VEGF及SiRNA和AP-2α对动脉粥样硬化斑块的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分AP-2α在小鼠血管内皮细胞中上调VEGF的表达
     研究背景
     动脉粥样硬化(atherosclerosis,As)的发生、发展和演变过程是多种因素综合致病的病理过程,血管内皮在此过程发挥着很重要的作用,内皮损伤被认为是引起As的始动环节,减少内皮损伤和恢复内皮功能在动脉粥样硬化的发生和发展中的作用已逐步得到重视。鉴别与As疾病相关的易感基因,发现新的以及有效的针对As疾病的治疗方案,一直是医学工作者关注的焦点。研究表明,AP-2(activatorprotein-2,AP-2)蛋白通过蛋白-DNA相互作用直接调控血管内皮生长因子(vaseular endothelial growth factor,VEGF),参与了AS疾病的发生发展。在HaCaT角化细胞中,AP-2α以影响VEGF的表达。血管内皮细胞(endothelial cell,EC)为覆盖在血管内表面的单层扁平细胞,具有物质转运、自分泌、旁分泌等多种功能,通过研究血管内皮细胞来探究血管的生物学作用极为重要。AP-2α是否在主动脉血管内皮细胞中调节VEGF的表达目前未见报道,由于在VEGF启动子包含有AP-2的结合位点,本研究将探索AP-2α在血管内皮细胞中对VEGF表达的影响,进而研究其参与As形成的相关机制。
     方法
     1.颈椎脱臼处死C57BL/6J小鼠(体重20~25g),无菌条件下彻底清除外膜结缔组织,完整取出其胸主动脉,植块法进行小鼠主动脉血管内皮细胞原代(含20%胎牛血清DMEM培养液)和传代培养(含10%胎牛血清DMEM培养液)。倒置相差显微镜下观察内皮细胞的形态和生长特性,Ⅷ因子相关抗原检测鉴定血管内皮细胞。
     2.以小鼠脑cDNA文库作为模板,以AP-2αFP、AP-2αRP为引物,PCR扩增约1300 bp的AP-2α全长编码序列,然后通过胶回收PCR扩增产物,连接到pMD18-T载体,得到pMD18-T-AP-2α重组表达载体。其PCR产物扩增质粒用EcoRⅠ/XhoⅠ酶切并回收AP-2α全长基因序列,然后与同样酶切的表达载体pCMV-Myc连接构建表达载体pCMV-Myc-AP-2α,用EcoRⅠ/XhoⅠ进行酶切鉴定。
     3.取2~4代细胞分别以转染质粒pCMV-Myc,pCMV-Myc-AP-2α,以及SiRNA-AP-2α,Control-RNAi-AP-2α,然后采用实时定量RT-PCR和Western Blot分别检测AP-2α和VEGF mRNA与蛋白的表达水平。
     结果
     1.血管植块在含有20%FBS的DMEM培养液中培养4 d左右,将血管植块除去并换液,12 d左右细胞开始融合成片,倒置显微镜下观察呈铺路石样。传代培养的细胞和原代形态相似,生长较快,4-5天可以融合成单层。血管内皮细胞Ⅷ因子相关抗原的检测,显示:细胞质均呈黄褐色着色,胞核不着色,而阴性对照用PBS代替一抗,没有加入抗细胞Ⅷ因子相关抗原兔多抗工作液,无特殊显色。
     2.通过连接反应将AP-2α片段正确插入载体pCMV-Myc中,酶切电泳分析和测序证明正确构建重组质粒pCMV-Myc-AP-2α。
     3.小鼠血管内皮细胞被分别短暂转染AP-2α表达质粒(pCMV-Myc-AP-2α)和空质粒(pCMV-Myc),采用实时定量RT-PCR检测mRNA的表达水平,与对照组比较,转染pCMV-Myc-AP-2α后,AP-2α的表达水平显著上升,干扰AP-2α后,其表达水平显著下降,说明系统工作正常。当转染pCMV-Myc-AP-2α、pCMV-Myc、AP-2αRNAi和Control-RNAi后,分别检测VEGF的mRNA表达水平,实验结果显示,当过表达AP-2α时,VEGF mRNA的表达水平明显上升,干扰AP-2α后VEGF mRNA的表达水平明显下降(P<0.05,差异具有显著性)。同时Western blot检测也显示了相似的结果,即过表达AP-2α时,蛋白AP-2α的表达量增加,干扰AP-2α后,蛋白AP-2α的表达量降低。当过表达AP-2α时,可明显增加VEGF的蛋白表达水平;而干扰AP-2α后,则可以降低VEGF的蛋白表达水平。
     结论
     1.通过血管植块法可以实现小鼠动脉血管内皮细胞的原代和传代培养,完全可用于基础和临床科研。
     2.正确构建pCMV-Myc-AP-2α真核表达载体,为下一步进行VEGF及AP-2α基因的实验打下良好基础。
     3.VEGF为AP-2α的下游基因,AP-2α可以上调VEGF的表达。
     第二部分VEGF iRNA及AP-2α对动脉粥样硬化斑块的影响
     目的:探讨血管内皮生长因子(VEGF)及小干扰片段RNA(siRNA)对不同时期ApoE~(-/-)小鼠动脉粥样硬化斑块形成的影响,同时研究在干扰作用下,不同时期ApoE~(-/-)小鼠体内主动脉动脉粥样硬化斑块中VEGF和AP-2α量的变化及相互作用。
     方法
     1.首先在GeneBank上检索C57BL/6J小鼠VEGFA siRNA序列(NM_009505),由公司设计并体外化学合成。实验分5组,用Lipofectamine~(TM)2000试剂盒将小干扰片段(VEGFA-siRNA1,VEGFA-siRNA2,VEGFA-siRNA3,VEGFA-siRNA4)和对照序列(NC-VEGFA)短暂转染小鼠主动脉血管内皮细胞,利用RT-PCR法检测小鼠主动脉血管内皮细胞VEGF基因表达水平,筛选最有效抑制VEGF基因表达的siRNA。
     2.6周龄,16周龄,28周龄雄性ApoE~(-/-)小鼠各20只,均给予高脂高胆固醇喂养4周后,各周龄分成4组,每组5只小鼠,分为:VEGFA-siRNA组;siRNA-Negative组;阴性对照组;空白对照组。分别自小鼠尾静脉隔日注射1mg/kg/d VEGFA-siRNA;1mg/kg/dsiRNA-Negative;0.2ml的生理盐水;空白对照组不注射任何药物。共计2周,期间继续高脂高胆固醇喂养。
     3.血脂水平测定:检测各组ApoE~(-/-)小鼠血清总胆固醇(Tc)、甘油三醋(TG)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)的含量。
     4.小鼠主动脉斑块免疫组化染色:根据Envision~(TM)两步法免疫组化染色试剂盒说明书操作,检测VEGFA与AP-2α在小鼠动脉粥样硬化斑块内的表达情况。
     5.定量RT-PCR检测基因表达:每组20只ApoE~(-/-)小鼠主动脉窦部及胸主动脉,每2只混合提取新鲜粥样斑块组织RNA,实时定量PCR检测VEGFA、AP-2αmRNA表达水平。
     6.免疫印迹技术(Westemblot)检测蛋白表达:每组20只ApoE~(-/-)小鼠主动脉窦部及胸主动脉,每3只混合提取新鲜粥样斑块组织蛋白,Westemblot检测VEGF、AP-2α的蛋白表达水平。
     结果:
     1.siRNA1、siRNA2、siRNA3、siRNA4均抑制小鼠主动脉血管内皮细胞VEGFA mRNA和蛋白的表达水平,特别是VEGFA-siRNA4抑制作用最强,VEGFA mRNA和蛋白表达下降最明显。VEGFA-siRNA-negative对小鼠主动脉血管内皮细胞VEGFA mRNA和蛋白表达水平无抑制作用。因此,VEGFA-siRNA4基因沉默效果最好。
     2.同组ApoE~(-/-)小鼠血脂含量及体重比较差异无显著性(P>0.05)。各组间血脂含量及体重比较差异有显著性(P<0.05)。
     3.小鼠主动脉动脉粥样硬化斑块内均可见AP-2α及VEGF的高表达。
     4.实时定量RT-PCR和Western blot:实时荧光定量RT-PCR和Western blot显示:不同周龄组之间,随着ApoE~(-/-)小鼠周龄的增加,粥样斑块AP-2αmRNA及AP-2α蛋白和VEGFA mRNA及VEGF蛋白表达逐渐增加。
     VEGFA-SiRNA4干扰效果比较:不同周龄组中VEGFA-SiRNA4.组粥样斑块VEGFA mRNA含量和VEGFA蛋白表达水平最弱,差异具有显著性(P<0.05)。28周龄组干扰效果最明显(P<0.01)。但均对AP-2αmRNA含量及AP-2α蛋白表达水平无明显影响,差异无显著性(P>0.05)。
     结论:
     1.通过RNA干扰技术,成功筛选针对小鼠VEGFA基因沉默的特异性siRNA,为动物试验奠定基础。
     2.AP-2α及VEGF均参与了小鼠主动脉动脉粥样硬化斑块的形成。
     3.VEGFA及AP-2α对斑块的进展有促进作用,VEGFA基因沉默显著抑制ApoE~(-/-)小鼠胸主动脉粥样斑块进展期新生血管的形成,但并不影响AP-2αmRNA及AP-2α蛋白的表达。进一步说明AP-2α是VEGF上游调控基因。
PartⅠAP-2αstimulate expression of vaseular endothelial growth factor in primary culture of mouse vascular endothelial cells
     Background:
     The occurrence,development and evolution of Atherosclerosis (atherosclerosis,As) are general pathological process induced by a variety of mediators.Vascular endothelial appears to play a key role,and endothelial dysfunction marks the beginning of an insidious disease process,which silently progresses to a point where it can only be slowed but not reversed.Reducing endothelial damage and restoring endothelial function in atherosclerosis of the occurrence and development of the role has gradually been given attention.An identification of susceptibility gene should provide novel insights into improved effective prevention and treatment of acute cardiovascular syndromes.Recent studies have showed that AP-2αcould affect the expression of VEGF in HaCaT keratinocytes through protein-DNA interaction,and AP-2αinvolved in the development of AS disease.
     Vascular endothelial cells layed over the inner surface of blood vessels at the simple squamous cells,and possessed the material transfer, autocrine,paracrine and many other functions.Therefore,It is extremely important to investigate the role of vascular biology through the study of vascular endothelial cells.It has not been reported that AP-2αcould regulate the expression of VEGF in aortic endothelial cells,but we known VEGF promoter contains AP-2 binding site.This study will explore how AP-2αregulated the expression of VEGF and the mechanisms of its involved in the formation of As.
     Methods:
     1.The aorta was removed from C57BIV6J mice(weight 20-25g) executed by cervical dislocation mice after thoroughly eliminate adventitial connective tissue in bacteria free condition.The vessel was opened longitudinally and cut into 1 mm×1 mm pieces,then placed on culture plates with the intima side down.Mouse aortic endothelial cells were primary cultrued(containing 20%FBS DMEM culture medium) by explant method and subcultred(containing 10%FBS DMEM culture medium).Morphological(growth characteristic) and immunological(VDI factor-related antigen) criteria were identified under inverted phase contrast microscope.
     2.Full length cDNA of AP-2αgene was amplified using PCR from cDNA library of mouse,the PCR production was ligated to pMD18-T vector,and obtained pMD18-T-AP-2αrecombinant expression vector, and then the pMD18-T-AP-2αwas digested with EcoRⅠand XhoⅠ.After electrophoresis,the segments of 1320 bp were recovered and ligated to the pCMV-Myc vector digested also with EcoRⅠand XhoⅠto obtain the pCMV-Myc-AP-2αvector.
     3.From 2 to 4 generation culture cells were transfected with plasmid pCMV-Myc,pCMV-Myc-AP-2α,AP-2α-SiRNA and Control-Si-AP-2αto the primary culture cells,respectively,and then investigated the expression level of mRNA and protein of VEGF using quantitative real-time RT-PCR and western blot.
     Results:
     1.After explanting culture for 4 days in DMEM culture medium containing 20%FBS,the vascular explants were removed and formed confluent monolayers,it showed a cobblestone shape under inverted phase contrast microscope approximately 12 days.The growth velocity of passaged cells were more fast than that of the primary cells,the former would form confluent monolayers after 4-5 days.Characteristic granular cytoplasmic staining pattern were revealed after immunohistochemical labeling for von Willebrand factor.Nuclei did not stain with special color for the negative control stained with PBS.
     2.Mouse vascular endothelial cells were transfected transiently with pCMV- Myc-AP-2αand pCMV-Myc,respectively,and the mRNA levels of AP-2αwere detected.The quantitative real-time RT-PCR analysis showed that AP-2αexpression levels increased significantly when the cells were transfected with pCMV-Myc-AP-2α,while decreased significantly after suppressing AP-2a by RNA interference. This indicated that the system worked correctly.When transfected with pCMV-Myc-AP-2α,pCMV-Myc,AP-2α-SiRNA and the Control-SiRNA,the mRNA expression levels of VEGF were significantly increase after over-expressing Ap-2αand decreased significantly after suppressing AP-2a by RNA interference.Western blot detection also showed similar results that the protein expression level of VEGF increased markedly after over-expressing AP-2α,while decreased significantly after suppressing AP-2a by RNA interference.
     Conclusion:
     1.We successfully achieved the primary culture cells of mouse aorta vascular endothelial cells using explantation method,it was satisfied to the research of basic or clinical.
     2.The recombinant plasmid vector pCMV-Myc-AP-2αwas successfully constructed for the next step to carry out genetic experiments of the relationship between AP-2αand VEGF.
     3.AP-2αcan up-regulate the expression of VEGFA,which implied that VEGF was a downstream gene of AP-2α.
     PartⅡ.The effect of VEGF-SiRNA and AP-2αon the atherosclerotic plaque
     objectives:To investigate the effect of Vascular endothelial growth factor(VEGF) and small interfering fragment RNA(siRNA) on the formation of atherosclerotic plaque and the interactions of VEGF and AP-2αby interference effect on aortic atherosclerotic plaque in vivo in different periods of apoE~(-/-) mice.
     Methods:
     1.Mouse vascular endothelial cells were transiently transfected with small interfering fragment(VEGFA-siRNA1,VEGFA-siRNA2, VEGFA-siRNA3,VEGFA-siRNA4) and the control sequence (Control-SiVEGF A).The mice was divided into 5 groups,mouse aortic endothelial cells were transfected with lipofectamine~(TM)2000.The mRNA expression level of VEGF gene was detected using RT-PCR analysis.
     2.Males apoE~(-/-) mice of 6-week-old,16-week-old,28-week-old (twenty mice of each age) separately were raised with a western-type diet for 4 weeks.And then the same age mice were divided to 4 groups randomly,each age group was randomly divided into VEGFA-siRNA4 group,contro1-siRNA,negative control group and blank control group, the first three groups were injected with 1mg/kg/d VEGFA-siRNA4, 1mg/kg/d control-siRNA,0.2ml of normal saline on mouse tail vein on alternate days,respectively,and the fourth group was injected nothing. The mice continued being raised on a western-type diet for two weeks.
     3.Serum lipid and lipoprotein detection
     Before perfusion-fixation,blood samples were collected,and serum total cholesterol,LDL cholesterol,HDL cholesterol,and triglycerides concentrations were detected,respectively.
     4.immunohistochemical staining in mice aortic atherosclerotic plaque
     According to the instructions of Envision~(TM) two-step immunohistochemical staining kit,atherosclerotic plaques were stained with Monoclonal antibody of VEGFA and AP-2αto detect the expression levels of them.
     5.Real-time Quantitative RT-PCR Analysis
     For each group of animals(n=20),department of aortic sinus and thoracic aorta from 2 mice were pooled and total RNA was extracted.The mRNA level of VEGFA and AP-2αwas performed by real-time RT-PCR using SYBR green PCR Master Mix,and the data were analyzed with the LightCyeler software version3.5.
     6.Western Blotting
     For each group of animals,department of aortic sinus and thoracic aorta from 3 mice were pooled and total protein was extracted,protein expression levels of VEGFA and AP-2αwere detected using western blot,and the data were analyzed with the LightCyeler software version3.5.
     Results:
     1.Expression levels of VEGFA protein and mRNA can be inhibited by siRNA1,siRNA2,siRNA3,siRNA4 in mouse aortic endothelial cells. The interference effect of VEGFA-siRNA4 worked best.
     2.There were no significant differences(P>0.05) in serum lipid levels and body weight among experimental groups of mice and we can get the opposite results in comparison with each group.
     3.Immunohistochemical staining indicated immunoreactive cells were stained brown in atherosclerotic plaque.
     3.Real-time quantitative RT-PCR and Western blotting
     The expression level of VEGF mRNA and VEGF protein in plaque content were the weakest while injected with VEGF-siRNA among the parallel group.In comparison with each group,the expression level of VEGF mRNA,VEGF protein,AP-2αmRNA and AP-2αprotein increase gradually with the increase of the age and achieve the highest level in 28-week-old group.However,the expression level of AP-2αmRNA content and AP-2αprotein had no significant effect of interference suppression with VEGF-siRNA.
     Conclusions:
     1.The specific siRNA sequences of VEGFA were successfully screened for gene silencing in mice through RNA interference technology to lay a foundation for animal experiments.
     2.Both VEGF and AP-2αwere participate in the formation of aortic atherosclerotic plaque.
     3.Both VEGF and AP-2αcould progress neovascularization in atherosclerotic plaque.RNAi targeting VEGF significantly suppresses expression of VEGF in progress of thoracic aortic atherosclerotic plaque in the ApoE-/- mice but does not affect the expression of AP-2αmRNA and AP-2αprotein.
引文
[1]Lidington EA,Rao RM,Marelli-Berg FM,Jat PS,Haskard DO,Mason JC.Condition of growth factor-responsive cardiac endothelial cells from H-2Kb-tsA58mice.Am J Physiol Cell Physiol,2002,282:C67-C74,
    [2]Kobayashi M,Inoue K,Warabi E,et al.A simple method of isolated mouse aortic endothelial cells.J Atheroscler Thromb,2005,12:138-142
    [3]Marelli-Berg FM,Peek E,Lidington EA,Stauss HJ,Lechler RI.Isolation of endothelial cells from mufine tiss.Journal of Immunological Methods.2000,244:205-215
    [4]Bowden RA,Ding ZM,Donnachie EM,Petersen TK,Michael LH,Ballantyne CM,Bums AR.Role of alfa-4 integrin and VCAM-1 in CD18-independent neutrophil migration across mouse cardiac endothelium.Circulation Research,2002,90:562-569
    [5]Lim YC,Garcia-Cardena G,Allport JR,Zervoglos M,Connolly AJ,Gimbrone MA,Luscinskas FW.Heterogeneity of endothelial cells from different organ sites in T-cell subset recruitment.Am J Pathol,2003:1591-1601
    [6]Su X,Sorenson CM,Sheibani N.Isolation and characterization of murine retinal endothelial cells.Mol Vis,2003,9:171-178
    [7]Kevil CG,Bullard DC.In vitro cultrue and characterization of gene targeted mouse endothelium.Acta Physiologica Scandinavica,2001,173:151-157
    [8]Magid R,Martinson D,Hwang J,Jo H,Galis ZS.Optimization of isolation and functional characterization of primary murine aortic endothelial ceils.Endothelium.2003,10:103-109
    [9].周晓彤,沈振亚,滕小梅,等.小鼠动脉血管内皮细胞的原代培养和鉴定.徐州医学院学报,2007,27(5):305-308
    [10]瞿海龙,陈晓春.大鼠胸主动脉内皮细胞培养方法的改进.内蒙古医学院学报,2007,29(3):164-166
    [11]Mitchell PJ,Wang C,Tjian R:Positive and negative regμLation of transcription in vitro:enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell,1987,50:847-86
    [12]Hilger-Eversheim K,Moser M,Schorle H,et al.Regulatory roles of AP-2transcription factors in vertebrate development,apoptosis and cell-cycle control.Gene.2000 Dec 30;260(1-2):1-12.
    [13]Zhao F,Lufkin T,Gelb BD.Expression of Tfap2d,the gene encoding the transcription factor Ap-2 delta,during mouse embryogenesis.Gene Expr Patterns.2003 May;3(2):213-7.
    [14]Feng W,Williams T.Cloning and characterization of the mouse AP-2epsilon gene:a novel family member expressed in the developing olfactory bulb.Mol Cell Neurosci.2003 Oct;24(2):460-75.
    [15]MohibμLlah N,Donner A,Ippolito JA,Williams T:SELEX and missing phosphate contact analyses reveal flexibility within the AP-2[alpha]protein:DNA binding complex.Nucleic Acids Res(1999) 27:2760-2769.
    [16]Zhao F,Satoda M,Licht JD,Hayashizaki Y,Gelb BD:Cloning and characterization of a novel mouse AP-2 transcription factor,AP-2delta,with unique DNA binding and transactivation properties.J Biol Chem(2001) 276:40755-40760.
    [17]Li Q,Dashwood RH:Activator protein 2alpha associates with adenomatous polyposis coli/beta-catenin and inhibits betacatenin/T-cell factor transcriptional activity in colorectal cancer cells.J Biol Chem(2004)279:45669-45675.
    [18]Mazina OM,Phillips MA,Williams T,Vines CA,Chert GN,Rice RH:Redistribution of transcription factor AP-2alpha in differentiating cμLtured human epidermal cells.J Invest Dermatol(2001)117:864-870.
    [19]Pellikainen J,Naukkarinen A,Ropponen K,Rummukainen J,Kataja V,Kellokoski J,Eskelinen M,Kosma VM:Expression of HER2 and its association with AP-2 in breast cancer.Eur J Cancer(2004)40:1485-1495.
    [20]Li M,Wang Y,Hung MC,Kannan P:Inefficient proteasomal degradation pathway stabilizes AP-2alpha and activates HER-2/neu gene in breast cancer.Int J Cancer,2005,doi:10.1002/ijc.21426.
    [21]Nyormoi O,Wang Z,Doan D,Ruiz M,McConkey D,Bar-Eli M:Transcription factor AP-2alpha is preferentially cleaved by caspase 6 and degraded by proteasome during tumor necrosis factor alpha-induced apoptosis in breast cancer cells.Mol Cell Biol,2001,21:4856-4867.
    [22]Garcia MA,Campillos M,Marina A,Valdivieso F,Vazquez J:Transcription factor AP-2 activity is modμtLated by protein kinase A-mediated phosphorylation.FEBS Lett,1999,444:27-31.
    [23]Park K,Kim KH:The site of cAMP action in the insμLin induction of gene expression of acetyl-CoA carboxylase is AP-2.J Biol Chem,1993,268:17811-17819.
    [24]Zhong L,Wang Y,Kannan P,Tainsky MA:Functional characterization of the interacting domains of the positive coactivator PC4 with the transcription factor AP-2alpha.Gene,2003,320:155-164.
    [25]Braganca J,Eloranta J J,Bamforth SD,et al.Physical and functional interactions among AP-2 transcrip tion factors,p300/CREB2binding p rotein,and CITED2[J].J Biol Chem,2003,278(18):16021-16029.
    [26]Zhang J,Brewer S,Huang J,et al.Overexp ression of transcrip tion factorAP-2alpha supp ressesmammary gland growth and morphogenesis[J].Dev Biol,2003,256(1):127-145.
    [27]Tischer E,Mitchell R,Hartman T,Silva M,Gospodarowicz D,Fiddes JC,Abraham JA.The human gene for vascular endothelial growth factor.Multiple protein forms are encoded through alternative exon splicing.J Biol Chem.1991 Jun 25;266(18):11947-54.
    [28]Gille J,Swerlick RA,Caughman SW.Transforming growth factor-alpha-induced transcriptional activation of the vascular permeability factor (VPF/VEGF) gene requires AP-2-dependent DNA binding and transactivation.EMBO J,1997,16(4):750-759.
    [29]Milanini J,Vi(?)als F,Pouyss(?)gur J,et al.p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts.J Biol Chem,1998,273(29):18165-18172.
    [30]Berra E,Milanini J,Richard DE,et al.Signaling angiogenesis via p42/p44MAP kinase and hypoxia.Biochem Pharmacol,2000,60(8):1171-1178.
    [31]Gille J,Reisinger K,asbe-Vollkopf A,et al.Ultraviolet-A-induced transactivation of the vascular endothelial growth factor gene in HaCaT keratinocytes is conveyed by activator protein-2 transcription factor.J Invest Dermatol,2000,115(1):30-36.
    [32]Brenneisen P,Blaudschun R,Gille J,et al.Essential role of an activator protein-2(AP-2)/specificity protein 1(Sp1) cluster in the VVB-mediated induction of the human vascular endothelial growth factor in HaCaT keratinocytes.Biochem J,2003,369(Pt2):341-349.
    [33]Ruiz M,Pettaway C,Song R,et al.Activator protein 2alpha inhibits tumorigenicity and represses vascular endothelial growth factor transcription in prostate cancer cells.Cancer Res,2004,64(2):631-638
    [34]Jin Y,McEwen ML,Ghandour MS,et a.l Overexpression of XIAP inhibits apoptotic celldeath in an oligodendroglial cell line[J].Cell Mol Neurobio,1 2004,24(6):853-863.
    [35]Mannarino E,Pirro M.Endothelial injury and repair:a novel theory for atherosclerosis.Angiology.2008 Apr-May;59(2 Suppl):69S-72S.
    [36]Dawn Bradbury(?),Deborah Clarke(?),Claire Seedhouse.Vascular Endothelial Growth Factor Induction by Prostaglandin E2 in Human Airway Smooth Muscle Cells Is Mediated by E Prostanoid EP2/EP4 Receptors and SP-1 Transcription Factor Binding Sites.J.Biol.Chem2005,.280,29993-30000,
    [37]Hasegawa K,Wakino S,Tanaka T,et al.Dimethylarginine dimethylaminohydrolase 2 increases vascular endothelial growth factor expression through Spl transcription factor in endothelial cells.Arterioscler Thromb Vase Biol.2006 Jul;26(7):1419-20.
    [38]Kolodgie FD,Narula J,Yuan C,Burke AP,Finn AV,Virmani R.Elimination of neoangiogenesis for plaque stabilization:is there a role for local drug therapy? J Am Coll Cardiol.2007 May 29;49(21):2093-101.
    [39]Kolodgie FD,Gold HK,Burke AP,Fowler DR,Kruth HS,Weber DK,Farb A,Guerrero LJ,Hayase M,Kutys R,Narula J,Finn AV,Virmani R.Intraplaque hemorrhage and progression of coronary atheroma.N Engl J Med.2003 Dec 11;349(24):2316-25.
    [40]Sueishi K,Yonemitsu Y,Nakagawa K,Kaneda Y,Kumamoto M,Nakashima Y.Atherosclerosis and angiogenesis.Its pathophysiological significance in humans as well as in an animal model induced by the gene transfer of vascular endothelial growth factor. Ann N Y Acad Sci 1997;811:311 - 24.
    
    [41] Hayden MR, Tyagi SC. Vasa vasorum in plaque angiogenesis, metabolic syndrome, type 82 diabetes mellitus, and atheroscleropathy: a malignant transformation. Cardiovasc Diabetol 2004;3:1.
    
    [42] Nakagawa K, Chen YX, Ishibashi H, Yonemitsu Y, Murata T, Hata Y, et al.Angiogenesis and its regulation: roles of vascular endothelial cell growth factor.Semin Thromb Hemost 2000;26:61- 6.
    
    [43] Celletti FL, Waugh JM, Amabile PG, Brendolan A, Hilfiker PR, Dake MD.Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med2001;7:425-9.
    
    [44] Moulton KS, Vakili K, Zurakowski D, Soliman M, Butterfield C, Sylvin E,et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci U S A 2003;100:4736-41.
    
    [45] Lemstrom KB, Krebs R, Nykanen Al, Tikkanen JM, Sihvola RK, Aaltola EM, et al. Vascular endothelial growth factor enhances cardiac allograft arteriosclerosis. Circulation 2002;105:2524 -30.
    
    [46] Hao Q, Wang L, Tang H. Vascular endothelial growth factor induces protein kinase D-dependent production of pro-inflammatory cytokines in endothelial cells.Am J Physiol Cell Physiol. 2009 Jan 28. [Epub ahead of print]
    
    [47] Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989 Jun 15;161(2):851-8.
    
    [48] Petrova TV , Markinen T , Alitalo K. Signaling via vascular endothelial growth factor receptor [J]. Exp Cell Res , 1999 , 253 :117 -130.
    
    [49] Poltarak Z , Cohen T , Sivan R , et al . VEGF145 , a secretedvascular endothelial growth factor isoform that binds to extracellular matrix[J] . J Biol Chem,1997 ,272 : 7151 -7158.
    
    [50] Neufeld G, Cohen T , Gitay - Goren H , et al. Similarities and differences between the vascular endothelial growth factor (VEGF) splice variants [J] . Cancer Metastasis Rev , 1996 ,15 :153 -158.
    
    [51] Lopez-Rodriguez C, Botella L, Corbi AL. CCAAT-enhancer-binding proteins (C/EBP) regulate the tissue specific activity of the CD11c integrin gene promoter through functional interactions with Sp1 proteins. J Biol Chem. 1997 Nov 14;272(46):29120-6.
    
    [52] Perkins ND, Edwards NL, Duckett CS, et al. A cooperative interaction between NF-kappa B and Spl is required for HIV-1 enhancer activation. EMBO J.1993 Sep;12(9):3551-8.
    
    [53] Lee W, Haslinger A, Karin M,et al. Activation of transcription by two factors that bind promoter and enhancer sequences of the human metallothionein gene and SV40. Nature. 1987 Jan 22-28;325(6102):368-72.
    
    [54] German DK, Mutero A, Inoue K,et al. Transcription factor repression and activation of the human acetylcholinesterase gene. J Biol Chem. 1995 Oct 6;270(40):23511-9.
    
    [55] Xu Y, Porntadavity S, St Clair DK. Transcriptional regulation of the human manganese superoxide dismutase gene: the role of specificity protein 1 (Spl) and activating protein-2 (AP-2). Biochem J. 2002 Mar 1;362(Pt 2):401-12.
    
    [56] Benson LQ, Coon MR, Krueger LM,et al. Expression of MXI1, a Myc antagonist, is regulated by Spl and AP2. J Biol Chem. 1999 Oct 1; 274(40):28794-802.
    
    [57] Chen TT, Wu RL, Castro-Munozledo F, et al. Regulation of K3 keratin gene transcription by Spl and AP-2 in differentiating rabbit corneal epithelial cells. Mol Cell Biol. 1997 Jun;17(6):3056-64.
    
    [58] Heimberger AB, McGary EC, Suki D,et al. Loss of the AP-2alpha transcription factor is associated with the grade of human gliomas. Clin Cancer Res.2005 Jan 1;11(1):267-72.
    
    [59] Pellikainen JM, Kosma VM. Activator protein-2 in carcinogenesis with a special reference to breast cancer—a mini review. Int J Cancer. 2007 May 15;120(10):2061-7.
    
    [60] Tenaglia AN, Peters KG, Sketch MH Jr,et al. Neovascularization in atherectomy specimens from patients with unstable angina: implications for pathogenesis of unstable angina. Am Heart J. 1998 Jan;135(1):10-4
    
    [61] Boersma E, Mercado N, Poldermans D, et al. Acute myocardial infarction. Lancet. 2003 Mar 8;361(9360):847-58
    
    [62] Ross JS, Stagliano NE, Donovan MJ, et al. Atherosclerosis and cancer:common molecular pathways of disease development and progression. Ann N Y Acad Sci. 2001 Dec;947:271-92;
    
    [63] Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001 May 24;411(6836):494-8.
    
    [64] Yang M, Mattes J. Discovery, biology and therapeutic potential of RNA interference, microRNA and antagomirs. Pharmacol Ther. 2008 Jan;117(1):94-104.
    
    [65] Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998 Feb 19;391(6669):806-11.
    
    [66] Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov. 2004 Apr;3(4):318-29.
    
    [67] Ryther RC, Flynt AS, Phillips JA 3rd, et al. siRNA therapeutics: big potential from small RNAs. Gene Ther. 2005 Jan;12(1):5-11.
    
    [68] Novina CD, Sharp PA. The RNAi revolution. Nature. 2004 Jul 8;430(6996):161-4
    
    [69] Putral LN, Gu W, McMillan NA. RNA interference for the treatment of cancer. Drug News Perspect. 2006 Jul-Aug;19(6):317-24.
    
    [70] Celotto AM, Graveley BR. Exon-specific RNAi: a tool for dissecting the functional relevance of alternative splicing. RNA. 2002 Jun;8(6):718-24.
    
    [71] Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov. 2004 Apr;3(4):318-29..
    
    [72] Yokota T, Miyagishi M, Hino T, et al. siRNA-based inhibition specific for mutant SOD1 with single nucleotide alternation in familial ALS, compared with ribozyme and DNA enzyme. Biochem Biophys Res Commun. 2004 Jan 30;314(1):283-91.
    
    [73] Svoboda P, Stein P, Hayashi H,et al. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development. 2000 Oct;127(19):4147-56
    
    [74] Huang F, Khvorova A, Marshall W, et al. Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J Biol Chem.2004 Apr 16;279(16):16657-61.
    
    [75] Lundstrom K. Prospects of treating neurological diseases by gene therapy. Curr Opin Investig Drugs. 2007 Jan;8(1):34-40.
    
    [76] Jain KK. Commercial potential of RNAi. Mol Biosyst. 2006 Nov;2(11):523-6.
    
    [77] Leung RK, Whittaker PA. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther. 2005 Aug;107(2):222-39
    
    [78] Qian ZK, Xuan BQ, Min TS,et al. Cost-effective method of siRNA preparation and its application to inhibit hepatitis B virus replication in HepG2 cells. World J Gastroenterol. 2005 Mar 7;11(9):1297-302
    
    [79] Wang W, Wang CY, Dong JH, et al. Identification of effective siRNA against K-ras in human pancreatic cancer cell line MiaPaCa-2 by siRNA expression cassette. World J Gastroenterol. 2005 Apr 7;11(13):2026-31
    
    [80] Rolland AP. From genes to gene medicines: recent advances in nonviral gene delivery. Crit Rev Ther Drug Carrier Syst. 1998; 15(2):143-98.
    
    [81] Sato T, Ishii T, Okahata Y. In vitro gene delivery mediated by chitosan.effect of pH, serum, and molecular mass of chitosan on the transfection efficiency.Biomaterials. 2001 Aug;22(15):2075-80.
    
    [82] Hoffman LM, Maguire AM, Bennett J. Cell-mediated immune response and stability of intraocular transgene expression after adenovirus-mediated delivery. Invest Ophthalmol Vis Sci. 1997 Oct;38(11):2224-33.
    
    [83] Li S, Ma Z. Nonviral gene therapy. Curr Gene Ther. 2001 Jul;1(2):201-26.
    
    [84] Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors.Gene Ther. 2002 Dec;9(24):1647-52.
    
    [85] Smith JG, Walzem RL, German JB. Liposomes as agents of DNA transfer. Biochim Biophys Acta. 1993 Dec 21;1154(3-4):327-40.
    
    [86] Wu GY, Wu CH. Delivery systems for gene therapy. Biotherapy. 1991;3(1):87-95.
    
    [87] Pari GS, Keown WA Experimental strategies in efficient transfection of mammalian cells. Calcium phosphate and DEAE-dextran. Methods Mol Biol.1997;62:301-6
    
    [88] Davis ME, Non-viral gene delivery systems. Curr Opin Biotechnol. 2002 Apr;13(2):128-31.
    
    [89] Niidome T, Urakawa M, Sato H, et al. Gene transfer into hepatoma cells mediated by galactose-modified alpha-helical peptides. Biomaterials. 2000 Sep;21(17):1811-9.
    
    [90] Farhood H, Serbina N, Huang L. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta. 1995 May 4;1235(2):289-95.
    
    [91] Djurovic S, Iversen N, Jeansson S,et al. Comparison of nonviral transfection and adeno-associated viral transduction on cardiomyocytes. Mol Biotechnol. 2004 Sep;28(1):21-32.
    
    [92] Kiefer K, Clement J, Garidel P, et al. Transfection efficiency and cytotoxicity of nonviral gene transfer reagents in human smooth muscle and endothelial cells. Pharm Res. 2004 Jun;21(6):1009-17.
    
    [93] Akita H, Ito R, Khalil IA, et al. Quantitative three-dimensional analysis of the intracellular trafficking of plasmid DNA transfected by a nonviral gene delivery system using confocal laser scanning microscopy. Mol Ther. 2004 Mar;9(3):443-51.
    
    [94] Takei Y, Kadomatsu K, Yuzawa Y, et al. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res. 2004 May 15;64(10):3365-70.
    
    [95] Qiu S, Adema CM, Lane T. A computational study of off-target effects of RNA interference. Nucleic Acids Res. 2005 Mar 30;33(6):1834-47.
    
    [96] Schwarz DS, Ding H, Kennington L, et al. Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genet. 2006 Sep 8;2(9):e140.
    
    [97] Luo Q, Kang Q, Song WX, et al Selection and validation of optimal siRNA target sites for RNAi-mediated gene silencing. Gene. 2007 Jun 15;395(1-2):160-9.
    [98] Plump AS, Smith JD, Hayek T,et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992 Oct 16;71(2):343-53.
    
    [99] Zhang SH, Reddick RL, Piedrahita JA, et al. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science.1992 Oct 16;258(5081):468-71.
    
    [100] Getz GS, Reardon CA. Diet and murine atherosclerosis. Arterioscler Thromb Vasc Biol. 2006 Feb;26(2):242-9.
    
    [101] Nakashima Y, Plump AS, Raines EW, et al. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 1994 Jan;14(1):133-40.
    
    [102] Jawien J, Nastalek P, Korbut R. Mouse models of experimental atherosclerosis. J Physiol Pharmacol. 2004 Sep;55(3):503-17
    
    [103] Cullen P, Baetta R, Bellosta S, et al. Rupture of the atherosclerotic plaque:does a good animal model exist? Arterioscler Thromb Vasc Biol. 2003 Apr 1;23(4):535-42.
    
    [104] Falk E, Schwartz SM, Galis ZS, et al. Putative murine models of plaque rupture. Arterioscler Thromb Vasc Biol. 2007 Apr;27(4):969-72.
    
    [105] Amirbekian V, Lipinski MJ, Briley-Saebo KC, et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):961-6.
    
    [106] Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies. Circulation. 2003 Oct 7;108(14): 1664-78.
    
    [107] Barger AC, Beeuwkes R 3rd, Lainey LL, Silverman KJ. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med. 1984 Jan 19;310(3):175-7.
    
    [108] Moulton KS, Heller E, Konerding MA,et al. Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation. 1999 Apr 6;99(13):1726-32
    [109] Jeziorska M, Woolley DE. Local neovascularization and cellular composition within vulnerable regions of atherosclerotic plaques of human carotid arteries. J Pathol. 1999 Jun;188(2): 189-96.
    
    [110] Virmani R, Narula J, Farb A. When neoangiogenesis ricochets. Am Heart J.1998 Dec;136(6):937-9.
    
    [111] Milei J, Parodi JC, Alonso GF, et al. Carotid rupture and intraplaque hemorrhage: immunophenotype and role of cells involved. Am Heart J. 1998 Dec; 136(6): 1096-105.
    
    [112] McCarthy MJ, Loftus IM, Thompson MM, et al. Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology. J Vasc Surg. 1999 Aug;30(2):261-8.
    
    [113] Mofidi R, Crotty TB, McCarthy P, et al. Association between plaque instability, angiogenesis and symptomatic carotid occlusive disease. Br J Surg. 2001 Jul;88(7):945-50
    
    [114] Fleiner M, Kummer M, Mirlacher M, et al. Arterial neovascularization and inflammation in vulnerable patients: early and late signs of symptomatic atherosclerosis. Circulation. 2004 Nov 2;110(18):2843-50.2843 — 2850.
    
    [115] Moreno PR, Purushothaman KR, Fuster V, et al. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation. 2004 Oct 5;110(14):2032-8.
    
    [116] Kockx MM, Cromheeke KM, Knaapen MW,et al. Phagocytosis and macrophage activation associated with hemorrhagic microvessels in human atherosclerosis. Arterioscler Thromb Vasc Biol. 2003 Mar 1;23(3):440-6.
    
    [117] de Nooijer R, Verkleij CJ, von der Thusen JH,et al. Lesional overexpression of matrix metalloprotei nase-9 promotes intraplaque hemorrhage in advanced lesions but not at earlier stages of atherogenesis. Arterioscler Thromb Vasc Biol. 2006 Feb;26(2):340-6.
    
    [118] Jeziorska M, Woolley DE. Neovascularization in early atherosclerotic lesions of human carotid arteries: its potential contribution to plaque development.Hum Pathol. 1999;30:919-925.
    [119] Ramos MA, Kuzuya M, Esaki T,et al. Induction of macrophage VEGF in response to oxidized LDL and VEGF accumulation in human atherosclerotic lesions.Arterioscler Thromb Vasc Biol. 1998 Jul; 18(7): 1188-96.
    
    [120] Chen YX, Nakashima Y, Tanaka K,et al. Immunohistochemical expression of vascular endothelial growth factor/vascular permeability factor in atherosclerotic intimas of human coronary arteries. Arterioscler Thromb Vasc Biol. 1999 Jan;19(1):131-9.
    
    [121] Inoue M, Itoh H, Ueda M,et al. Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions: possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation. 1998 Nov 17;98(20):2108-16.
    
    [122] Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors.Nat Med. 2003 Jun;9(6):669-76.
    
    [123] Ferrara N, Winer J, Burton T. Aortic smooth muscle cells express and secrete vascular endothelial growth factor. Growth Factors. 1991 ;5(2): 141-8.
    
    [124] Park JE, Keller GA, Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell. 1993 Dec;4(12):1317-26.
    
    [125] Pinhal-Enfield G, Ramanathan M, Hasko G,et al. An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A(2A) receptors. Am J Pathol. 2003 Aug;163(2):711-21.
    
    [126] Leibovich SJ, Chen JF, Pinhal-Enfield G,et al. Synergistic up-regulation of vascular endothelial growth factor expression in murine macrophages by adenosine A(2A) receptor agonists and endotoxin. Am J Pathol. 2002 Jun;160(6):2231-44.
    
    [127] Matsumoto T, Claesson-Welsh L. VEGF receptor signal transduction. Sci STKE. 2001 Dec 11;2001(112):RE21.
    
    [128] Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995 Jul 6;376(6535):62-6.
    [129] Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O'Shea KS,Powell-Braxton L, Hillan KJ, Moore MW. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996 Apr 4;380(6573):439-42.
    
    [130] Carmeliet P, Ferreira V, Breier G,et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996 Apr 4;380(6573):435-9
    
    [131] Saiura A, Sata M, Hirata Y, et al. Circulating smooth muscle progenitor cells contribute to atherosclerosis. Nat Med. 2001 Apr;7(4):382-3.
    
    [132] Grosskreutz CL, Anand-Apte B, Dupl(?)a C, et al. Vascular endothelial growth factor-induced migration of vascular smooth muscle cells in vitro. Microvasc Res. 1999 Sep;58(2):128-36.
    
    [133] Rodriguez JA, Nespereira B, Perez-Ilzarbe M, et al. Vitamins C and E prevent endothelial VEGF and VEGFR-2 overexpression induced by porcine hypercholesterolemic LDL. Cardiovasc Res. 2005 Feb 15;65(3):665-73.
    
    [134] Ware JA. Too many vessels? Not enough? The wrong kind? The VEGF debate continues. Nat Med. 2001 Apr;7(4):403-4.
    
    [135] Fabrizio Rodella L, Bonomini F, Rezzani R,et al. Atherosclerosis and the protective role played by different proteins in apolipoprotein E-deficient mice. Acta Histochem. 2007;109(1):45-51.
    
    [136] Tsunami Y, Murohara T, Krasinski K, et al. Reciprocal relation between VEGF and NO in the regulation of endothelial integrity. Nat Med. 1997 Aug;3(8):879-86.
    
    [137] Van Belle E, Tio FO, Chen D, et al. Passivation of metallic stents after arterial gene transfer of phVEGF165 inhibits thrombus formation and intimal thickening. J Am Coll Cardiol. 1997 May;29(6):1371-9.
    
    [138] Van Belle E, Maillard L, Tio FO, et al. Accelerated endothelialization by local delivery of recombinant human vascular endothelial growth factor reduces in-stent intimal formation. Biochem Biophys Res Commun. 1997 Jun 18;235(2):311-6.
    
    [139] Howell WM, Ali S, Rose-Zerilli MJ, et al. VEGF polymorphisms and severity of atherosclerosis. J Med Genet. 2005 Jun;42(6):485-90.
    [140]Khurana R,Simons M,Martin JF,Role of angiogenesis in cardiovascular disease:a critical appraisal.Circulation.2005 Sep 20;112(12):1813-24
    [141]Stefanadis C,Toutouzas K,Stefanadi E,et al.Inhibition of plaque neovascularization and intimal hyperplasia by specific targeting vascular endothelial growth factor with bevacizumab-eluting stent:an experimental study.Atherosclerosis.2007 Dec;195(2):269-76
    [142]Ozawa CR,Banfi A,Glazer NL,et al.Microenvironmental VEGF concentration,not total dose,determines a threshold between normal and aberrant angiogenesis.J Clin Invest.2004 Feb;113(4):516-27.
    [143]Dor Y,Djonov V,Abramovitch R,et al.Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy.EMBO J.2002 Apr 15;21(8):1939-47.
    [144]Rissanen TT,Markkanen JE,Gruchala M,et al.VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses.Circ Res.2003 May 30;92(10):1098-106.
    [145]Luttun A,Tjwa M,Moons L,et al.Revascularization of ischemic tissues by P1GF treatment,and inhibition of tumor angiogenesis,arthritis and atherosclerosis by anti-Fltl.Nat Med.2002 Aug;8(8):831-40.
    [146]Matsumoto T,Mugishima H.Signal transduction via vascular endothelial growth factor(VEGF) receptors and their roles in atherogenesis.J Atheroscler Thromb.2006 Jun;13(3):130-5.
    [147]Fan WH,Karnovsky MJ.Increased MMP-2 expression in connective tissue growth factor over-expression vascular smooth muscle cells.J Biol Chem.2002Mar 22;277(12):9800-5.
    [148]Garc(?)a MA,V(?)quez J,Gim(?)nez C,et al.Transcription factor AP-2regulates human apolipoprotein E gene expression in astrocytoma cells.J Neurosci.1996 Dec 1;16(23):7550-6.
    [149]Ikeda K,Maegawa H,Ugi S,et al Transcription factor activating enhancer-binding protein-2beta.A negative regulator of adiponectin gene expression.J Biol Chem.2006 Oct 20;281(42):31245-53.
    [150]Iwamoto N,Abe-Dohmae S,Ayaori M,et al.ATP-binding cassette transporter A1 gene transcription is downregulated by activator protein 2alpha.Doxazosin inhibits activator protein 2alpha and increases high-density lipoprotein biogenesis independent of alpha1-adrenoceptor blockade. Circ Res. 2007 Jul 20;101(2):156-65.
    
    [151] Ouchi N, Kihara S, Arita Y, et al. Adipocyte-derived plasma protein,adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation. 2001 Feb 27;103(8): 1057-63.
    [1]Yang M,Mattes J.Discovery,biology and therapeutic potential of RNA interference,microRNA and antagomirs[J].Pharmacol Ther,2008,117(1):94-104.
    [2]FIRE A,XU S,MONTGOMERY MK,et al.Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans[J].Nature,1998,391(6669):806-11.
    [3]QIU X,PAN J,CHEN Y,et al.Silencing effect of amyloid precursor protein triggered by small interfering RNA[J].China Journal of Modern Medicine,2005,15(6):801-805.
    [4]Meister G,Tuschl T.Mechanisms of gene silencing by double-stranded RNA.Nature,2004,431(7006):343-9.
    [5]Tomari Y,Zamore PD..Perspective:machines for RNAi.Genes Dev.2005Mar 1;19(5):517-29.
    [6]Hutvagner G,Simard MJ.Argonaute proteins:key players in RNA silencing.Nat Rev Mol Cell Biol.2008 Jan;9(1):22-32.
    [7]Liu J,Carmell MA,Rivas FV et al.Argonaute2 is the catalytic engine of mammalian RNAi.Science.2004 Sep 3;305(5689):1437-41
    [8]Song JJ,Smith SK,Hannon GJ,Joshua-Tor L.Crystal structure of Argonaute and its implications for RISC slicer activity.Science.2004 Sep 3;305(5689):1434-7.
    [9]Meister G,Landthaler M,Patkaniowska A,et al.Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs.Mol Cell.2004 Jul 23;15(2):185-97.
    [10]Sui G,Soohoo C,Affar el B.et al.A DNA vector-based RNAi technology to suppress gene expression in mammalian cells.Proc Natl Acad Sci U S A.2002 Apr 16;99(8):5515-20
    [11]Moazed D.Small RNAs in transcriptional gene silencing and genome defence.Nature.2009 Jan 22;457(7228):413-20.
    [12]Urano F,Calfon M,Yoneda T,etal.A survival pathway for Caenorhabditis elegans with a blocked unfolded protein response.J Cell Biol.2002 Aug 19;158(4):639-46.
    [13]Carthew RW,Sontheimer EJ.Origins and Mechanisms of miRNAs and siRNAs.Cell.2009 Feb 20;136(4):642-55.
    [14]Meister G,Tuschl T.Mechanisms of gene silencing by double-stranded RNA.Nature.2004 Sep 16;431(7006):343-9.
    [15]史毅,金由辛.RNA 干扰与 siRNA(小干扰 RNA)研究进展.生命科学,2008,20(2):196-201
    [16]Xia Y,Lin RX,Zheng SJ,et al.Effective siRNA targets screening for human telomerase reverse transcriptase.World J Gastroenterol.2005 Apr 28;11(16):2497-501
    [17]H(?)gerkvist R.Mokhtari D,Myers JW,et al.siRNA produced by recombinant dicer mediates efficient gene silencing in islet cells. Ann N Y Acad Sci. 2005 Apr;1040:114-22.
    
    [18] Qian ZK, Xuan BQ, Min TS,et al. Cost-effective method of siRNA preparation and its application to inhibit hepatitis B virus replication in HepG2 cells.World J Gastroenterol. 2005 Mar 7;11(9): 1297-302
    
    [19] Wang W, Wang CY, Dong JH, et al. Identification of effective siRNA against K-ras in human pancreatic cancer cell line MiaPaCa-2 by siRNA expression cassette. World J Gastroenterol. 2005 Apr 7;11(13):2026-31
    
    [20] Celotto AM, Graveley BR. Exon-specific RNAi: a tool for dissecting the functional relevance of alternative splicing. RNA. 2002 Jun;8(6):718-24.
    
    [21] Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov. 2004 Apr;3(4):318-29..
    
    [22] Yokota T, Miyagishi M, Hino T, et al. siRNA-based inhibition specific for mutant SOD1 with single nucleotide alternation in familial ALS, compared with ribozyme and DNA enzyme. Biochem Biophys Res Commun. 2004 Jan 30;314(1):283-91.
    
    [23] Svoboda P, Stein P, Hayashi H,et al. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development. 2000 Oct;127(19):4147-56
    
    [24] Huang F, Khvorova A, Marshall W, et al. Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J Biol Chem.2004 Apr 16;279(16):16657-61.
    
    [25] Lundstrom K. Prospects of treating neurological diseases by gene therapy.Curr Opin Investig Drugs. 2007 Jan;8(1):34-40.
    
    [26] Jain KK. Commercial potential of RNAi. Mol Biosyst. 2006 Nov;2(11):523-6.
    
    [27] Leung RK, Whittaker PA. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther. 2005 Aug;107(2):222-39
    
    [28] Behlke MA. Progress towards in vivo use of siRNAs. Mol Ther. 2006 Apr;13(4):644-70.
    
    [29] Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006 May 25;441(7092):537-41.
    
    [30] Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output.Nature. 2008 Sep 4;455(7209):64-71.
    
    [31] Selbach M, Schwanh(?)usser B, Thierfelder N, et al. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008 Sep 4;455(7209):58-63.
    
    [32] Sledz CA, Holko M, de Veer MJ, et al. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol. 2003 Sep;5(9):834-9.
    
    [33] Hornung V, Guenthner-Biller M, Bourquin C, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med. 2005 Mar;11(3):263-70.
    
    [34] Morrissey DV, Lockridge JA, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol. 2005 Aug;23(8):1002-7
    
    [35] Marques JT, Williams BR. Activation of the mammalian immune system by siRNAs. Nat Biotechnol. 2005 Nov;23(11):1399-405
    
    [36] Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci U S A. 2004 Feb 17;101(7): 1892-7.
    
    [37] Fedorov Y, Anderson EM, Birmingham A, et al. Off-target effects by siRNA can induce toxic phenotype. RNA. 2006 Jul;12(7):1188-96.
    
    [38] Kariko K, Bhuyan P, Capodici J, et al. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol. 2004 Jun 1;172(11):6545-9
    
    [39] Jackson AL, Bartz SR, Schelter J, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol. 2003 Jun;21(6):635-7.
    
    [40] Lin X, Ruan X, Anderson MG, et al. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res. 2005 Aug 9;33(14):4527-35.
    [1]Lusis AJ.Atherosclerosis.Nature 2000;407:233-41.
    [2]Chen YX,Nakashima Y,Tanaka K,et al.Immunohistochemical expression of vascular endothelial growth factor/vascular permeability factor in atherosclerotic intimals of human coronary arteries[J].A rterioscler Throm b Vasc B iol,1999,19 (1): 131-139.
    
    [3] Moulton KS, Heller E, Konerding MA, et al. Angiogenesis inhibitors endostatin or TNP—470 reduce intimal neovasculatization and plaque growth in apolipoprotein E-deficient mice [J]. Circulation,l999,99 (13):1726-1732
    
    [4] Williams JK, Heistad DD. Structure and function of vasa vasorum. Trends Cardiovasc Med. 1996;6:53-57.
    
    [5] Heistad DD, Marcus ML, Law EG, Armstrong ML, Ehrhardt JC, Abboud FM. Regulation of blood flow to the aortic media in dogs. J Clin Invest. 1978;62:133-140.
    
    [6] Scotland RS, Vallance P, Ahluwalia A. Endothelin alters the reactivity of vasa vasorum: mechanisms and implications for conduit vessel physiology and pathophysiology. Br J Pharmacol. 1999;128:1229-1234.
    
    [7] Ohhira O, Ohhashi T. Effects of aortic pressure and vasoactive agents on the vascular resistance of the vasa vasorum in canine isolated thoracic aorta. J Physiol.1992;453:233-245.
    
    [8] North S, Moenner M, Bikfalvi A. Recent developments in the regulation of the angiogenic switch by cellular stress factors in tumors. Cancer Lett.2005;218:1-14.
    
    [9] Gorlach A, Diebold I, Schini-Kerth VB, Berchner-Pfannschmidt U, Roth U,Brandes RP, Kietzmann T, Busse R. Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells role of the p22 (phox)-containing NADPH oxidase. Circ Res. 2001;89: 47-54.
    
    [10] Risau W. Mechanisms of angiogenesis. Nature. 1997;386:671- 674.
    
    [11] Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653-660.
    
    [12] Frantz S, Vincent KA, Feron O, Kelly RA. Innate immunity and angiogenesis. Circ Res. 2005;96:15-26.
    
    [13] Isner JM. Cancer and atherosclerosis: the broad mandate of angiogenesis.Circulation. 1999;99:1653-1655.
    
    [14] Groszek E, Grundy SM. The possible role of the arterial microcirculation in the pathogenesis of atherosclerosis. J Chronic Dis. 1980;33:679-684.
    
    [15] Kwon HM, Sangiorgi G, Ritman EL, McKenna C, Holmes DR Jr, Schwartz RS, Lerman A. Enhanced coronary vasa vasorum neovascularization in experimental hypercholesterolemia. J Clin Invest. 1998; 101: 1551-1556.
    
    [16] Jeziorska M, Woolley DE. Neovascularization in early atherosclerotic lesions of human carotid arteries: its potential contribution to plaque development.Hum Pathol. 1999;30:919 -925.
    
    [17] Barger AC, Beeuwkes R III, Lainey LL, Silverman KJ. Hypothesis: vasa vasorum and neovascularization of human coronary arteries: a possible role in the pathophysiology of atherosclerosis. N Engl J Med. 1984;310: 175-177
    
    [18] Zhang Y, Cliff WJ, Schoefl GI, Higgins G. Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am J Pathol. 1993; 143:164 -172.
    
    [19] Kumamoto M, Nakashima Y, Sueishi K. Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance. Hum Pathol. 1995;26:450-456.
    
    [20] de Boer OJ, van der Wal AC, Teeling P, Becker AE. Leucocyte recruitment in rupture prone regions of lipid-rich plaques: a prominent role for neovascularization?Cardiovasc Res. 1999;41:443-449.
    
    [21] O'Brien KD, Allen MD, McDonald TM, Chait A, Harlen JM, Fishbein D,McCarty J, Ferguson M, Hudkins K, Benjamin CD. Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. J Clin Invest.1993;92:945-951.
    
    [22] O'Brien KD, McDonald TM, Chait A, Allen MD, Alpers CE. Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content.Circulation. 1996;93:672- 682.
    
    [23] Moreno PR, Fuster V. New aspects in the pathogenesis of diabetic atherothrombosis. J Am Coll Cardiol. 2004;44:2293-2300.
    
    [24] Moreno PR, Purushothaman KR, Fuster V, Echeverri D, Truszczynska H,Sharma SK, Badimon JJ, O'Connor WN. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability.Circulation. 2004; 110:2032-2038.
    
    [25] Moreno PR Purushothaman KR, O'Connor WN, Kini A, Sirol M, Sharma SK, Fuster V. Microvessel sprouting, red blood cell extravasation, and peri-vascular inflammation is increased in plaques from patients with diabetes mellitus. J Am Coll Cardiol. 2005;45:430A.
    
    [26] Moreno PR, Purushothaman KR, Fuster V, O'Connor WN. Intimomedial interface damage and adventitial inflammation is increased beneath disrupted atherosclerosis in the aorta: implications for plaque vulnerability.Circulation.2002;105:2504-2511.
    
    [27] Fuster V, Moreno PR, Fayad ZA, Corti R, Badimon JJ. Atherothrombosis and high-risk plaque part I: evolving concepts. J Am Coll Cardiol, 2005;46:937-954.
    
    [28] Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246:1306-1309.
    
    [29] Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF.Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219:983-985.
    
    [30] Takahashi H, Shibuya M. The vascular endothelial growth factor VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond). 2005; 109:227-241.
    
    [31] Bates DO, Curry FE. Vascular endothelial growth factor increases microvascular permeability via a Ca(2_)-dependent pathway. Am J Physiol.1997;273:H687-H694.
    
    [32] Barger AC, Beekuwkes R,3rd, Lainey LL,and Silverman KJ: Hypothesis:vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med,1984;310:175-177.
    
    [33] Moulton KS, Vakili K, Zurakowski D, Soliman M, Butterfield C, Sylvin E,Lo KM, Gillies S, Javaherian K, Folkman J. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc NatlAcadSci USA. 2003;100:4736-4741.
    
    [34] Kolodgie FD, Goil HK, Burke AP, Fowler DR, Kruth HS, Weber DR, Farb A, Guerrero LJ, Hayase M, Kutys R, Narula J, Finn AW, Virmani R. Intraplaques hemorrhage and progression of coronary atheroma. N Engl J Med,2003;349:2316-2325.
    
    [35] Inone M, Itoh H, Ueda M, Naruko T, Kojima A, Komatsu R, Doi K, Ogawa Y, Tamura N ,Takaya K, Igaki T, Yamashita J, Chun TH, Masatsugu K, Becker AE, Nakao K. Vascular endothelial growth factor(VEGF) expression in human coronary atherosclerotic lesions , possible pathophysiologcal significance of VEGF in human atherosclerosis. Circulatio,1998;98:2108-2116.
    
    [36] Romas HA, Kuzuya M, Esaki T, Miura S, Satake S, Asai T, Kanda S ,Hayashi T, Iguchi A. Induction of macrophage VEGF in response to oxidized LDL and VEGF accumulation in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol,1998;18:1188-1196.
    
    [37] Celletti FL, Waugh JM, Amabile PG, Brandolan A, Hilfiker PR, Dake MD.Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med,2001;7:425-429.
    
    [38] Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy JA,Hooper A, Priller J, De Klerck B, Compernolle V, Daci E, Bohlen P, Dewerchin M,Herbert JM, Fava R, Matthys P, Carmeliet G, Collen D, Dvorak HF, Hicklin DJ,Carmeliet P. Revasculization of ischemic tissues by PIGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-fit1. Nat Med, 2002;8:831-840.
    
    [39] Paterson JC, Moffatt T, Mills J. Hemosiderin deposition in early atherosclerotic plaques. Arch Pathol. 1956;61:1134 -1140.
    
    [40] Kockx MM, Cromheeke KM, Knaapen MW, Bosmans JM, De Meyer GR,Herman AG, Bult H. Phagocytosis and macrophage activation associated with hemorrhagic microvessels in human atherosclerosis. Arterioscler Thromb Vasc Biol.2003;23:440-446.
    
    [41] Arbustini E, Morbini P, D'Armini AM, Repetto A, Minzioni G, Piovella F,Vigano M, Tavazzi L. Plaque composition in plexogenic and thromboembolic pulmonary hypertension: the critical role of thrombotic material in pultaceous core formation. Heart. 2002;88:177-182.
    
    [42] Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, Farb A, Guerrero LJ, Hayase M, Kutys R, Narula J, Finn AV, Virmani R. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349:2316-2325.
    
    [43] Vlodavsky I, Freidmann Y. Molecular properties and involvement of heparinase in cancer metastasis and angiogenesis. J Clin Invest. 2001; 108:341-347.
    
    [44] Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813- 820.
    
    [45] De Martin R, Hoeth M, Hofer-Warbinek R, Schmid JA. The transcription factor NF-_B and the regulation of vascular cell function. Arterioscler Thromb Vasc Biol. 2000;20:e83- e88.
    
    [46] Melamed-Frank M, Lache O, Enav BI, Szafranek T, Levy NS, Ricklis RM,Levy AP. Structure/function analysis of the anti-oxidant properties of haptoglobin.Blood. 2001;98:3693-3698.
    
    [47] Langlois MR, Delanghe JR. Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem. 1996;42:1589-1600.
    
    [48] Graversen JH, Madsen M, Moestrup SK. CD163: a signal receptor scavenging haptoglobin-hemoglobin complexes from plasma. Int J Biochem Cell Biol.2002;34:309-314.
    
    [49] Vanden Heuvel MM, Tensen CP, Van As JH, Van den Berg TK, Fluitsma DM, Dijikstra CD, Dopp EA, Droste A, Vangaalen FA, Sorg C, Hogger P, Beelen RH.Regulation of CD163 on macrophages: cross linking of CD163 induces signaling and activation. J Leuk Biol. 1999;66:858-866.
    
    [50] Philippidis P, Mason JC, Evans BJ, Nadra I, Taylor KM, Haskard DO,Landis RC. Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: anti-inflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery.Circ Res. 2004;94: 119-126.
    
    [51] Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med. 1999;340:115-126.
    
    [52] Mallat Z, Besnard S, Duriez M, Deleuze V, Emmanuel F, Bureau MF,Soubrier F, Esposito B, Duez H, Fievet C, staels B, Duverger N, Scherman D, Tedgui A. Protective role of interleukin-10 in atherosclerosis.Circ Res. 1999;85:e17-224.
    
    [53] Schaer DJ. The macrophage hemoglobin scavenger receptor CD163 as a genetically determined disease modifying pathway in atherosclerosis. Atherosclerosis.2002;163:199-201.
    
    [54] Bowman BH, Kurosky A. Haptoglobin: the evolutionary product ofduplication, unequal crossing over, and point mutation. Adv Hum Genet.1982;12:189-261.
    
    [55] Bamm VV, Tsemakhovich VA, Shaklai M, Shklai N. Haptoglobin phenotypes differ in their ability to inhibit heme transfer from hemoglobin to LDL.Biochemistry. 2004;43:3899 -3906.
    
    [56] Asleh R, Marsh S, Shilkrut M, Binah O, Guetta J, Lejbkowicz F, Enav B,Shehadeh N, Kanter Y, Lache O, Cohen O, Levy NS, Levy AP. Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease. Circ Res. 2003;92:1193-1200
    
    [57] Asleh R, Guetta J, Kalet-Litman S, Miller-Lotan R, Levy AP. Haptoglobin genotype- and diabetes-dependent differences in iron-mediated oxidative stress in vitro and in vivo. Circ Res. 2005;96:435- 441.
    
    [58] Corti R, Fuster V, Fayad ZA, Worthley SG, Helft G, Smith D,Weinberger J,Wentzel J, Mizsei G, Mercuri M, Badimon JJ. Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: two years' follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation. 2002;106:2884 -2887.
    
    [59] Williams JK, Armstrong ML, Heistad DD. Vasa vasorum in atherosclerotic coronary arteries: responses to vasoactive stimuli and regression of atherosclerosis.Circ Res. 1988;62:515-523.
    
    [60] Badimon JJ, Badimon L, Galvez A, Dische R, Fuster V. High density lipoprotein plasma fractions inhibit aortic fatty streaks in cholesterol-fed rabbits. Lab Invest. 1989;60:455-461.
    
    [61] Badimon JJ, Badimon L, Fuster V. Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit.J Clin Invest.1990;85:1234-1241.
    
    [62] Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M,Nickenig G. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005;353:999 -1007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700