铺地竹中化感物质的分布及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铺地竹是一种丛生地被竹,研究表明,铺地竹竹叶对一些植物幼苗生长具有强烈的化感效应,具有较强的开发成为植物源除草剂的潜力。为进一步明确铺地竹中化感物质的分布规律,本文以结球生菜和匍匐翦股颖为靶标植物,采用琼脂混粉法,研究了铺地竹不同部位对靶标植物幼苗生长的化感作用,并结合人工模拟逆境,初步探讨了铺地竹中化感物质的影响因素,以期为铺地竹的进一步利用提供理论依据。
     主要研究结果如下:
     1.室内生物测定结果表明,竹叶是铺地竹中化感活性最强的部位。在2g/L的供试浓度下,含竹叶粉的培养平板中结球生菜发芽率最低,为66.67%,含竹秆,竹根,竹鞭粉培养平板中结球生菜发芽率分别为84.44%、81.11%、77.76%;竹叶对结球生菜和匍匐翦股颖幼根的抑制率最大,分别为63.20%和31.66% ,竹根、竹秆、竹鞭对结球生菜幼根抑制率分别为45.83%、39.08%、36.03%,三者对匍匐翦股颖幼根抑制率分别为14.87%、14.87%、5.27%。
     2.竹叶样品采集后采用不同方式干燥处理,生物测定结果表明,室内自然阴干对铺地竹竹叶化感活性的影响最小。在2g/L的供试浓度下,对结球生菜和匍匐翦股颖幼根生长的抑制率分别是85.88%和70.56%,与其他干燥方式处理叶片作用差异极显著。60℃烘干,采样当天冻干,采样密封1d后冻干,采样密封2d后冻干,采样密封4d后冻干,采样密封6d后冻干等6种干燥方式对结球生菜抑制率分别是34.88%、51.38%、40.78%、42.02%、43.93%,对匍匐翦股颖幼根的抑制率分别是13.72%、49.16%、60.65%、61.98%、60.46%、55.66%。
     3.不同生长期竹叶化感活性生测结果表明,对结球生菜化感活性最强的是3月份的竹叶样品,最弱的是7月份的竹叶样品,其EC_(50)值分别为0.73 g/L、3.69g/L。从3月份开始,EC_(50)值逐渐上升,7月份达到最大值,然后下降,9月份到次年2月份,EC_(50)值略有起伏。对于匍匐翦股颖化感活性最强的是2月份的竹叶样品,最弱的是4月份的竹叶样品,其EC_(50)值分别为0.21 g/L、6.11g/L。从2月份开始,EC_(50)值逐渐上升,4月份达到最大值,然后下降,8月份到次年1月份,EC_(50)值略有起伏。
     4.将铺地竹分别置于4℃处理12h、24h,40℃处理12h、24h后采集竹叶样品,生测结果表明,竹叶化感活性差异不显著,在2g/L的供试浓度下,4种处理与对照样品对结球生菜幼根抑制率分别为57.23%、59.58%、49.38%、49.26%、46.08%,对匍匐翦股颖幼根抑制率分别为50.28%、35.11%、48.52%、37.88%、39.17%;温度胁迫处理后竹叶样品中叶绿素含量略有下降,低温胁迫处理后相对电导率下降,高温胁迫处理后上升,SOD含量变化不大,MDA含量略有下降。
     水分胁迫试验结果表明,干旱和淹水胁迫处理后的竹叶对靶标植物幼根生长的抑制率变化不大。在2g/L的浓度下,干旱胁迫处理2、4、6、8、10d的竹叶样品对结球生菜幼根的抑制率分别为24.87%、20.72%、22.92%、24.22%、19.77%,对匍匐翦股颖幼根的抑制率分别为18.87%、26.43%、21.88%、29.53%、22.45%;淹水胁迫处理2、4、6、8、10d的竹叶样品对结球生菜幼根的抑制率分别为13.62%、14.32%、17.54%、21.49%、17.57%,对匍匐翦股颖幼根的抑制率分别为10.89%、11.38%、3.41%、16.45%、13.08%,与对照对两种靶标植物的抑制率(24.49%和23.56%)差异不显著;干旱胁迫处理后叶片样品中叶绿素含量先随时间延长而上升,6d达到最大值,然后下降,相对电导率有上升趋势,胁迫10d叶片相对电导率接近对照的2倍,叶片中SOD含量上升,处理4d和6d叶片中MDA含量比对照上升,其余变化不大;淹水胁迫处理后叶片样品中叶绿素含量变化不大,相对电导率变化不大, SOD含量也有上升趋势, MDA含量变化不大。
Arundinaria argenteostriatus is a species of ground cover bamboo, which leaves showed very strong allelopathy. To understanding the distribution characters of the allelochemical in Arundinaria argenteostriatus, the allelopathy of different parts of Arundinaria argenteostriatus was evaluated by a bioassay with Lactuca sativa L. and Agrostis stolonifera as the targets. Furthermore, the influence factors on the allelochemicals was probed with an artificial simulated method.
     The main results were as following:
     1. The result of bioassay showed that the allelopathy of leave was the strongest in Arundinaria argenteostriatus. At 2g/L concentration, the germination percentage of Lactuca sativa L. which cultivated in the culture medium containing bamboo leave powder was the lowest with 66.67%, and the germination percentage of medium containing bamboo stem, bamboo root, bamboo rhizome were 84.44%、81.11%、77.76%; The inhibitions of bamboo leave to Lactuca sativa L. and Agrostis stolonifera were maximum , 63.20% and 31.66%, and that of bamboo stem, bamboo root, bamboo rhizome to Lactuca sativa L. were14.87%、14.87%、5.27%, and to Agrostis stolonifera were 14.87%、14.87%、5.27%.
     2. Bamboo leave sample was drying by different ways after collecting, and the bioassay showed, the influence of natural indoor dry method to the allelopathy of Arundinaria argenteostriatus was the smallest, at 2g/L concentration, the inhibition ratios to Lactuca sativa L. and Agrostis stolonifera was 85.88% and 70.56%, and the difference was remarkable compared with other drying methods. The inhibition ratios of the bamboo leave by baking under 60℃, freeze drying on sampling day, freeze drying after sealing 1day, freeze drying after sealing 2 days, freeze drying after sealing 4 days, freeze drying after sealing 6 days to Lactuca sativa L. were 34.88%、51.38%、40.78%、42.02%、43.93%, and that of Agrostis stolonifera were 13.72%、49.16%、60.65%、61.98%、60.46%、55.66%.
     3. During the different growth periods, the bioassay result showed that the bamboo leave sample in March had the strongest allelopathy to Lactuca sativa L. and the sample of July was the weakest, the EC_(50) were 0.73 g/L、3.69g/L.EC_(50) rose gradually from March, and reached the maximum in July, then dropped, and slightly undulating from September to February of the next year. For Agrostis stolonifera, the bamboo leave sample in February was the strongest and the weakest was that in April, the EC_(50) was 0.21g/L、6.11g/L. EC_(50) rose gradually from February, and until April reached the maximum, then dropped, and slightly undulating from August to January of the next year.
     4. Put Arundinaria argenteostriatus in the condition of 4℃for 12h、24h,and 40℃for 12h、24h, then collected the leave sample. The bioassary result showed that the difference of leave allelopathy activity was not remarkable. At 2g/L concentration, the leave sample inhibition ratios of the 4 process modes and the contrast to Lactuca sativa L. were 57.23%、59.58%、49.38%、49.26%、46.08%, and to Agrostis stolonifera were 50.28%、35.11%、48.52%、37.88%、39.17%; Treated by temperature stress, the chlorophyll content in bamboo leave sample slightly declined, the relative electric conductivity declined under low temperature stress and rose under high temperature stress, the content of SOD had no obviously change, the content of MDA slightly declined.
     The water stress experiment showed that the inhibition ratios of bamboo leave treated by drought stress and flooding stress to target plants were had no obviously change. Treated by drought stress for 2、4、6、8、10d, At 2g/L concentration, the inhibition ratios to Lactuca sativa L. were 24.87%、20.72%、22.92%、24.22%、19.77%, and to Agrostis stolonifera were 18.87%、26.43%、21.88%、29.53%、22.45%; Treated by flooding stress for 2、4、6、8、10d, the inhibition ratios to Lactuca sativa L. were 13.62%、14.32%、17.54%、21.49%、17.57%, and to Agrostis stolonifer were 10.89%、11.38%、3.41%、16.45%、13.08%, which compared with the inhibition ratio of the contrast (24.49%和23.56%) , the difference was not remarkable. In bamboo leave that treated by drought stress, the chlorophyll content rose gradually reached the maximum at 6d, then dropped, the tendency of relative electric conductivity was rising, the 10d was almost twice of the contrast, the tendency of SOD content was rising too, the MDA content had no obviously change.
引文
[1] Rice EL.Allelopathy .New York: Academic Press,1974:1–50
    [2] Rice EL. Allelopathy Second edition. New York :Academic Press,1984
    [3]郭惠民,程红梅.外来入侵植物紫茎泽兰化感作用研究进展.中国农业科技导报,2008,10(1):31-34
    [4]孔垂华,胡飞.植物化感作用及其应用.中国农业出版社,2001,125-143
    [5]王大力,祝心如.豚草的化感作用研究.生态学报,1996,16(1):11-19
    [6] Chen R-M. Some biological properties of promotive allelopathy substance. Lepidimoide South China Normal Univ,1999,1:110-119
    [7]吕春霞,杨文权,慕小倩.植物化感作用及其在杂草防治中的应用.陕西农业科学,2002,(12):18-20
    [8]苏少泉.生物除草剂的研究与开发.农药,2004,43(3):98-99
    [9]黄世文,余柳青,罗宽.稻田杂草生物防治研究现状、问题及展望.植物保护,2004,30(5):5-11
    [10] Rice EL. Pest Control with Nature’s Chemicals. New York :Academic Press,1988.
    [11]何军,马志卿,张兴.植物源农药概述.西北农林科技大学学报(自然科学版),2006,34(9):79-85
    [12] Putnam .AR . Vegetable weed control with minimal herbicide inputs. Hort Sci, 1990,25:155-158
    [13]周志红.作用的研究方法及影响因素.生态科学,1999,18(1):35-38
    [14]冯娜.瑞香毒狼叶化感作用及其植物源农药功能研究:[硕士学位论文].长春:东北师范大学,2002
    [15]宋启示,付昀,唐建维等.紫茎泽兰的化学互感潜力.植物生态学报,2000,24(3):362-365
    [16]邓兰桂,孔垂华,骆世明等.木麻黄小枝提取物的分离鉴定及其对幼苗的化感作用.应用生态学报,1996,7(2):145-149
    [17]韩晓增,邹文秀,李晓慧.大豆重迎茬研究展望.大豆科技,2009,3:10-11
    [18]杜英君,靳月华.连做大豆植株化感作用的模拟研究.应用生态学报,1994,2(10):209-212
    [19]秦学功,马忠海,元英进.苦豆子生物碱的农用活性初步研究.佳木斯大学学自然科学版) ,2002,20(3):340-344
    [20]姜卫兵,马凯.无花果不同器官浸提液对几种蔬菜和豆类种子发芽和生长的影响.果树学报,2001,18(1):39-42
    [21]李键,洪伟,吴承祯等.植物化感作用研究进展.亚热带农业研究,2007,4(3):217-220
    [22]Putnam.A.R,Tang,C.S.(eds.).The Seience of Allelopathy.New York:1986,133-145
    [23]曾任森,骆世明.香茅、胜红蓟和三叶鬼针草植物他感作用的研究.生态学,1993,14(4):8-14
    [24]罗小勇,付艳红,周世军.琼脂混粉法的建立及其在植物叶片化感活性测定中的应用.青岛农业大学学报,2007,4:267-270
    [25] Einhellig.F.A.Interaction among alleloehemicals and other stress factors of the plant environment. Amer.Chem.Soc.,Washington,DC.1987,343-357
    [26]孔垂华.植物化感作用研究中应注意的问题.应用生态学报,1998,9(3):332-336
    [27] Rice. E.L. Pest Control with Nature’s Chemicals. New York :Academic Press, 1988
    [28]韩庆华,马永清.小麦秸杆中生化他感化和物的研究概况.生态农业研究,1994,2(4):71-75
    [29] Friedman J.Allelopathy in Desert Ecosystems.ACS SymP.Ser,1987,330:53-68
    [30]贺锋,陈辉蓉,吴振斌.植物间的相生相克效应.植物学通报,1999,16(l):19-27
    [31]马永清,韩庆华,麦秸覆盖对夏玉米生长发育及产量的影响.华北农学报,1995,10(1):106-110
    [32]宋君.植物间的他感作用.生态学杂志,1990,9(6):43-47
    [33]孔垂华,徐涛,胡飞.胜红蓟化感作用研究Ⅱ主要化感物质的释放途径和活性.应用生态学报,1998,9(3):257-260
    [34] Putnam A.R,Tang C.H. The science of Allelopathy.New York :John Wiley&Sons,1986,1-69
    [35]张晓珂,姜勇,梁文举.小麦化感作用研究进展.应用生态学报,2004,15(10):1969-1972
    [36]廖馥荪译.高等植物的化学间的相互作用.草原与牧草,1986,2
    [37]李绍文.高等植物之间的生化关系.生态学杂志,1989,8(l):66-70.
    [38]阎飞,杨振明.大豆连作障碍中的生化互作作用.大豆科学,1998,17(2):147-152
    [39]马汇泉,郑桂萍,赵九洲.人豆连作障碍及产生机理.土壤,1997,l:46-48
    [40]许艳丽,王光华,韩晓增.连作大豆生物障碍研究.中国油料作物学报,1997,19(3):46-49.
    [41] M.N.V.Prasad.Plant Eeo physiology. NewYork:John Wiley&sons,Inc,1997,260-278
    [42]韩庆华,马永清.小麦秸秆中生化他感化合物的研究概况.生态农业研究,1994,2(4):71-75
    [43]胡飞,孔垂华,徐效华等.水稻化感材料的抑草作用及其机制.中国农业科学,2004,37(8):1160-1165
    [44] Perez F.J Ormen-NunezJ.Root exudates of wildoats : allelopathy effect spring wheat Phytoehem-istry,1991,30(7):2199-2202
    [45] Perez F.,Jormeno-NunezJ.Difference in hydroxamic acid content in root sandroot exudates of wheat and rye:possible role in allelopathy.Jchem Eeol,1991,17(6):1037-1043
    [46]王树起,杨振明,韩丽梅.大豆残茬腐解液对大豆生长发育的自感效应.大豆科学,2001,20(2):89-93
    [47] Donald A.Crutehfleld,Gall A.Wieks .Effect of Winter Wheat(Triticum aestivum)Straw Mulch Level on weed Control.1985,34(l):l10-114
    [48]赵松岭,李风民,,张人勇.作物生产是一个种群过程.生态学报,1997,17(l):100-104
    [49]王人力.水稻化感作用研究综述.生态学报,1998,18(3):326-334
    [50]祝心如.植物化学生态研究促进生态农业建设.生态学杂志,1993,22(4):36-40
    [51] Rizvi S H,Mishra G P,Rivi V.Allelopathic effects of nieotineonmaize,its possible importance incroprotation.Plant Soil,1989,116(2):289-291
    [52] Tekintas E,Tanriser A,MendileiogluK,etal.Effect of jugloneon seed germination.Ege Univ Ziraat Fak Derg,1988,25(2):203-213
    [53] KimYS.Abioassay on susceptivity of selected species to phytotoxic substances from potato plant.Korean of Botany,1987,30(l):59-68
    [54] KimYS,Kil BS.Identification and growth inhibition of phytotoxic substances from tomato plant. Sikmul Hakhoe Chi,1989,32(l):41-49.
    [55] KimYS,Kil BS.Identification and growth inhibition of phytotoxic substances from tomato plant. Sikmul Hakhoe Chi,1989,32(l):41-49.
    [56]杨善元,俞子文,孙文浩.风眼莲根系中抑藻物质分离与鉴定.植物生理学报,1992,18(4):399-402.
    [57]胡飞,孔垂华.胜红蓟化感作用的研究Ⅰ水溶物的化感作用及其化感物质的分离鉴定.应用生态学报,1997,8(3):304-308.
    [58] Tang C. S. Plant Stress and Allelopathy. ACSSymp Ser, 1995,582:192-157.
    [59]江泽慧主编.世界竹藤.沈阳:辽宁科学技术出版社,2002.
    [60]明·李时珍.本草纲目(校点本)下册.北京:人民卫生出版社出版,1982,2163-2165
    [61]杨校生.国内外竹子化学利用及其研究概况.林业科技开发,1997,2:8-10 .
    [62]黄志群.毛竹、苦槠水浸液对杉木种子发芽的效应.福建林学院学报,1999,19(3):249-252.
    [63]郑仁红.覆盖栽培对雷竹林衰退的化感效应研究:[硕士学位论文].北京:中国林业科学研究院,2006.
    [64]王莹.孝顺竹化感潜力的初步研究:[硕士学位论文].广州:华南农业大学,2008.
    [65]黄启堂.毛竹叶和鞭生化物质对马尾松种子的发芽效应.福建林学院学报,2008,28(1):6-8.
    [66]刘翠,陈涛,汤锋等.竹叶对3种植物幼苗生长的影响研究.竹子研究汇编,2009,28(2):12-18
    [67]韦强,杜相革,曲再红.竹醋液对黄瓜生长的影响.中国农学通报,2006,22(7):411-414
    [68]鲍滨福,马建义,张齐生等.竹醋液作为植物生长调节剂的开发研究:(Ⅰ)室内试验.浙江农业学报,2006,18 (3):171-175
    [69]鲍滨福,马建义,张齐生等.竹醋液作为植物生长调节剂的开发研究:(Ⅱ)田间试验.浙江农业学报,2006,18(4):268~272
    [70]邓麟,金锁,王秦虎等.植物化感作用研究进展.陕西农业科学,2007,(4):81-83
    [71] Weston LA.Utilization of allelopathy for weed management in agroecosystems.Agron J.,1996,8 :860-866
    [72]黄高宝,强鹏.植物化感作用影响因素的再认识.草业学报,2005,14(2):16-22
    [73]彭少麟,邵华.化感作用的研究意义及发展前景.应用生态学报,2001,12(5)l780-1786
    [74] Chen Z-H,Lin F-P,Zhang D-M . Physio ecological study on the seed germination and seedling growth in four legume tree species under elevated CO_2 concerntration. Acta Phytoecol Sin, 1999,23(2):161-170
    [75] Jiang G.M. The impact of global increasing of CO_2 on plants. Chin Bull Bot,1995,12(4):1-7
    [76] Wu B-H,Meng Q-F,Zhao Y-G. Global climate change and biodiversity J. Ji lin For Univ, 1997,13 (3):142-146
    [77] Wang D-L,Lin W-H. Effects of CO_2 elevation on root exudates in rice. Acta Ecol Sin,1999,19(4):570-572
    [78]唐启义,冯明光.统计分析及其DPS数据处理系统.北京:科学出版社.2002
    [79]盖均镒.实验统计方法.北京:中国农业出版社.1999,105
    [80]李寿田,周健民,王火焰等.植物化感作用机理的研究进展.农村生态环境,2001,17(4):52-55
    [81]彭萍,谢全志,李品武等.茶树的化感作用研究.西南农业学报,2009,22( 1):67-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700