蔬菜病害生防菌的筛选、鉴定及其拮抗物质理化性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内外防治蔬菜病害以化学防治为主。化学农药的大量使用,在控制病害同时也造成了环境污染、农产品有毒物质残留、危害人类健康和病原菌产生抗药性等问题,严重制约了农业的可持续发展。因此,寻找安全、有效的病害防治途径,是当前病害防治研究的重点。研究表明,生物防治是其中一种有效的防治途径。本研究从蔬菜根际土壤中分离筛选到一株具广谱抗性和促生长作用的生防细菌XJ。从菌种的分离筛选、鉴定、摇瓶发酵工艺和拮抗物质理化性质等方面进行了研究。结果如下:
     1.采用梯度稀释分离法,从浙江、福建、江西等地采集的160多份蔬菜根际土壤中分离获得712株细菌。以禾谷镰刀菌为指示菌,采用平板对峙法从分离到的712株细菌中筛选获得30株可以抑制禾谷镰刀菌生长的生防菌,其中有10株细菌对病原菌的抑制率达70%以上。采用平皿促生长法从30株生防菌中筛选出9株能促进黄瓜根生长的菌株。
     2.采用温室盆栽试验对初筛获得的9株生防菌进行促生试验。结果表明,9株生防菌对黄瓜的生长都有促进作用,其中以AT2的促生长效果最好。通过温室盆栽试验筛选在黄瓜植株上有防病效果的生防菌。试验结果表明,生防菌XJ、DE2、BN8 3个菌株对黄瓜炭疽病都有一定防治效果,其中以菌株XJ的防治效果最好。
     3.采用形态特征及生理生化检测和16S rDNA序列分析等方法,对生防菌XJ进行菌种鉴定。形态特征和生理生化鉴定显示,XJ属于枯草芽孢杆菌(Bacillus subtilis);16S rDNA序列测定和分析结果表明,XJ与枯草芽孢杆菌(B.subtilis)的同源性达99%。因此,两种鉴定方法的结果一致,菌株XJ为枯草芽孢杆菌(B.subtilis)。
     4.通过单因素试验和正交试验对菌株XJ的发酵培养基进行优化,结果表明,XJ菌株的发酵培养基的最佳配方为:蔗糖3%,蛋白胨1.5%,黄豆饼粉1%,K2HPO40.4%。同时对菌株XJ的发酵条件进行优化,结果表明XJ菌株最佳发酵条件为:发酵温度是37℃,初始pH值为9.0,接种量为2%,装液量为75mL/300 mL,摇床转速为200 rpm,发酵时间24 h。
     5.通过对XJ的拮抗物质的定位研究发现,XJ产生的拮抗物质是胞外物质。通过硫酸铵分级盐析法对XJ产生的拮抗物质进行了提取,发现当硫酸铵饱和度为20%时,沉淀的拮抗活性最大,随着硫酸铵饱和度增加,沉淀的拮抗活性逐渐减弱。当硫酸铵饱和度达到80%时,沉淀基本无拮抗活性,因此,采用60%饱和度的硫酸铵基本可以将活性物质全部沉淀下来。对拮抗物质的理化性质初步研究表明,该拮抗物质在121℃高温处理30 min后,拮抗活性基本不变,121℃高温处理1 h后,拮抗活性下降为67.13%,说明该拮抗物质对高温相对稳定;在pH4-10之间活性稳定,pH小于4,抑菌活性有所下降,pH大于或等于12时,活性完全丧失,说明活性物质在酸性和中性条件下稳定;活性物质对蛋白酶K部分敏感。
At present, chemical control is the major way to prevent vegetables from diseases. The extensive use of chemical pesticides has caused a series of problem, such as environmental pollution, toxic residues in agricultural products, threatening human health and causing pathogen resistance, which has seriously hampered the sustainable development of agriculture. Therefore, finding safer and more effective technique is urgent to solve the above problem. Biological control is one of the most effective technique.
     As a biocontrol bacterium XJ, which is isolated from the rhizosphere soil of vegetables, has a broad-spectrum resistance to vegetables diseases and it can also promote plant growth. XJ was studied in the following aspects:isolation and screening, identification, optimization of fermentation technology, physical and chemical properties of antimicrobial substance in the fermented products, etc. Results are as follows:
     With gradient diluting soil isolating method,712 bacteria strains were isolated from 162 vegetables rhizosphere soils in Zhejiang, Fujian, Jiangxi and some other provinces.
     Using Fusarium graminearum as the tested strain,30 antagonistic strains were obtained from 712 isolated strains by hyphal extension inhibition assay. Inhibitory rate of 10 antagonistic strains against Fusarium graminearum are more than 70%. Using growth-promoting test,9 strains were obtained as the potential biocontrol agents after screening of 30 strains, which promoted the growth of cucumber roots.
     In greenhouse test on growth-promoting, the biocontrol agents from 9 strains promoted the growth of cucumber. In greenhouse test of the disease contron, biocontrol potential strains XJ, DE2, BN8 showed antagonistic ability against Colletotrichum lagenarium and XJ showed the strongest effect.
     XJ was identified according to its morphological, physiological and biochemical characteristics, as well as 16S rDNA sequence analysis. Morphological characteristics and physiological and biochemical testing results showed that XJ belongs to Bacillus subtilis. The results of 16S rDNA sequencing and analysis showed that the homology was 99% between XJ and Bacillus subtilis. Results were consistent with the two methods. XJ is confirmed to be Bacillus subtilis.
     By single factor and orthogonal test, the optimal fermentation medium was screened. The results showed that the liquid medium of XJ fermentation product was constituted by sucrose 3%, peptone 1.5%, soybean flour 1%, K2HPO4 0.4%. Meanwhile, fermentation conditions of strain XJ were optimized. The results showed that the optimal fermentation conditions were:fermentation temperature 37℃, initial pH 9.0, inoculation seed liquid 2%, loading liquid volume 75 mL in 300 mL flasks, shaker rotative velocity 200 rpm and fermentation time 24h.
     The results showed that antagonistic substances produced by XJ fermentation product are in the supernant fluid of the culture. Antagonistic substances separated out from ammonium sulfate fractionation. When ammonium sulfate saturation was 20%, the antagonistic activity of the precipitation was the strongest. With the increase of saturation, the antagonistic activity of precipitation was gradually weakened. When the saturation was up to 80%, the precipitation did not show any antagonistic activity. Therefore, All of the active substances could be deposited after adopting 60% saturated solution of ammonium sulfate.
     Physical and chemical properties of antagonistic substances were studied. The results showed that the antagonistic activity remained when the antagonistic substances were treated at 121℃for 30 min. The antagonistic activity reduced to 67.13% with 121℃for 1 h treatment. This indicated that the antagonistic substances were thermal stable. The antagonistic substances were also stable in the pH range from 4 to 10. The active substances were partially sensitive to proteinase-K.
引文
[1]成丽霞.生防细菌菌株A的分离鉴定及其抗真菌物质理化性质研究[D].河北:河北师范大学图书馆,2007:1-14.
    [2]陈延熙.试论植物病害生物防治[J].植病生防,1979,(1):1-12.
    [3]Cook RJ.Making greater use of introduced microorganisms for biological control pathogens[J]. Annual Review of Phytopathology, 1993, 31(1): 53-80.
    [4]杨怀文.我国农业病虫害生物防治应用研究进展[J].科技导报,2007,25(7):56-59.
    [5]李长松.拮抗性细菌生物防治植物土传病害的研究进展[J].生物防治通报,1992,4:168-172.
    [6]Obagwu J, Korsten L. Integrated control of citrus green and blue molds using Bacillus subtilis in combination with sodium bicarbonate or hot water[J]. Postharvest Biology and Technology, 2003,28:187-194.
    [7]林东,徐庆,刘忆舟,等.枯草芽孢杆菌S0113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化[J].农业生物技术学报,2001,9(1):77-80.
    [8]Mari M, Guizzardi M, Pratella GC. Biological control of gray mold in pears by antagonistic bacteria[J]. Biological Control, 1996, 7 (1): 30-37.
    [9]廖晓兰,罗宽.油菜花上细菌的分离及其对油菜菌核菌的拮抗作用[J].湖南农业大学学报,2000,26(4):296-298.
    [10]崔林,孙振,孙福在,等.马铃薯内生细菌的分离及环腐病拮抗菌的筛选鉴定[J].植物病理学报,2003,33(4):353-358.
    [11]谢关林,李斌,郝晓娟,等.利用芽孢杆菌在温室环境中控制番茄青枯病[J].植物病理学报,2006,36(1):80-85.
    [12]陈海英,廖富蓣,林健荣,等.拮抗细菌在植物病害防治中的应用及展望[J].安徽农业科学,2008,36(20):8690-8691.
    [13]于淑池,张利平,王立安.拮抗细菌作为生物防治手段研究进展[J].河北农业科学,2004,8(1):62-65.
    [14]Asaka O, Shoda M. Biocontrol of Rhizoctonia solani damping-off of tomato with Baccilus subtilis RB14 [J]. Applied Environmental Microbiology, 1996, 62 (11): 4081-4085.
    [15]Hervas A, Landa B, Datnoff LE, et al. Effects of Commercial and Indigenous Microorganisms on Fusarium wilt development in Chickpea[J]. Biological Control, 1998, 13 (3): 166-176.
    [16]Knoxo GG, Kiiihom K, Leifert C. Effects of increased intrate availability on the control of plant pathogenic fungi by the soil bacterium Bacillus subtilis[5]. Applied Soil Ecology, 2000,15(2): 227-231.
    [17]Zhang SS, Waseem R, Yang XM, et al. Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer[J]. Biology and Fertility of Soils, 2008, 44(8): 1073-1080.
    [18]王金生,田瑞华,方中达,等.枯草杆菌B1菌株对大白菜软腐病的生防作用[J].南京农业大学学报,1989,12(4):59-62.
    [19]王雅平,刘伊强,潘乃(?).枯草芽孢杆菌TG26防病增产效应的研究[J].生物防治通报,1993,9(2):63-68.
    [20]陈志谊,高太东,严大富,等.枯草芽孢杆菌B-916防治水稻纹枯病的田间试验[J].中国生物防治,1997,13(2):75-78.
    [21]辛玉成,秦淑莲,李宝笃,等.枯草芽孢杆菌XM16菌株制剂对苹果霉心病的防治及病原的抑制作用[J].植物病理学报,2000,30(1):65-70.
    [22]王占武,李晓芝,刘彦利,等.枯草芽孢杆菌B501在草莓根际的定殖及其动态变化[J].植物病理学报,2003,33(2):188-189.
    [23]张中鸽,彭于发,张玉勋.多粘芽孢菌B48菌株抑菌作用[J].中国生物防治,1994,2:85-86.
    [24]Walker R, Powell A A, Seddon B. Bacillus isolates from the spermosphere of peas and dwarf french beans with antifungal activity against Botrytis cinerea and Pythium species [J]. Applied Microbiology, 1998, 84(5): 791-801.
    [25]Akhtar MS, Siddiqui ZA. Glomus intraradices, Pseudomonas alcaligenes, and Bacillus pumilus: effective agents for the control of root-rot disease complex of chickpea[J]. General Plant Pathology, 2008, 74:53-60.
    [26]李华荣,肖建国,颜思齐.蜡质芽抱杆菌R2防治水稻纹枯病的研究[J].植物病理学报,1993,23:101-105.
    [27]黄绍宁,沈华山,吴华明.应用地衣芽孢杆菌和木霉防治基质栽培黄瓜苗期猝倒病[J].中国生物防治,1999,15(1):45-46.
    [28]Howie WJ, Suslow TV. Role of antibiotic biosynthesis in the inhibition of Pythium ultimun in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens[J]. Molecular Plant-Microbe Interactions, 1991,4:393-399.
    [29]Liu L, Kloepper JW, Tuzun S. Induction of systemic resistance in cucumber by plant growth-promoting rhizobacteria: Duration of protection and effect of host resistance on protection and root colonization[J]. Phytopathology, 1995, 85: 1064-1068.
    [30]Van Peer R, Niemann GJ, Schippers B. Induced resistance and phytoalexin accumulatiom in biological control of Fusarium wilt of carnstion by Pseudomons sp. strain WCS417[J]. Phytopathology, 1991, 81:728-734.
    [31]Pal KK, Tilak KVBR, Saxena AK. Antifungal characteristics of a fluorescent pseudonconas. Strain involvedin the biological control of Rhizoctonia solani [J]. Microbiologoical Research, 2000,155(3):233-242.
    [32]Boer M, Bom P, Kindt F, et al. Control of Fusarium wilt of radish by combing Pseudomonas putida strains that have different disease-suppressive mechanisms[J]. Phytopathology, 2003, 93 (5): 626-632.
    [33]许煜泉,唐玮宁,郑有丽,等.筛选假单胞菌株M18防治大棚黄瓜枯萎病害[J].上海交通大学学报,1999,33(2):210-213.
    [34]楼兵干,张炳欣,Vaarten Ryder.铜绿假单胞菌株CR56在黄瓜和番茄根围的定殖能力[J].浙江大学学报,2001,27(2):183-186.
    [35]王远山,王平,胡正嘉.绿针假单胞菌PL9菌株对烟草疫霉的拮抗作用研究[J].华中农业大学学报,2002,21(3):248-251.
    [36]宗兆锋,钮绪燕,李君彦,等.西瓜枯萎病颉颃菌的筛选研究[J].西北农业大学学报,1995,23(2):60-64.
    [37]岳东霞,许长蔼,张要武,等.黄瓜枯萎病拮抗细菌的筛选与防治[J].天津农业科学,2002,8(4):7-10.
    [38]程亮,肖爱萍,游春平.拮抗菌对香蕉枯萎病菌的抑菌作用初步研究[J].仲恺农业技术学院学报,2005,18(1):3-13.
    [39]Kerr A. Biological control of crown gall through production of agrocin 84[J]. Plant Disease, 1980,64:25-30.
    [40]Kerr A, Tate ME. Agrocins and the biological control of crown gall[J]. Microbiology Science, 1984, 1: 1-4.
    [41]Farrand SK, Wang CL, Hong SB, et al. Deletion derivatives of pAgK84 and their use in the analysis of Agrobacterium plasmid functions[J]. Plasmid, 1992,28 (3): 201-212.
    [42]陈龙瑛,吴印青,范林华,等.桃树根癌的生物防治[J].中国果树,1995,1:8-10.
    [43]梁志宏,王慧敏,王建辉.E26防治植物根癌病的效果及其稳定性初步研究[J].中国农 业大学学报,2001,6(1):91-95.
    [44]Chung DY, Kyeremen AG, Gunji Y, et al. Identification and cloning of an Erwinia carotovora subsp carotovora bacteriocin regulator gene by insertional mutagensis[J]. Journal Bacteriology,1999,181:1953-1957.
    [45]Pushpinder P S, Yong C S, Chang S, et al. Biological control of Fusarium Wilt of cucumber by chitinolytic bacteria[J]. Phytopathology,1999,89 (1):92-99.
    [46]乔宏萍,宗兆锋.用重寄生菌防治植物病害[J].中国生物防治,2002,18(4):176-179.
    [47]姚元枝.木霉菌防治油菜菌核病和辣椒白绢病的研究[J].怀化师专学报,1997,16(6):67-69.
    [48]王革,李海云,段玉琪,等.木霉菌对烟草黑胫病菌的拮抗机制及生物防治研究[J].云南大学学报(自然科学版),2001,23(3):222-226.
    [49]郭润芳,史宝胜,高宝嘉,等.木霉在植物生物防治中的应用[J].河北林果研究,2001,16(3):294-298.
    [50]刘海波,田世平,秦国政,等.罗伦隐球酵母对葡萄采后病害的拮抗效果[J].中国农业科学,2002,35(7):831-835.
    [51]乔宏萍,宗兆锋.重寄生菌F46和PR对果蔬采后病害三种致病菌的控制作用[J].中国生物防治,2003,19(1):47-48.
    [52]葛红莲,纪秀娥,乔传英.根围细菌防治植物土传病害的研究进展[J].河南农业科学,2005,8:21-24.
    [53]胡燕梅,杨龙.利用微生物防治植物病害的研究进展[J].中国生物防治,2006,22:190-193.
    [54]Elad Y.et al, Influnce of trace amounts of cations and siderphore producing pseudomonads on chlamydospore germination of Fusarim oxysporum[J]. phytopathology, 1987,77:191-195.
    [55]Van Dijk KV, Nelson EB. Ftty acids uptake and beta-oxidation by Enterobacter cloacae is necessary for seed rot suppression of pyhium ultimum[J]. phytopathology,1997a,87: 100-102.
    [56]Van Dijk KV, Nelson EB. Inactivation of seed exudates stimulants of pyhium ultimum sporangium germination by biocontrol strain of Enterbacter cloace and other seed-Associated bacteria[J]. Soil Biology And Biochemistry,1997b,29:351-355
    [57]Khan NI, et al. Biological control of SCAB of Wheat incited by Gibberella zeae[J]. Niational Fusarium Head Blight Forum,1998,45-46.
    [58]Boer M, et al.Control of Fusarium wilt of radish by combining. Pseudomonas putida smlius that have different disease-suppreive mechanisms[J]. Phytopatbology,2003,59 (5): 626-632.
    [59]Kloepper JW, Tunzun S. Proposed definition related to induced disease resistance[J]. Biocontrol Science and Technology,1992,2:349-351.
    [60]翁启勇,李开本.诱导植物系统抗性研究及进展[J].福建农业学报,1998,13(4):23-28.
    [61]Peer R, Niemann GJ, Schippers B. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r[J]. Plant diseases,1991,81(7):728-734.
    [62]何礼远,康耀卫.利用青枯菌无毒菌株和荧光假单胞菌诱导花生产生抗病性[J].植物保护学报,1990,17(2):113-116.
    [63]Liu L, Kidepper JW, Tuzun S. Induction of systemic resistance in cucumber agairlst Fusarium wilt by plant growth-promoting rhizobaeteria [J]. Phytopathology,1995,85 (6): 695-698.
    [64]陈志谊,许志刚,陆凡,等.拮抗细菌B-916对水稻植株的抗性诱导作用[J].西南农业学报,2001,14(2):44-48.
    [65]宋永燕,李平,李祩晋,等.生防细菌LM-3对水稻的促生性和诱导抗性研究[J].西南农业学报,2006,19(3):438-441.
    [66]Cook RJ, Thomashow LS, Weller DM, et al. Molecular mechanisms for biological control of plant pathogens[J]. Phytopathology,1995,31:53-80.
    [67]马红娟.香蕉枯萎病拮抗细菌的筛选及其利用研究.[D].福建:福建农林大学图书馆,2009.
    [68]Raimund M, Torsten S, Karl-D.E, et al. Gstructure of the Bacillus subtilis peptide antibiotic subtilosin a determined by 1H-NMR and matrix assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Journal of Protein Chemistry,2001,20(6):501-506.
    [69]Stefan H, Karl-D.E, Torsten S. Engineering Bacillus subtilis ATCC 6633 for improved production of the antibiotic subtilin[J]. Applied Microbiology and Biotechnology,2006,69 (5):532-536.
    [70]Marc O, Duby F, Jourdan E, et al. Bacillus subtilis M4 decreases plant susceptibility tow-and fungal pathogens by increasing host resistanc associated with differential gene expression[J]. Applied Microbiology and Biotechnology,2005,67(5):692-698.
    [71]Yoshida S, Hiradate S, Tsukamoto T, et al. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC22 isolated from mulberry leaves[J]. Phytopathology,2001,91: 181-187.
    [72]Jack R.W, J.R. Tagg, B. Ray. Bacteriocin of Gram-positive bacteria[J]. Microbiology Review,1995,59:170-200.
    [73]Anne L, Thomas E, Sadik T, et al. Molecular characterize ation and analysis of the operon encoding the antifungal lipopeptide bacillomycin D[J]. FEMS Microbiology Letters,2004, 234:43-49.
    [74]Phae CG, Shoda M, Kita N, et al. Biological control of crown and root rot and bacterial wilt of tomato by Bacillus subtilis NB22[J]. Ann. Phytopath. Soc. Japan,1992,58:329-339.
    [75]裴炎,李先碧,彭红卫,等.抗真菌多肽APS-1的分离纯化与特性[J].微生物学报,1999,39(4):344-349.
    [76]徐刘平,尹燕妮,李师默,等.拮抗细菌对土传病原菌的作用机理[J].中国生物防治,2006,22(1):10-14.
    [77]顾真荣,马承铸,韩长安.产几丁质酶芽孢杆菌对病原真菌的抑菌作用[J].上海农业学报,2001,17(4):88-92.
    [78]顾真荣,吴畏,高新华,等.枯草芽孢杆菌G3菌株的拮菌物质及其特性[J].植物病理学报,2004,34(2):166-172.
    [79]刘伊强,王雅平,潘乃(?),等.拮抗菌TD26的鉴定及其抗菌蛋白BI的纯化和部分特性[J].植物学报,1994,36(3):197-203.
    [80]刘焕利,王金生,张学君,等.枯草杆菌B3抗植物病原真菌蛋白的纯化及其性质的研究[J].农业生物技术学报,1995,3(3):33-38.
    [81]谢栋,彭憬,王津红,等.枯草芽孢杆菌抗菌蛋白X98Ⅲ的纯化与性质[J].微生物学报,1998,38(1):13-19.
    [82]张楹.侧孢芽孢杆菌产生的抑真菌蛋白酶[J].中国生物防治,2006,22(2):146-149.
    [83]任争光,宋庆丰,张志勇,等.杏树根际芽孢杆菌BJ-6抗菌蛋白的分离纯化及抑菌机理[J].果树学报,2009,26(3):325-328.
    [84]熊国如,张翠英,刘庆丰,等.枯草芽孢杆菌XF-1粗蛋白抑菌活性初步研究[J].植物保护,2009,35(4):92-95.
    [85]张晓舟,徐剑宏,李顺鹏.植病生防芽孢杆菌的分离筛选与初步鉴定[J].土壤,2005,37(1):85-88.
    [86]梁建根,张炳欣,施跃峰,等.植物根围促生细菌(PGPR)的分离筛选及对黄瓜土传病害的防治[J].中国农学通报,2007,23(12):341-346.
    [87]于婷.短小芽孢杆菌BSH-4抗菌蛋白的理化性质分析及初步分离[D].山东:山东农业大学图书馆,2009.
    [88]Julian RM, Takuichi S, Anderew JW, et al. Design and evaluation of useful bacterium-specific PCR Primers that amplify genes coding for bacterial 16S rRNA[J]. Applied Environmental Microbiology,1998,64(2):795-799
    [89]Watanabe K, Kodama Y, Harayama S. Design and evaluation of PCR Primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting[J]. Journal of Microbiological Methods,2001,44:253-262.
    [90]Buchanan RE, Gibbens NE伯杰氏细菌鉴定手册[M].中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组译.北京:科学出版社,1984.
    [91]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [92]Sambrook, J., Russell, D.W.著,黄培堂等译.分子克隆实验指南(第三版)[M].北京:科学出版社,2002:26-114.
    [93]蒋萍,叶建仁.马尾松叶面拮抗细菌NA的分子鉴定[J].新疆农业大学学报,2008,31(3):39-42.
    [94]陈力,王中康,黄冠军,等.柑橘溃疡病生防菌株CQBS03的鉴定及其培养特性研究[J].中国农业科学,2008,41(8):2537-2545.
    [95]焦振泉,刘秀梅.细菌分类与鉴定的新热点:16S-23SrDNA区间[J].微生物学通报,2001,28(1):85-89.
    [96]王芳,纪明山,谷祖敏,等.苦参内生拮抗细菌B36菌株最适发酵条件的研究[J].沈阳农业大学学报,2008,39(5):561-564.
    [97]易有金,罗坤,罗宽,等.拮抗菌B-001拮抗蛋白产生的最佳发酵条件和特性及其室内防效[J].湖南农业大学学报(自然科学版),2007,33(1):79-82.
    [98]梁建根,吴吉安,竺利红,等.生防菌BH-2发酵液中抑菌成分的定位及提取研究[J].中国农学通报,2007,23(11):324-327.
    [99]孔建,王文夕,赵白鸽,等.枯草芽孢杆菌B-903菌株的研究Ⅱ.抗菌物质的理化特性[J].中国生物防治,2000,16(1):12-14.
    [100]别小妹,吕凤霞,陆兆新,等.枯草芽孢杆菌fmbR抗菌物质稳定性研究[J].食品科学,2006,27(6):104-108.
    [101]纪兆林,唐丽娟,张清霞,等.地衣芽孢杆菌W10抗菌蛋白的分离纯化及其理化性质研究[J].植物病理学报,2007,37(3):260-264.
    [102]谢栋,彭憬,王津红,等.枯草芽孢杆菌抗菌蛋白X98Ⅲ的纯化与性质[J].微生物学报,1998,38(1):13-19.
    [103]刘静,王军,姚建铭,等.枯草芽孢杆菌JA抗菌物质特性的研究及抗菌肽的分离纯化[J].微生物学报,2004,44(4):511-514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700