高密度磁记录用磁性薄膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了三种与磁记录相关的薄膜材料,分别为:用于写磁头的FeCoN软磁薄膜;用于垂直记录介质的Llo相FePt合金薄膜;用于垂直记录介质衬底层的FeCoN人造反铁磁耦合多层膜。论文主要包括以下三部分:
     一、写磁头用高性能FeCoN软磁合金薄膜的结构和磁性。
     使用FeCo合金靶溅射沉积制备薄膜时,在工作气体Ar中加入不同流量比的N2的方法将N元素引入,成功制备了不同N含量的软磁性能优异的FeCoN合金薄膜,对薄膜的结构和磁性能进行了研究;使用斜溅射的方法和形变基片的方法增强了FeCoN薄膜的面内单轴各向异性场。主要的结论有:
     1.溅射FeCo薄膜时在工作气体Ar中加入不同流量比的N2后,薄膜的软磁性大大改善。薄膜的静态磁性随着N2流量比的变化而变化:当N2流量比低于9%时,FeCoN薄膜易轴矫顽力Hce和难轴矫顽力Hch都随着N2流量比的增大而减小;当N2流量比继续增大至18%的过程中,FeCoN薄膜易轴和难轴矫顽力都基本保持不变:当N2流量比大于18%时,FeCoN薄膜易轴和难轴矫顽力都有所增大。当N2流量比fN的值为10%时,薄膜的磁性最好:4πMs~20kG, Hce~4.5Oe, Hch~1Oe, Hk~90Oe。N2流量比fN的值为11%时,薄膜矫顽力最小为Hce~3Oe, Hch~0.45Oe。薄膜的饱和磁化强度随着氮气流量比的增加而降低。
     2.N元素添加的结果是N进入FeCo晶格,引起晶格膨胀,细化了晶粒。当N2流量比为10%时晶粒尺寸大约为10nm。FeCoN薄膜有着较大的磁晶各向异性常数以及磁弹性各向异性能,但仍有很好软磁性的原因在于:由于晶粒尺寸远小于临界交换尺寸,晶粒间强的交换耦合作用使得FeCoN薄膜中的有效磁晶各向异性能以及磁弹性各向异性能被平均化而大大减小
     3.随着N2流量比的增加,FeCoN薄膜的饱和磁化强度,各向异性场都在降低,所以截止频率也就随着N:流量比的增加而降低。我们用斜溅射的方法以及形变基片的方法成功的提高了FeCoN薄膜的面内单轴各向异性场及其截止频率。两种方法同时使用能更大的提高FeCoN薄膜的面内单轴各向异性场及其截止频率。
     二、垂直磁记录介质用的L10相FePt合金薄膜的制备及磁学性质。
     我们在温度为480℃的玻璃基片上采用Fe层和Pt层交替溅射的方法制备了一系列总厚度为40nm的[Fe/Pt]n (n=4,8,16,20,32)合金薄膜。我们对薄膜的结构和磁性能进行了测量和分析,并使用微磁学的方法研究了交替溅射的FePt合金薄膜垂直各向异性的来源。主要结论如下:
     1.所有的FePt合金薄膜的平行和垂直于膜面两个方向的矫顽力都高于10kOe, FePt薄膜拥有如此高的矫顽力说明其已经形成了稳定的Llo相。溅射周期n=4,8,16,20,32的FePt合金薄膜的XRD图谱显示我们所制备的FePt合金薄膜的择优取向都是(111)取向。
     2.一般来说(111)织构的L10相的FePt薄膜易的磁化轴(c轴)和膜面的夹角大约是36°。所以,(111)织构的FePt薄膜的有效磁化强度矢量垂直于膜面方向的分量应该明显小于平行于膜面方向的分量,但我们的实验结果与之不同。周期数n≤8时,平行于膜面方向的剩磁比高于垂直于膜面方向的剩磁比。周期数n≥16时,垂直于膜面方向的剩磁比高于平行于膜面方向的剩磁比。这说明周期数n≥16的样品呈现出了一定的垂直各向异性。
     3.通过对[Fe(5.2)/Pt(4.8)]4的X射线电光子分光光谱的分析,发现薄膜中出现了富Fe的成分界面。
     4.通过微磁学的方法证明了交替溅射的FePt合金薄膜中垂直各向异性的增加是由于界面各向异性的作用。薄膜中界面各向异性来源于成分界面引起的对称性破缺。
     5.通过对FePt薄膜的δM(H)曲线研究发现,使用交替溅射方法制备的FePt薄膜的晶粒间的交换耦合作用比共溅射的FePt薄膜要低,而且循环周期数越大的[Fe/Pt]n薄膜的交换耦合作用越小。
     三、磁性层为FeCoN的三明治型反铁磁耦合多层膜的研究
     我们使用N2流量比为5%时制备的FeCoN作为磁性层,用Ru做非磁性金属中间层制备了FeCoN/Ru/FeCoN三明治结构的反铁磁耦合(SAF)多层膜。研究了结构和制备条件对薄膜磁性能的影响,主要得出以下结论:
     1.SAF薄膜由于引入交换各向异性能(Kex),使得薄膜的各向异性场增大SAF多层膜中的各向异性场随着交换耦合场的增加而增大。拥有越大的交换耦合场的SAF多层膜也就有越大的各向异性场。通过改变中间的非磁性层(Ru)以及磁性层(FeCoN)的厚度就能实现对交换耦合场,各向异性场以及截止频率的调控。
     2.当FeCoN层厚度固定时,SAF多层膜中的交换耦合场(Hex)以及各向异性场(Hk)随着Ru层厚度的减小而增加。当Ru层的厚度低于一个原子层的厚度时(0.35nm),难轴方向出现了较大的剩磁。
     3.交换耦合场和各向异性场随着FeCoN层厚度的减小而增大,当FeCoN层厚度低于20nm以后,各向异性变得越来越不明显,当FeCoN层厚度低于10nm以后,薄膜几乎趋于各向同性。
     4FeCoN反铁磁耦合多层膜中采用平整的、缺陷少的磁性层可以获得更高的交换耦合场、各向异性场以及截止频率。采用斜溅射制备FeCoN反铁磁耦合多层膜,在多层膜中引入了斜溅射各向异性能(形状各向异性能),导致薄膜的交换耦合场、各向异性场以及截止频率得到极大提高,而薄膜的矫顽力没有明显增加。
Three kinds of film materials which related to the magnetic recording have been investigated in this work. The research contains three parts:(1) FeCoN soft magnetic thin films for the write heads;(2) L10phase FePt alloy films for perpendicular recording media;(3) FeCoN synthetic antiferromagnetic coupling multilayer films for the underlayer of perpendicular recording media. The detailed results are shown as follows:
     Ⅰ. Investigation of structure and magnetic properties of FeCoN thin films which used for write head. When sputtering, different flux ratio of N2are used in working gas for importing N. Excellent soft magnetic properties realized in FeCoN thin films. The in-plane uniaxial anisotropy is enhanced by using the inclined sputtering and deformation of the substrate. The main conclusions are as follows:
     1. When sputtering, using different flux ratio of N2in the working gas could improve the soft magnetic performance. The magnetic properties of the thin films changed along with N2flux ratio. When the N2flux ratio raises from0to9%, the coercivity along easy (Hce) and hard (Hch) axes are decrease. When the N2flux ratio is10%, it has the best properties:4πMs~20kG, Hce~4.5Oe, Hch~1Oe, Hk~90Oe. When the N2flux ratio is10%, it has the lowest coercivity:Hce~3Oe, Hch~0.45Oe. N2flux ratio raise from9%to18%, FeCoN thin film keeps excellent soft magnetic properties, and the coercivity on the hard axis keeps about1Oe. When the N2flux ratio is11%, the film has the lowest coercivity:Hce~3Oe, Hch~0.45Oe. The saturation magnetization of the film decreases with the increase of N2flux ratio.
     2. The addition of N element into FeCo thin film causes FeCo lattice expansion and grains refining. When the N2flow ratio is10%, grain size of the film is about10nm. Although FeCoN films have large magnetic anisotropy and magnetic anisotropy, there are still very good soft magnetic properties, since the films'grain sizes are much smaller than the size of critical exchange. Strong intergranular exchange coupling effect will average the effective magnetocrystalline anisotropy and magnetoelastic anisotropy in the FeCoN film, and the effective magnetic anisotropy can be greatly reduced.
     3. With the N2flux ratio increases, the cutoff frequency decreases, because of the reduction of the saturation magnetization and the anisotropy field of the FeCoN film. Oblique sputtering method and deformation of the substrate improves the FeCoN films'in-plane uniaxial anisotropy field and its cutoff frequency. Using both two ways will greatly improve FeCoN film in-plane uniaxial anisotropy field and the cutoff frequency.
     II. Investigation of the microstructure and magnetic properties of L10phase FePt alloy thin films for perpendicular magnetic recording media. A series of [Fe/Pt]n (n=4,8,16,20,32) films are prepared. The Fe layer and Pt layer are alternately sputtering on a glass substrate with the temperature of480℃. The total thickness is fixed at40nm. Structure and magnetic properties of thin films are investigated. The sources of perpendicular anisotropy of FePt alloy films are investigated by using micromagnetic method. The main conclusions are as follows:
     1. All of the FePt alloy thin films'parallel and perpendicular coercivity are higher than10kOe. FePt thin film has formed a stable L10phase with such high coercivity. XRD patterns show that all of the FePt alloy films' preferred orientations are (111).
     2. In general,(111) texture of the L10phase of FePt thin films easy magnetization axis (c axis) and the angle of the film surface is about36°. Therefore,(111) texture of FePt thin films'effective magnetization vector perpendicular to the film surface direction should be significantly less than the component parallel to the film surface, but our experimental results are different. When the number of cycles n≤8, the remanence ratio parallel to the film surface are higher than that perpendicular to the film surface. When the number of cycles n≥16, the remanence ratio perpendicular to the film surface are still higher than that parallel to the film surface. It means that when the number of cycles n≥16, samples showing a certain degree of perpendicular anisotropy.
     3. By using X-ray electro-optical sub-spectrometry analysis of [Fe(5.2nm)/Pt(4.8nm)]4, Fe-rich composition interfaces are found in the film.
     4. The enhanced perpendicular magnetic anisotropy in the films prepared by sequential sputtering are related with the component interface, because the structure symmetric is broken in the interface of the films, which leads to an interface anisotropy.
     5. By investigating the δM(H) curve of FePt thin films, the exchange coupling between grains of FePt film prepared alternately sputtering is lower than the co-sputtering FePt film. The greater the number of cycle, the smaller of the exchange coupling.
     III. Investigation of the FeCoN sandwich-type anti-ferromagnetic coupling multilayer film The FeCoN film prepared when the N2flux ratio is5%is used as the magnetic layer, Ru as the nonmagnetic metal intermediate layer, FeCoN/Ru/FeCoN sandwich structure prepared a series of anti-ferromagnetic coupling multilayers. The influences of structures and preparation conditions on magnetic propertise have been investigated. The main conclusions are as follows:
     1. The SAF film's anisotropy field increases due to the exchange anisotropy energy(Kex). The anisotropy field in the SAF multilayer films increased with increasing the exchange coupling field. The exchange coupling field, anisotropy field and the cut-off frequency can be tune by changing the thickness of Ru layer and FeCoN layer.
     2. When the thickness of FeCoN layer is fixed, the exchange coupling field(Hex) and anisotropy field (Hk) increases with the decrease of the thickness of Ru layer. When the Ru layer thickness is less than one atomic layer thickness (0.35nm), the hard axis have larger remanence.
     3. Exchange coupling field and the anisotropy field increase with the decrease of the thickness of FeCoN layer. When the thickness of FeCoN layer is less than20nm, the anisotropy is becoming not obvious, however, when the thickness is less than10nm, the film is almost become isotropic.
     4. By smoothing, defect-less magnetic layer can get higher exchange coupling field, anisotropy field and cutoff frequency. By using oblique sputtering, the oblique sputtering anisotropy energy (shape anisotropy) is introduced in the multilayer, resulting in the exchange coupling field, anisotropy field, as well as cutoff frequency are greatly enhanced, while the coercivity of the films did not increase significantly.
引文
[1]李晓红博士学位论文,兰州大学,2003。
    [2]http://techon.nikkeibp.co.jp/members/NEWS/20041214/106840
    [3]S. Iwasaki, J. Magn. Magn. Mater.320,2845 (2008).
    [4]Kenneth E. Johnson, J. Appl. Phys.87, (2000) 5365.
    [5]S. H. Charap, P.-L. Lu, and Y. Le, IEEE Trans. Magn.33,978 (1997).
    [6]D. Weller and A. Moser, IEEE Trans. Magn.35,4423 (1999).
    [7]R. M. White, J. Magn. Magn. Mater.226-230,2042 (2001).
    [8]A. Moser, K. Takano, D. T Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, and E. E Fullerton, J. Phys. D:Appl. Phys.35, R157 (2002).
    [9]杨正,磁记录物理,兰州大学出版社,(1986).
    [10]J. H. Judy, J. Magn. Magn. Mater.235,235 (2001).
    [11]H. Takano, et al., AD-06, Intermag (2000).
    [12]S. E. Lambert, B. M. Lairson, H. Nguy, L. Nguyen, T. Huang, J. Adler, S. Gopalaswamy, J. Magn. Magn. Mater.235,245 (2001).
    [13]D. Weller and A. Moser, IEEE Trans. Magn.35, (1999) 4423.
    [14]C. H. Hee, Y. Y. Zou, and J. P. Wang, J. Appl. Phys.91,8004 (2002).
    [15]K.-Z. Gao and H. N. Bertram, IEEE Trans. Magn.38,3675 (2002).
    [16]R. Wood, Y. Sonobe, Z. Jin, B. Wilson, J. Magn. Magn. Mater.235,1 (2001).
    [17]J. H. Judy, J. Magn. Magn. Mater.235, (2001) 235.
    [18]H. N. Bertram, Theory of Magnetic Recording, Cambridge University Press,1994.
    [19]S. Iwasaki, IEEE Trans. Magn.16, (1980) 71.
    [18]M. Kryder, Disk Drive Roadmap, NSIC Manufacturing Symposium (2000).
    [21]F. Roozeboom, P. J. H. Bloemen, W. Klaassens, E.G. J. Van De Riet, and J. J. T. M. Donkers, Philips J. Res.51,59 (1998).
    [22]李晓红,博士学位论文,兰州大学(2003).
    [23]N. Robertson, H. L. Hu, and C. Tsang, IEEE Trans. Magn.33,2818 (1997).
    [24]R. L. Comstock, J. Mater. Sci.13,509 (2002).
    [25]李国栋,信息记录材料3,30(2002).
    [26]T. Osaka, M. Takai, K. hayashi, K. Ohashi, M. Saito, and K. Yamada, Nature 392,796 (1998).
    [27]M. H. Kryder, S. Wang, and K. Rook, J. Appl. Phys.73,6212 (1993).
    [28]陈国钧,吕键,陈殿金,王旭军,信息记录材料3.25(2002).
    [29]S. X. Wang, N. X. Sun, M. Yamaguchi, and S. Yabukami, Nature,407 150 (2000).
    [30]K. Shintaku, K. Yamakawa, and K. Ouchi, J. Appl. Phys.93,6474 (2003).
    [31]大内一弘,中国讲演报告,兰州大学(2004).
    [32]B. Viala, M. K. Minor, and J. A. Barnard, J. Appl. Phys.80,3941 (1996).
    [33]O. Shimizu. K. Nakanishi, and S. Yoshida, J. Appl. Phys.70,6244 (1991).
    [34]Y. J. Chen. C. Qian, C. Y. Hung, and M. Miller, J. Appl. Phys.87,5864 (2000).
    [35]G. Pan and H. Du. J. Appl. Phys.93,5498 (2003).
    [36]N. X. Sun and S. X. Wang, J. Appl. Phys.92,1477 (2002).
    [37]C. L. Platt, A. E. Berkowitz, D. J. Smith, and M. R. McCartney, J. Appl. Phys.88,2058 (2000).
    [38]H. S. Jung, W. D. Doyle, J. E. Wittig, J. F. Al-Sharab, J. Bentley, Appl. Phys. Letter.81, 2415(2002).
    [39]T. Shimatsu, H. Katada, I. Watanabe, H. Muraoka, and Y. Nakamura, IEEE Trans. Magn. 39,2365 (2003).
    [40]V. A. Vas'ko, J. O. Rantschler, and M. T. Kief, IEEE Trans. Magn.40,2335 (2004).
    [41]H. S. Jung, W. D. Doyle, and S. Matsunuma, J. Appl. Phys.93,6462 (2003).
    [42]C. L. Platt, J. K. Howard, and D. J. Smith, J. Magn. Magn. Mater.269,212 (2004).
    [43]K. Shintaku and S. Watanabe, Trans. Magn. Soc. Japan 5,22 (2005).
    [44]H. Ono, M. Ishida, M. Fujinaga, H. Shishido, and H. Inaba, J. Appl. Phys.74,5124, (1993).
    [45]R. M. Bozorth, Ferromagnetism, IEEE, New York, (1993).
    [46]Y. Fu, X. F. Cheng, and Z. Yang, Phys. Stat. Sol. (a) 202,1150 (2005).
    [47]M. N. Baibich, et al., Phys. Rev. Lett.61, (1988) 2472.
    [48]R. E. Camley and J. Barnas, Phys. Rev. Lett.63, (1989) 664.
    [491 S. S. P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett.,64, (1990) 2304.
    [50]P. Bruno and C. Chappert, Phys. Rev. Lett.,67, (1991) 1602.
    [51]D. M. Edwards, R. P. Erickson, J. Mathon, R.B. Muniz, and M. Villeret, Materials Science & Eng. B31,(1995)25.
    [52]S. X. Wang and A. M. Taratorin, Magnetic Information Storage Technology, Academic Press,1999.
    [53]D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner, IEEE Trans. Magn.36,10 (2000).
    [54]T. W. McDaniel et al., DIGEST Joint PMRC 2003 and 2nd North American Perpendicular Magnetic Recording Conference (No.03EX650) 66 (2003).
    [55]Y. Y. Zou, J. P. Wang, C. H. Hee, and T. C. Chong, Appl. Phys. Lett.82,2473 (2003).
    [56]Y. F. Zheng, J. P. Wang, and V. Ng, J. Appl. Phys.91,8007 (2002).
    [57]J. P. Wang, W. K. Shen, J. M. Bai, R. H. Victora, J. H. Judy, and W. L. Song, Appl. Phys. Lett.86,142504 (2005).
    [58]J. P. Wang, Nature Mater.4,191 (2005).
    [59]R. H. Victora, X. Shen, IEEE Trans.Magn.41,537 (2005).
    [60]M. Albrecht, C. T. Rettner, A. Moser, M. E. Best, and B. D. Terris, Appl. Phys. Lett.81, 2875 (2002).
    [61]B. D. Terris and T. Thomson, J. Phys. D:Appl. Phys.38, R199 (2005).
    [62]H. Richter, A. Y. Dobin, R. T. Lynch, D. Weller, R. M. Brockie, O. Heinonen, K. Z. Gao, J. Xue, R. J. M. v. d. Veerdonk, P. Asselin, and M. F. Erden, Appl. Phys. Lett.88,222512 (2006).
    [63]J. G. Zhu and Y. H. Tang, J. Appl. Phys.99,08Q903 (2006).
    [64]D. E. Laughlin, Y.-G. Peng, Y.-L. Qin, M. Lin, and J. G. Zhu, IEEE Trans. Magn.43,693 (2007).
    [65]D. Wachenschwanz, W. Jiang, E. Roddick, A. Homola, P. Dorsey, B. Harper, D. Treves, and C. Bajorek, IEEE Trans. Magn.41,670 (2005).
    [1]戴道生,钱昆明,廖绍彬,钟文定,铁磁学(上、中、下册),科学出版社2000。
    [2]田民波,磁性材料,清华大学出版社2001。
    [3] Ahoroni 著,杨正译,铁磁性理论导论.兰州大学出版社2000。
    [4]近角聪信著,葛世慧译,苵磁性物理,兰州大学出版社2000。
    [5]G.A.Kelsall,Permeability changes in ferromagnetic.materials heat treated in magnetic fields,Physics,5:169-172,1934.
    [6]E.T.Ferguson,Uniaxial magnetic anisotropy induced.in Fe-Ni alloys by magnetic anneal,J. Appl.Phys.,29:252-254,1958.
    [7]S.Chikazumi and T.Oomura,On the origin of magnetic.anisotropy induced by magnetic annealing.J.Phys.Soc.Jpn.,10:842-849,1955.
    [8]S.Iida,The Role of Cation Vacancy in Magnetic.Annealing of Iron-Cobalt Ferrites,J.Appl. Phys.,31:S251-S258,1960.
    [9]J.C.Slonczewski,Origin of Magnetic.Anisotropy in Cobalt-Substituted Magnetite,Phys. Rev.,110:1341.1348,1958.
    [10]S.Chikazmi,Magnetic Anisotropy Induced.by Magnetic Annealing and by Cold Working of Ni3Fe Crystal,J.Appl.Phys.,29:346-350,1958.
    [11]S.Chikazmi,Roll Magnetic Anisotropy.of Iron-Aluminum Crystals,J.Appl.Phys.,31: S158-S159.1960.
    [12]E.C.Stoner,and E.P.Wohlfarth,A Mechanism of Magnetic.Hysteresis in Heterogeneous Alloys,Phil.Tran.Roy.Soc.,A-240:599-642,1948.
    [13]G.Bertotti,Hysteresis in magnetism,New Yock:Academic Press,1998.
    [14]G.Herzer,Grain structure and magnetism.of nanocrystalline ferromagnets,IEEE Trans. Magn.,25(5):3327-3329,1989.
    [15]G.Herzer,Grain size dependence of coercivity.and permeability in nanocrystalline ferromagnets,IEEE Trans.Magn.,26(5),1397-1402,1990.
    [16]G.Herzer,Anisotropies in soft magnetic.nanocrystalline alloys,J.Magn.Magn.Mater., 294;99-106,2005.
    [17]R.Alben,J.J.Becker,M.C.Chi,Random anisotropy in.amorphous ferromagnets,J.Appl. Phys.,49(3):1653-1658,1978.
    [18]M.Mansuri Pur,Physical Principles.of Magneto-optical Recordings,Cambridge University Press,1993.
    [1]M. Ohring, Materials Science of Thin Films:Deposition and Structure, second edition, Academic Press,1999.
    [2]吴自勤,王兵著,薄膜生长,科学出版社,2001.
    [3]I. G. Kesaev and V. V. Pashkova, Sov. Phys.-Tech. Phys.4,24 (1959).
    [4]J. S. Chapin, Res./Dev.25(1),37(1974); U.S. Patent Appl.438,482 (1974).
    [5]H. R. Smith, Proc. Electron Beam Process. Seminar 3rd. Stratford England:Universal Technology Corp., Dayton, Ohio p.2cl (1974).
    [6]J. F. Corbani, U.S. Patent 3.878.085 (1975).
    [7]T. Van Vorous, Circuits Manuf.15(6),6 (1975).
    [8]G. N. Jackson, ElectoComponent Sci. Technol.3,254 (1977).
    [91 W. D. Westwood, Prog. Surf. Sci.7,71 (1976).
    [10]田民波,刘德令,薄膜科学与技术手册,机械工业出版社,(1991)
    [11]Milton Ohting. Materials Science of Thin Films (Second Edition), Academic Press, (2002).
    [12]周文生,磁性测量原理,电子工业出版社,(1988).
    [13]李培森,物性测量原理与测试分析方法,兰州大学出版社,(1997).
    [14]J. Als-Nielsen and D. McMorow, Elements of Modern X-ray Physics, John Wiley & Sons (2001)
    [15]B. E. Warren, X-ray Diffraction (1990).
    [16]B. D. Cullity, Elements of X-ray Diffraction,2nd Ed., Addison-Wesley (1978).
    [17]D. K. Bowen and B. K. Tanner, High Resolution X-ray Diffractometry and Topography, Taylor & Francis, Ltd.(1998).
    [18]H. Brumberger, Modern Aspects of Small-Angle Scattering, Kluwer Academic Publishers(1993).
    [19]李树棠,晶体X射线衍射学基础,冶金工业出版社(1990).
    [20]赫什等著,刘安生等泽,吴自勤等校,薄晶体电子显微学,科学出版社,(1992)
    [21]D. Bonnell; Scanning Probe Microscopy and Spectroscopy Theory, techniques, and Applications (Second Edition)。
    [22]孟庆昌,透射电子显微学,哈工大出版社。
    [23]Briggs (Ed):Surface and Interface Analysis.24 issue 9 (1996)。
    [24]Handbook for magnetostriction tester。
    [25]M. Murakami, J. Angelillo, H. C. Huang, A.Segmiiller and C. J. Kircher, Thin Solid Film 60 1(1979).
    [26]J. A. Ruud, A. Witvrouw and F. Spaepen, J. Appl. Phys.74 2517(1993).
    [27]F. Jona and P. M. Marcus, Fu-Jia Yang et al. Surface physics and related topics (Singapore:World Scientific) p.213 (1991).
    [28]G. G. Stoney, Proc. Roy. Soc. London.9,172 (1909).
    [29]L. B. Freund, Journal of the Mechanical and Physics of Solids,48 1159 (2000).
    [1]G. Herzer, IEEE Trans. Magn.36,1397 (1990).
    [2]A. Hosono and Y. Shimada, J. Appl. Phys.,67,6981 (1990).
    [3]B. D. Cullity, Introduction to magnetic materias, Addison-Wesley,1972.
    [4]Richard M. Borzorth, Ferromagnetism, IEEE press,1993.
    [5]H. Ono, M. Isshida, M. Fujinaga, H. Shishido, and H. Inaba, J. Appl. Phys.,74,5124 (1993).
    [6]E. J. Yun, W. Win, and R. M. Walser, IEEE Trans. Magn.,32,4535 (1996).
    [7]P. C. Kuo, S. S. Chang, and C. M. Kuo, Y. D. Yao and H. L. Huang, J.Appl. Phys.,83,6643 (1998).
    [8]R. M. Bozorth, Ferromagnetism, IEEE, New York,1993.
    [9]B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley,1972.
    [10]C. Kittel, Introduction to Solid State Physics, John Wiler & Sons, New York,1996.
    [11]Y. Fu, T. Miyao, T. Yamakami, Z. Yang, M. Matsumoto, X. Liu and A. Morisako. IEEE Transaction on Magnetics,41,2905 (2005).
    [12]Y. Fu, X. Cheng, Z. Yang, Physica Status Solidi (a),203,963 (2006).
    [13]付煜博士学位论文,兰州大学(2006).
    [14]S.Ikeda, I.Tagawa, Y.Uehara, T.Kubomiya,J.Kane,A.Kakehi, A.Chikazawa, IEEE Transaction on Magnetics,38,2219 (2002).
    [15]Kazuhiko Shintaku, Kiyoshi Yamakawa, and Kazuhiro Ouchi, J. Appl. Phys.,93,6474 (2003).
    [16]Platt, C.L., Minor, N.K., Klemmer, IEEE Transaction on Magnetics,37,2302 (2001).
    [17]Jiansheng Liao, Zekun Feng, Jing Qiu, Yanqun Tong, Physica Status Solidi (a) 205,2943 (2008).
    [18]Chia Ying Li, Jenq Gong Duh, Applied Surface Science,244 477-480 (2005).
    [19]N. X. Sun, S. X. Wang, J. Appl. Phys.,93,6468 (2003).
    [20]C.-M. Park, J. A. Bain, J. Appl. Phys.,91,6830 (2002).
    [21]Yan Liu, Z. W. Liu, C. Y. Tan, and C. K. Ong, J. Appl. Phys.,100,093912 (2006).
    [22]N. X. Sun, Q. F. Xiao, B. York, J. Appl. Phys.,97,10F906 (2005).
    [23]M. Desai, A. Misra, W. D. Doyle, IEEE Transaction on Magnetics,41,3151 (2005)
    [24]M. H. Kryder, S. X. Wang, and K. Rook, J. Appl. Phys.,73,6212-6217 (1993)
    [25]B. Viala, M. K. Minor, and J. A. Bernard, J. Appl. Phys.,80,3941-3956, (1996)
    [26]S. Jin, W. Zhu, T. H. Tiefel, V. Korenivski, and R. B. van Dover, J. Appl. Phys.,80, 4042-4044(1997)
    [27]T. J. Klemmer, K. A. Ellis, L. H. Chen, B. van Dover, and S. Jin, J. Appl. Phys.,87, 830-833 (2000)
    [28]Eunji Yu, Jong Sik Shim, Inyoung Kim, Jongryoul Kim, Suk Hee Han, Hi Jung Kim, Ki Hyeon Kim.and Masahiro Yamaguchi. IEEE Transaction on Magnetics,413259-3261 (2005)
    [29]H. Hoffman and T. Fujji, J. Magn. Magn. Mater.,128,395, (1993).
    [30]Y. Fu, Z. Yang, T. Miyao, M. Matsumoto, X.X. Liu, A. Morisako, Materials Science and Engineering B,133 61-65 (2006)
    [1]D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner, IEEE Trans. Magn.,36,10 (2000).
    [2]J.-C. Shih, H.-H. Hsiao, J.-L. Tsai, and T.-S. Chin, IEEE Trans. Magn.,37,1280 (2001).
    [3]B. Yao and K. R. Coffey, J. Appl. Phys.,105,033901 (2009).
    [4]Y.-N. Hsu, S. Jeong, D. E. Laughlin, and D. N. Lambeth, J. Appl. Phys.,89,7068 (2001).
    [5]S. C. Chen, P. C. Kuo, C. Y. Chou, and A. C. Sun, J. Appl. Phys.,97,10N107 (2005).
    [6]D. S. Chuang, C. A. Ballentine et al, Phys. Rev. B,49,21 (1994).
    [7]Brad N. Engel, Craig D. England et al, Phys. Rev. Lett.,67,14 (1991).
    [8]C.H.Lee, R.F.C.Farrow et al, Phys. Rev. B,42,384 (1990).
    [9]Rado GT, Zhang L, Phys. Rev. B,33,5080-1 (1986).
    [10]Rado GT, Phys. Rev. B,26,295-304 (1982).
    [1]S. Takahashi, Y. Yamakawa and K.Ouchi, J. Magn. Soc. Jpn.23,19 (1999).
    [2]B. R. Acharya, J. N. Zhou, M. Zheng, G. Choe, E. N. Abarra and K. E.Johnson, IEEE Trans. Magn.,40,2383 (2004).
    [3]P. Grunberg, R. Schreiber, Y. Pang, U. Walz, M. Brodsky, H. Sowers, Phys. Rev. Lett.,57, 2442-2445,(1986).
    [4]R. P. Erickson, K. B. Hathaway and J. R. Cullen, Phys. Rev. B.,47,2626 (1993).
    [5]D. M. Edwards, J. M. Ward and J. Mathon, J. Magn. Mater.,126,380 (1993).
    [6]J. Barnasand P. Grunberg, J. Magn. Mater.,121,326 (1993).
    [7]D. Spisakand J. Hafner, J. Magn. Mater.,168,257 (1997).
    [8]J. C. Slonczewski, Phys. Rev. Lett.,67,3172 (1991).
    [9]S. S. P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett.,64,2304-2307, (1990).
    [10]C. H. Marrows, B. J. Hickey, M. Herrmann, S. McVitie, J. N. Chapman, M. Ormston, A. K. Petford-Long, T. P. A. Hase, and B. K. Tanner, Phys. Rev. B., Condens. Matter,61,4131-4140, (2000).
    [11]M. Desai, A. Misra and W. D. Doyle, IEEE Trans. Magn.,41,3151(2005)
    [12]K. Seemann, H. Leiste, and V. Bekker, J. Magn. Magn. Mater.283,310 (2004).
    [13]X. L. Fan, D. S. Xue, M. Lin, Z. M. Zhang, D. W. Guo, C. J. Jiang, and J. Q. Wei, Appl. Phys. Lett.92,222505 (2008).
    [14]S. D. Li, Z. G. Huang, J.-G. Duh, and M. Yamaguchi, Appl. Phys. Lett.92,092501 (2008).
    [15]Y. Fu, Z. Yang, T. Miyao, M. Matsumoto, X. X. Liu, and A. Morisako, Mater. Sci. Eng. B, 133,61(2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700