following hepatocellular transplantation. Transplantation, 1992. 54(4). 717-23.
    [42] Washabaugh C.H., Ontell M.P., and Ontell M., Nonmuscle stem cells fail to significantly contribute to regeneration of normal muscle. Gene Ther, 2004. 11(23). 1724-8.
    [43] Goker H., Haznedaroglu I.C., and Chao N.J., Acute graft-vs-host disease: pathobiology and management. Exp Hematol, 2001. 29(3). 259-77.
    [44] Long Y. and Yang K.Y., Bone marrow derived cells for brain repair: recent findings and current controversies. Curr Mol Med, 2003. 3(8). 719-25.
    [45] Raff M., Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol, 2003. 19. 1-22.
    [46] Horwitz E.M., Le Blanc K., Dominici M., et al., Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 2005. 7(5). 393-5.
    [47] Dominici M., Le Blanc K., Mueller I., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4). 315-7.
    [48] Jiang Y., Jahagirdar B.N., Reinhardt R.L., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002. 418(6893). 41-9.
    [49] Colter D.C., Class R., DiGirolamo C.M., et al., Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci U S A, 2000. 97(7). 3213-8.
    [50] Baksh D., Davies J.E., and Zandstra P.W., Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion. Exp Hematol, 2003. 31(8). 723-32.
    [51] Dreyfus P.A., Chretien F., Chazaud B., et al., Adult bone marrow-derived stem cells in muscle connective tissue and satellite cell niches. Am J Pathol, 2004. 164(3). 773-9.
    [52] Gussoni E., Soneoka Y., Strickland C.D., et al., Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature, 1999. 401(6751). 390-4.
    [53] LaBarge M.A. and Blau H.M., Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell, 2002. 111(4). 589-601.
    [54] Bittner R.E., Schofer C., Weipoltshammer K., et al., Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol (Berl), 1999.199(5). 391-6.
    [55] Ferrari G., Cusella-De Angelis G., Coletta M., et al., Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 1998. 279(5356). 1528-30.
    [56] Shefer G., Wleklinski-Lee M., and Yablonka-Reuveni Z., Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci, 2004. 117(Pt 22). 5393-404.
    [57] Asakura A., Komaki M., and Rudnicki M., Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation, 2001. 68(4-5). 245-53.
    [58] Katagiri T., Yamaguchi A., Komaki M., et al., Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol, 1994. 127(6 Pt 1). 1755-66.
    [59] Fraser S.E., Iontophoretic dye labeling of embryonic cells. Methods Cell Biol, 1996.51.147-60.
    [60] Puelacher W.C., Vacanti J.P., Ferraro N.F., et al., Femoral shaft reconstruction using tissue-engineered growth of bone. Int J Oral Maxillofac Surg, 1996. 25(3). 223-8.
    [61] Honig M.G and Hume R.I., Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol, 1986. 103(1). 171-87.
    
    [62] Koizumi N., Sakamoto Y., Okumura N., et al., Cultivated corneal endothelial cell sheet transplantation in a primate model. Invest Ophthalmol Vis Sci, 2007. 48(10). 4519-26.
    [63] Ye J., Yao K., and Kim J.C., Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model: engraftment and involvement in wound healing. Eye, 2006. 20(4). 482-90.
    [64] Abe T., Tomita H., Kano T., et al., Autologous iris pigment epithelial cell transplantation in monkey subretinal region. Curr Eye Res, 2000. 20(4). 268-75.
    [65] Alison M.R., Poulsom R., Otto W.R., et al., Recipes for adult stem cell plasticity: fusion cuisine or readymade? J Clin Pathol, 2004. 57(2). 113-20.
    [66] O'Malley K. and Scott E.W., Stem cell fusion confusion. Exp Hematol, 2004. 32(2). 131-4.
    [67] Lu Q.L., Morris G.E., Wilton S.D., et al., Massive idiosyncratic exon skipping corrects the nonsense mutation in dystrophic mouse muscle and produces functional revertant fibers by clonal expansion. J Cell Biol, 2000. 148(5). 985-96.
    [68] McLoon L.K., Rowe J., Wirtschafter J., et al., Continuous myofiber remodeling in uninjured extraocular myofibers: myonuclear turnover and evidence for apoptosis. Muscle Nerve, 2004.29(5). 707-15.
    [69] Beauchamp J.R., Morgan J.E., Pagel C.N., et al., Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol, 1999. 144(6). 1113-22.
    [70] Zammit P. and Beauchamp J., The skeletal muscle satellite cell: stem cell or son of stem cell? Differentiation, 2001. 68(4-5). 193-204.
    [71] Blaveri K., Heslop L., Yu D.S., et al., Patterns of repair of dystrophic mouse muscle: studies on isolated fibers. Dev Dyn, 1999. 216(3). 244-56.
    [72] Porter J.D., Extraocular muscle: cellular adaptations for a diverse functional repertoire. Ann N Y Acad Sci, 2002. 956. 7-16.
    [73] Park C.Y., Park S.E., and Oh S.Y., Acute effect of bupivacaine and ricin mAb 35 on extraocular muscle in the rabbit. Curr Eye Res, 2004. 29(4-5). 293-301.
    [74] Jarvinen M., Healing of a crush injury in rat striated muscle.2.a histological study of the effect of early mobilization and immobilization on the repair processes. Acta Pathol Microbiol Scand [A], 1975. 83(3). 269-82.
    [75] Harley R.D., Rodrigues M.M., and Crawford J.S., Congenital fibrosis of the extraocular muscles. J Pediatr Ophthalmol Strabismus, 1978. 15(6). 346-58.
    [1]Huard J.,Li Y.,and Fu F.H.,Muscle injuries and repair:current trends in research.J Bone Joint Surg Am,2002.84-A(5).822-32.
    [2]Hurme T.and Kalimo H.,Activation of myogenic precursor cells after muscle injury.Med Sci Sports Exerc,1992.24(2).197-205.
    [3]Khanna S.,Merriam A.P.,Gong B.,et al.,Comprehensive expression profiling by muscle tissue class and identification of the molecular niche of extraocular muscle.Faseb J,2003.17(10).1370-2.
    [4]Niemann C.U.,Krag T.O.,and Khurana T.S.,Identification of genes that are differentially expressed in extraocular and limb muscle.J Neurol Sci,2000.179(S 1-2).76-84.
    [5]Periasamy M.,Wydro R.M.,Strehler-Page M.A.,et al.,Characterization of cDNA and genomic sequences corresponding to an embryonic myosin heavy chain.J Biol Chem,1985.260(29).15856-62.
    [6]Garrett WE Jr B.T.,Anatomy,physiology,and mechanics of skeletal muscle.Orthopaedic basic science.,ed.S.SR.1994,Rosemont,IL:American Academy of Orthopaedic Surgeons.89-125.
    [7]Hurme T.,Kalimo H.,Lehto M.,et al.,Healing of skeletal muscle injury:an ultrastructural and immunohistochemical study.Med Sci Sports Exerc,1991.23(7).801-10.
    [8]Mauro A.,Satellite cell of skeletal muscle fibers.J Biophys Biochem Cytol,1961. 9.493-5.
    [9]Gibson M.C.and Schultz E.,Age-related differences in absolute numbers of skeletal muscle satellite cells.Muscle Nerve,1983.6(8).574-80.
    [10]Schultz E.and McCormick K.M.,Skeletal muscle satellite cells.Rev Physiol Biochem Pharmacol,1994.123.213-57.
    [11]Goldring K.,Partridge T.,and Watt D.,Muscle stem cells.J Pathol,2002.197(4).457-67.
    [12]潘玲梅,王恬,石放雄,肌卫星细胞激活和补给的分子调控与肌肉疾病.生物化学与生物物理进展,2006.33(9).811-15.
    [13]Sheehan S.M.and Allen R.E.,Skeletal muscle satellite cell proliferation in response to members of the fibroblast growth factor family and hepatocyte growth factor.J Cell Physiol,1999.181(3).499-506.
    [14]张立贵,王传富,黄晓辉,大鼠眼外肌成肌细胞的增殖及分化特征.中国组织工程研究与临床康复,2007.11(24).4702-05.
    [15]Rosenblatt J.D.,Lunt A.I.,Parry D.J.,et al.,Culturing satellite cells from living single muscle fiber explants.In Vitro Cell Dev Biol Anita,1995.31(10).773-9.
    [16]Lee J.Y.,Qu-Petersen Z.,Cao B.,et al.,Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing.J Cell Biol,2000.150(5).1085-100.
    [17]李映川,丁强,方祖军,成年大鼠骨骼肌卫星细胞的原代培养、鉴定及体外增殖.实验动物与比较医学,2007.27(1).20-24.
    [18]Weintraub H.,Davis R.,Tapscott S.,et al.,The myoD gene family:nodal point during specification of the muscle cell lineage.Science,1991.251(4995).761-6.
    [19]Sabourin L.A.and Rudnicki M.A.,The molecular regulation of myogenesis.Clin Genet,2000.57(1).16-25.
    [20]Freeman M.and Gurdon J.B.,Regulatory principles of developmental signaling.Annu Rev Cell Dev Biol,2002.18.515-39.
    [21]Rudnicki M.A.and Jaenisch R.,The MyoD family of transcription factors and skeletal myogenesis.Bioessays,1995.17(3).203-9.
    [22]Arnold H.H.and Winter B.,Muscle differentiation:more complexity to the network of myogenic regulators.Curr Opin Genet Dev,1998.8(5).539-44.
    [23]姜浩,徐建光,顾玉东,等,大鼠肌细胞生成素基因真核表达载体的构建.中国修复重建外科杂志,2003.17(3).227-29.
    [24]Murry C.E.,Kay M.A.,Bartosek T.,et al.,Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD.J Clin Invest,1996.98(10).2209-17.
    [25]陈岩,王琨,朱大海,鸡骨骼肌卫星细胞的分离培养、鉴定及生物学特性研究.遗传,2006.28(3).257-60.
    [26]Megeney L.A.and Rudnicki M.A.,Determination versus differentiation and the MyoD family of transcription factors.Biochem Cell Biol,1995.73(9-10).723-32.
    [27]Gruss P.and Walther C.,Pax in development.Cell,1992.69(5).719-22.
    [28]Scale P.,Saboudn L.A.,Girgis-Gabardo A.,et al.,Pax7 is required for the specification of myogenic satellite cells.Cell,2000.102(6).777-86.
    [29]Tamaki T.,Akatsuka A.,Ando K.,et al.,Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle.J Cell Biol,2002.157(4).571-7.
    [30]Wozniak A.C.and Anderson J.E.,Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers.Dev Dyn,2007.236(1).240-50.
    [31]Buckingham M.,Skeletal muscle progenitor cells and the role of Pax genes.C R Biol,2007.330(6-7).530-3.
    [32]Grounds M.D.,Age-associated changes in the response of skeletal muscle cells to exercise and regeneration.Ann N Y Acad Sci,1998.854.78-91.
    [33]Bladt F.,Riethmacher D.,Isenmann S.,et al.,Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud.Nature,1995.376(6543).768-71.
    [34]Bockhold K.J.,Rosenblatt J.D.,and Partridge T.A.,Aging normal and dystrophic mouse muscle:analysis of myogenieity in cultures of living single fibers.Muscle Nerve,1998.21(2).173-83.
    [35]Nemoto R.,Uchida K.,Hattori K.,et al.,S phase fraction of human bladder tumor measured in situ with bromodeoxyuridine labeling.J Urol,1988.139(2).286-9.
    [36]McLoon L.K.,Rowe J.,Wirtschafter J.,et al.,Continuous myofiber remodeling in uninjured extraocular myofibers:myonuclear turnover and evidence for apoptosis.Muscle Nerve,2004.29(5).707-15.
    [37]McLoon L.K.and Wirtschafter J.,Activated satellite cells in extraocular muscles of normal adult monkeys and humans.Invest Ophthalmol Vis Sci,2003.44(5).1927-32.
    [38]Gratzner H.G.,Monoclonal antibody to 5-bromo-and 5-iododeoxyuridine:A new reagent for detection of DNA replication.Science,1982.218(4571).474-5.
    [39]Nakamura S.,Takeda Y.,Kanno M.,et al.,Application of bromodeoxyuridine (BrdU)and anti-BrdU monoclonal antibody for the in vivo analysis of proliferative characteristics of human leukemia cells in bone marrows.Oncology,1991.48(4).285-9.
    [40]Khurana T.S.,Prendergast R.A.,Alameddine H.S.,et al.,Absence of extraocular muscle pathology in Duchenne's muscular dystrophy:role for calcium homeostasis in extraocular muscle sparing.J Exp Med,1995.182(2).467-75.
    [41]Andrade F.H.,Porter J.D.,and Kaminski H.J.,Eye muscle sparing by the muscular dystrophies:lessons to be learned? Microsc Res Tech,2000.48(3-4).192-203.
    [42]荣翱,粟国范,观前进,肉毒杆菌毒素A对眼外肌作用的实验研究.眼科研究,1990.8(4).245.
    [43]Dolly J.O.,Black J.,Williams R.S.,et al.,Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization.Nature,1984.307(5950).457-60.
    [44]Porter J.D.,Baker R.S.,Ragusa R.J.,et al.,Extraocular muscles:basic and clinical aspects of structure and function.Surv Ophthalmol,1995.39(6).451-84.
    [45]邓宏伟,杨景存,曹木荣,等,眼外肌注射肉毒杆菌毒素A后的形态学改变. 眼科研究,2000.18(2).140-42.
    [46]闰丽娟,吴晓,李鑫,等.,眼外肌注射A型肉毒毒素后神经萌芽及运动终板的变化.眼科,2006.15(5).326-30.
    [47]罗清礼,何为民,唐莉,等,浸润性突眼眼外肌超微结构的研究.中华眼科杂志年,2000.36(5).366-68.
    [48]陈丽英,徐国兴,梁平,等,共同性外斜视眼肌的超微病理研究.眼科,2000.9(1).46-47.
    [49]陈永东,刘双珍,吴小影,等,共同性斜视眼外肌神经生长因子的表达与形态结构改变的关系.中国斜视与小儿眼科杂志,2004.12(2).66-68.
    [50]Park C.Y.,Park S.E.,and Oh S.Y.,Acute effect of bupivacaine and ricin mAb 35on extraocular muscle in the rabbit.Curr Eye Res,2004.29(4-5).293-301.
    [51]McLoon L.K.and Wirtschafter J.D.,Continuous myonuclear addition to single extraocular myofibers in uninjured adult rabbits.Muscle Nerve,2002.25(3).348-58.
    [52]Antunes-Foschini R.S.,Miyashita D.,Bicas H.E.,et al.,Activated satellite cells in medial rectus muscles of patients with strabismus.Invest Ophthalmol Vis Sci,2008.49(1).215-20.
    [53]Christiansen S.P.and McLoon L.K.,The effect of resection on satellite cell activity in rabbit extraocular muscle.Invest Ophthalmol Vis Sci,2006.47(2).605-13.
    [54]Ugalde I.,Christiansen S.P.,and McLoon L.K.,Botulinum toxin treatment of extraocular muscles in rabbits results in increased myofiber remodeling.Invest Ophthalmol Vis Sci,2005.46(11).4114-20.
    [55]程冬婉,张伟,张叔人,成体干细胞临床应用的研究进展.中国肿瘤生物学治疗杂志,2006.13(2).150-52.
    [56]Goker H.,Haznedaroglu I.C.,and Chao N.J.,Acute graft-vs-host disease:pathobiology and management.Exp Hematol,2001.29(3).259-77.
    [57]Long Y.and Yang K.Y.,Bone marrow derived cells for brain repair:recent findings and current controversies.Curr Mol Med,2003.3(8).719-25.
    [58]Raff M.,Adult stem cell plasticity:fact or artifact? Annu Rev Cell Dev Biol, 2003. 19.1-22.
    [59] Horwitz E.M., Le Blanc K., Dominici M., et al., Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 2005. 7(5). 393-5.
    [60] Dominici M., Le Blanc K., Mueller I., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4). 315-7.
    [61] Jiang Y., Jahagirdar B.N., Reinhardt R.L., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002.418(6893). 41-9.
    [62] Colter D.C., Class R., DiGirolamo C.M., et al., Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci U S A, 2000. 97(7). 3213-8.
    [63] Baksh D., Davies J.E., and Zandstra P.W., Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion. Exp Hematol, 2003. 31(8). 723-32.
    [64] Dreyfus P.A., Chretien F., Chazaud B., et al., Adult bone marrow-derived stem cells in muscle connective tissue and satellite cell niches. Am J Pathol, 2004. 164(3). 773-9.
    [65] Gussoni E., Soneoka Y., Strickland C.D., et al., Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature, 1999. 401(6751). 390-4.
    [66] LaBarge M.A. and Blau H.M., Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell, 2002. 111(4). 589-601.
    [67] Mitterberger M., Pinggera G.M., Marksteiner R., et al., Adult stem cell therapy of female stress urinary incontinence. Eur Urol, 2008. 53(1). 169-75.
    [68] Pittenger M.F., Mackay A.M., Beck S.C., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411). 143-7.
    [69] Bittner R.E., Schofer C., Weipoltshammer K., et al., Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol (Berl), 1999. 199(5). 391-6.
    [70] Ferrari G., Cusella-De Angelis G., Coletta M., et al., Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 1998. 279(5356). 1528-30.
    [71] Shefer G., Wleklinski-Lee M., and Yablonka-Reuveni Z., Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci, 2004. 117(Pt 22). 5393-404.
    [72] Asakura A., Komaki M., and Rudnicki M., Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation, 2001. 68(4-5). 245-53.
    [73] Katagiri T., Yamaguchi A., Komaki M., et al., Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol, 1994. 127(6 Pt 1). 1755-66.
    [74] Alison M.R., Poulsom R., Otto W.R., et al., Recipes for adult stem cell plasticity: fusion cuisine or readymade? J Clin Pathol, 2004. 57(2). 113-20.
    [75] O'Malley K. and Scott E.W., Stem cell fusion confusion. Exp Hematol, 2004. 32(2). 131-4.
    [76] Lu Q.L., Morris G.E., Wilton S.D., et al., Massive idiosyncratic exon skipping corrects the nonsense mutation in dystrophic mouse muscle and produces functional revertant fibers by clonal expansion. J Cell Biol, 2000. 148(5). 985-96.
    [77] Dua H.S. and Azuara-Blanco A., Autologous limbal transplantation in patients with unilateral corneal stem cell deficiency. Br J Ophthalmol, 2000. 84(3). 273-8.
    [78] Tsai R.J., Li L.M., and Chen J.K., Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med, 2000. 343(2). 86-93.
    [79] Tremain N., Korkko J., Ibberson D., et al., MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells, 2001.19(5).408-18.
    [80]郭彤,王薇,张君,等.,骨髓间充质干细胞移植治疗眼表损害的初步实验研究.中华眼科杂志,2006.42(3).246-50.
    [81]黄丹平,葛坚,高楠,等,诱导骨髓间质干细胞分化为角膜上皮样细胞的初步研究.中国病理生理杂志,2007.23(5).999-1003.
    [82]Ozerdem U.,Alitalo K.,Salven P.,et al.,Contribution of bone marrow-derived pericyte precursor cells to corneal vasculogenesis.Invest Ophthalmol Vis Sci,2005.46(10).3502-6.
    [83]Rivolta C.,Sharon D.,DeAngelis M.M.,et al.,Retinitis pigmentosa and allied diseases:numerous diseases,genes,and inheritance patterns.Hum Mol Genet,2002.11(10).1219-27.
    [84]Tomita M.,Adachi Y.,Yamada H.,et al.,Bone marrow-derived stem cells can differentiate into retinal cells in injured rat retina.Stem Cells,2002.20(4).279-83.
    [85]Minamino K.,Adachi Y.,Yamada H.,et al.,Long-term survival of bone marrow-derived retinal nerve cells in the retina.Neuroreport,2005.16(12).1255-9.
    [86]Kicic A.,Shen W.Y.,Wilson A.S.,et al.,Differentiation of marrow stromal cells into photoreceptors in the rat eye.J Neurosci,2003.23(21).7742-9.
    [87]Yu S.,Tanabe T.,Dezawa M.,et al.,Effects of bone marrow stromal cell injection in an experimental glaucoma model.Biochem Biophys Res Commun,2006.344(4).1071-9.
    [88]Arnhold S.,Heiduschka P.,Klein H.,et al.,Adenovirally transduced bone marrow stromal cells differentiate into pigment epithelial cells and induce rescue effects in RCS rats.Invest Ophthalmol Vis Sci,2006.47(9).4121-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700