棉铃虫对转Bt基因棉的抗性等位基因频率及其监测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉铃虫(Helicoverpa armigera(Hübner))是危害棉花的一种重要世界性害虫,在我国由于大量使用化学农药防治,棉铃虫已对常用的几类杀虫剂均产生抗性,1998年,河北省首先大面积种植转Bt基因棉,由于转Bt基因棉在整个生长季都表达Bt杀虫蛋白,因此与Bt生物制剂相比,棉铃虫对Bt棉存在更易产生抗性的风险。鉴于室内用Bt棉筛选的棉铃虫抗性品系的抗性基因遗传特性为不完全隐性(孟凤霞博士论文),无法用常规方法监测Bt棉大田棉铃虫种群的早期抗性,因此采用单雌系F_2代法,从2000年至2002年,连续三年监测了从1998年开始大面积种植转Bt基因棉的河北省威县大田棉铃虫对对新棉33~B的抗性等位基因频率的变化,并初步建立了可快速、简便检测抗性等位基因频率的单雌系F_1代法,以便为抗性治理和延长Bt棉的应用寿命提供科学依据。
     1999年,本实验室何丹军用单雌系F_2代法检测到种植Bt棉一年地区(河北邱县)棉铃虫种群对转Bt基因棉的起始抗性基因频率为0.58%,2000年,我们再次应用单雌系F_2代法监测到大面积种植转Bt基因棉三年地区的河北省(威县和成安)大田棉铃虫对对新棉33~B的抗性等位基因频率已上升到3.3%。继续用F_2代法检测河北威县棉铃虫种群对新棉33~B的抗性等位基因频率,2001年为6.9%,2002年二代幼虫、三代卵、三代幼虫这三个种群分别为6.9%、7.8%和9.4%。监测结果表明随着棉花种植年数和田间棉铃虫取食Bt棉代次的的增加,河北棉铃虫种群对Bt棉的抗性等位基因频率在快速上升。
     初步建立用于检测田间棉铃虫Bt棉抗性等位基因频率的单雌系F1代法,采集田间幼虫或卵,饲养至羽化后与室内筛选的对转Bt基因棉有极高抗性水平的纯合的抗性品系单对交配,每对棉铃虫的所有F_1代幼虫作为一个单雌系用新棉33~B检测其中有无抗性个体,抗性等位基因频率估计方法参照Andow and Alstad(2000)描述的Bayesian统计方法。用此法其监测到2002年威县Bt棉田棉铃虫对新棉33~B的抗性等位基因频率分别为8.8%(二代幼虫)、8.9%(三代卵)、9.3%(三代幼虫),经统计分析,与用单雌系F_2代法的检测频率无显著差异,表明单雌系F_1代法检测棉铃虫对转Bt基因棉的抗性等位基因频率的灵敏度与F_2代相同,该法可用于检测田间棉铃虫对Bt棉的低水平抗性等位基因频率,且比单雌系F_2代法快速、经济。
     威县棉铃虫对MVPⅡ的抗性水平测定结果表明:参照孟凤霞测定的敏感基线,威县棉铃虫各种群对有效成分为Cry1Ac毒素的21%MVPⅡ可湿性粉剂的抗性
    
     棉铃虫对转Bt基因棉的抗性等位基因频率及其监测方法研究
    倍数分别为7.2倍(2001年三代幼虫)、7.1倍(2002年二代幼虫)、6.9倍(2002
    年三代卵L10.9倍(2o02年三代幼虫),2O02年对各种群对20删w11胶悬剂抗
    性分别为15.3倍(2002年二代幼虫)、N.5倍(2m2年三代卵)和28.O倍(2002
    年三代幼虫),表明随着棉花种植年数和田间棉铃虫取食Bt棉代次的的增加,威
    县棉铃虫对Bt棉的杭性水平迅速上升,这一结果与应用单雌系F;代法和F;代法
    检测出田间抗性等位基因频率上升的趋势相一致。
     根据对河北省威县棉铃虫的抗性监测的结果,我们认为,目前河北省采取的
    类似高剂量/庇护区的抗性治理对策对延缓棉铃虫对Bt棉的抗性发展存在不足,
    有必要及时调整策略,实施合理的抗性治理措施,否则将失去进行预防性抗性治
    理的最后机会;对转 B t基因棉种植二至三年以上的地方,应立即开展抗性监测
    工作,尽早设计和实施抗性治理对策。
Cotton bollworm (Helicoverpa armigera (Hubner)) was an important worldwide pest that damaged cotton. In China, cotton bollworm had already developed resistance to several kinds of insectisides because of the slather using of chemical pestiside. Since 1998, genetically engineered cotton ( Bt cotton ) that produced an insecticidal protein originally found in the biocontrol agent, Bacillus thuringiensis (Bt), has been planted millions hectares every year in China. Because these toxins were produced by the plants from seedling stage to harvest, there would be intense selection for the resistant genotypes of the pest as the acreage planted to this transgenic cotton increase. Therefore, widespread adoption of Bt cotton increase the risk that pest would evolve resistance than that of the Bt biocontrol agents. Doctor Fengxia Meng had studied that the inheritance trait of resistance in laboratory selected cotton bollworm strain was incompletely recessive, so there were no proper general methods to monitor the early resistance in cotton bollworm population to Bt cotton . From 2000 to 2002, we used F_(2) method of isofemale lines (F2 screen) to monitor the change of resistance alleles frequency in the field population of cotton bollworm to transgenic Bt cotton, NuCOTN 33" in Heibei Province where Bt cotton had planted since 1998 . Furthermore, we established an F1 method of isofemale lines to detect quickly and conveniently the frequency of resistance alleles to transgenic cotton in field cotton bollworm population. The goals of our research were to offer scientific evidences for resistance management and to prolong the application of Bt cotton.
    In 1999, He et al used the F2 method to detect the frequency of resistance alleles to Bt toxin from transgenic Bt cotton, NuCOTN 33" , in cotton bollworm. The results showed that the resistance alleles frequency in the natural population of cotton bollworm reached to >0. 58%, in Qiu County,
    
    
    
    Hebei Province .where transgenic Bt cotton had been planted for only one year. In 2000, we monitored the resistance allele frequency to transgenic Bt cotton, NuCOTN 33" in the field population of cotton bollworm with F2 method, in Wei Xian county and Chengan county, Hebei Province, where transgenic Bt cotton had been planted for three years. And the frequency of resistance allele of the bollworm population had increase to 3.3%. We continued to monitor the frequency of resistance alleles in cotton bollworm to Bt cotton, NuCOTN 33" by F2method, in Wei County, Hebei Province. In 2001, the frequency increased to 6. 9% (in larvae of the third generation); in 2002,the frequency was 6. 9 % (in larvae of the second generation), 7.8% (in eggs of the third generation) and 9.4% (in larvae of the third generation) in field. We could conclude that the frequency of resistance was rising quickly with the time of cotton planted increasingo
    The F1 method of isofemale lines was established to detect the frequency of resistance alleles to transgenic cotton in field cotton bollworm population. Virgin females or males that developed from larvae and eggs collected in the cotton field were individually mated to virgin males or females from laboratory resistance strain, respectively. The genotypes of the offspring of all the F1 progeny of each isofemale lines were determined in a Bt cotton assay, the expected frequency and confidence intervals of resistance alleles were calculated using Bayesian statistics described by Andow and Alstad (2000). The results of the monitoring showed that the frequency of resistance alleles to transgenic Bt cotton in the field populations were 8. 8% (in larvae of field second generation), 8. 9 % (in eggs of field third generation) and 9.3% (in larvae of field third generation) in Wei County in 2002, which had no distinguish difference with the research result of the F. method by statistical analysis. The data suggested that the F, method had the same sensibility as that of the F2 method when they were applied to detect (monitor) the rare resistance allele, and the F1 method was mo
引文
1. Alstad DN, Andow DA. Managing the evolution of insect resistance to transgenic plants [J].Science, 1995, 268:1894-1896
    2. Andow DA Monitoring for Early Detection of Resistance. WHO Seminar "Release of Genetically Modified Organisms in the Environment: is it a Health Hazard?" 8 .29.2000
    3. Andow DA; Alstad DN F_2 screen for rare resistance alleles. Journal of Economic Entomology. 1998, 91: 3, 572-578
    4. Andow DA: Olson DM; Hellmich RL: Alstad DN; Hutchison WD. Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in an lowa population of European corn borer (Lepidoptera: Crambidae). Journal of Economic Entomology. 2000, 93: 1, 26-30
    5. Angus T A.. Abacterial toxin paralyzing silkworm larvae. Nature, 1954, 173:545~546
    6. Benedict, J. H., Altman, D. W., Umbeck, P. F., Ring, D. R. Behavior, growth, survival, and plant injury by Heliothis virescens (F.) (Lepidoptera: Noctuidae) on transgenic Bt cottons. J. Econ. Entomol. 1992, 85(2): 589-593
    7. Bentur JS: Andow DA; Cohen MB; Romena AM; Gould F. Frequency of alleles conferring resistance to a Bacillus thuringiensis toxin in a Philippine population of Scirpophaga incertulas (Lepidoptera: Pyralidae). Journal of Economic Entomology. 2000, 93: 5, 1515-1521
    8. Brent K J. Pesticide resistance: Strategies and tactics for management .National Academy Press. Washington, D C. 1986, 298
    9. Farrow R A , Daly J C, Long-range movement as an adaptive strategy in the genus Heliothis (Lepidoptera:Noctuidae):a review of its occurrence and detection in four pest species. Aust. J. Zool. 1987, 3 5(1 ):1~2 4
    10. Ferré, J., Escriche, B., Bel, Y., Van Rie. J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins. FEMS Microbial. Lett. 1995,132:1-7
    11. Ferré, J., Real, M. D., Van Rie, J., Jansens, S., Peferoen, M. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella
    
    xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA 1991, 88:5119-5123
    12. Fitt G.P., Mares, C.L., Llewellyn D. J. Field evaluation and potential ecological impact of transgenic cottons (Gossypium hirsutum) in Australia. Biocontrol Science and Technology. 1994, 4:535-548
    13. Fitt G.P., Mares, C.L., Llewellyn D. J. Field evaluation and potential ecological impact of transgenic cottons (Gossypiw hirsutum) in Australia. Biocontrol Science and Technology. 1994, 4:535-548
    14. Gould, F. Arthropod behavior and the effect of plant protectants. Annu. Rev. Entomol. 1991, 36:305-330
    15. Gould, F. Sustainability of transgenic insecticide cultivars: Integrating pest genetics and ecology. Annu. Rev. Entomol. 1998, 43:701-726
    16. Gould, F., Anderson, A., Jones, A., Sumerford, D., Heckel, D.G., Lopez, J., Micinski, S., Leonard, R., Laster, M. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proc. Natl. Acad. Sci. USA 1997, 94(8): 3519-3523
    17. Gould, F., Anderson, Reynolds, A., Bumgarner, L., Moat, W. Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidac) strain with high levels of resistance to Bacillus thuringiensis toxins. J. Econ. Entomol. 1995, 88(6): 1545-1559
    18. Gould, F., Martinez Ramirez, A., Anderson, A., Ferré, J. Laboratory and field evaluation of Bacillus thuringiensis Berliner var kurstaki, on African bollworm (Helicoverpa armigera, Hübner). Proceedings of the First Annual Conference Crop Protection Society of Ethiopia. Addis Abeba (Ethiopia). CPSE. 1993, 28-29
    19. Gould, F., Martinez Ramirez, A., Anderson, A., Ferré, J., Silva, F. J., Moar, W. J. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc. Natl. Acad. Sci. USA 1992, 89(17): 7986-7990
    20. Greene, A. E.; and R. F. A 1994 . Recombination between viral RNA and transgenic plant transcripts. Science, 263-1425
    21. Groeters FR, Tabashnik BE,Finson N, Jonson MW. 1993. Resistance to Bacillus thuringiensis toxins in Beliothis virescens. Proc. Natl. Acad. Sci. USA 89:7986-90
    
    
    22. Gunning, R.V. Easton, C.S. Inherience of Resistance to Fenvalerate in Heliothis Armigera, J. Aust. Ent. Soc., 1987:26:249-250
    23. Hama, H., Suzuki, K., Tanaka, H. Inheritance and stability of resistance to Bacillus thuringiensis formulations of the diamondback moth Plutella xylostella (Linnaeus) (Lepidoptela: Yponomeutidae). Appl. Entomol. Zool. 1992, 27: 355-362.
    24. Hannay C L. 1953 Crystalline inclusions in aerobic sporefoeming bacteria. Nature, 172:1 004
    25. Heckel, D. G, Gahan, L. C., Gould, F., Anderson, A. Identification of a linkage group with a major effect on resistance to Bacillus thuringiensis CrylAc endotoxin in the tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 1997, 90:75-86
    26. Hfter, H., Whiteley, H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 1989, p: 242-255.
    27. Jinliang Shen, Yidong Wu, Jianguo Tan, Baohao zhou, Jin Chen and Fujie Tan 1993 Comparison of Two monitoring methods for pyrethroid resistance in cotton bollworm (Lepidoptera: Noctuidae).Resistant pest manigement newsletters 5 (1):5~7
    28. Klepetka B, Gould F. 1996. Effects of age and size on mating in Heliothis virescens (Lepidoptera: Noctuidae); implications for resistance management. Environ. Entomol. 25:993-1001
    29. Lewis, P.I., Marten, S. R. Consideration and management of pesticide resistance by the U.S. Environmental Protection Agency. Resistant Pest Management. 1995, 7: 10-13
    30. Liu, Y.B., Tabashnik, B.E. Inheritance of resistance to the Bacillus thuringiensis toxin CrylC in the diamondback moth. Appl. Environ. Microbiol. 1997, 63: 2218-2223
    31. Mallet J, Porter P. Preventing insect adaptation to insect-resistant crops: Are seed mixtures or refugia the best straregy ? Proc. R. Soc. London Ser .B 1992 250:165-169
    32. Mallet, J., Porter, P. Preventing insect adaptation to insect-resistant crops: are seed mixtures or refugia the best strategy? Proc. R. Soc. Lond. Ser. B 1992, 250:165-169
    33. Martinez Carrillo, J.L.,Berdegue, M.,Response of tobacco budworm populations from Mexico to Bt CryIA(c) toxin. 1999 Proceedings Beltwide Cotton Conferences Mexico.)
    
    
    34. McGaughey, W. H., Beemen, R. W. Resistance to Bacillus thuringiensis in colonies of Indian meal moth and almond moth (Lepidoptera: Pyralidae). J. Econ. Entomol. 1988, 81:28-33
    35. Perlak, F. J., Fuchs, R. L., Dean, D. A. Modification of the coding sequence enhances plants expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 1991, 88:3324-3328
    36. Roush R.T. 1996. Can we slow adaptation by pest to insect transgenic crops? See Ref. 12, pp. 271-94
    37. Roush R.T. Managing pests and their resistance to Bacillus thuringiensis: can transgenic crops be better than sprays [J].Biocontrol SciTechnol, 1994,4:501-516
    38. Roush, R.T., Mckenzie JA. Ecological genetics of insecticide and acaracide resistance [J]. Annu Rev Entomol, 1987,32:361-380
    39. Runda de Maagd, DirkB, WillemS. Bacillus thuringiensis toxin-mediated insect resistance in plants [J].Trends in Plant Science, 1999,4(1):9-13
    40. Shelton, A. M., Robertson, J. L., Tang, J. O., Perez, Eigenbrode, S. D., Wilsey, W. K., Cooley R. J. Resistance of diamondback month (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field. J. Econ. Entomol. 1993, 86: 697-705
    41. Stone B.F. A formula for determining degree of dominance in case of monofactorial inheritance to chemicals. Bull. Wold. Org. 1968, 38:91-98
    42. Stone T B, Sims S R. Geographic susceptibility of H eliothis virescens and H elicoverpa zea to Bacillus thuringiensis[J]. JEcon Entomol, 1993 , 86(4):989-994
    43. Tabashnik, B. E. 1994. Evolution of resistance to Bacillus thuringiensis Ann. Rev
    44. Tabashnik, B. E., Cushing N L, Naomi Finson, et al. Field Development of resistance to Bacillu thuringiensis in diamondback moth (Lepidoptera: Plutellidae)[J]. J Econ Entomol, 1990 , 83 (5):1671-1676
    45. Tabashnik, B. E., Finson, N., Groeters, F. R., Moat, W. J., Johnson, M. W., Luo, KE, Adang, M. J. Reversal of resistance to Bacillus thuringiensis in Plutella xytostella. Proc. Natl. Acad. Sci. USA 1994, 91:4120-4124
    46. Tabashnik, B. E., Groeters, F. R., Finson, N., Liu, Y. B., Johnson, M. W., Heckel, D. G., Luo, K., Adang, M. J. Resistance to Bacillus thuringiensis in Plutella xylostella: the moth heard round the world. Molecular genetics and evolution of pesticide resistance. Washington, DC (USA). American Chemical
    
    Society. 1996, 130-140
    47. Tabashnik, B. E., Liu, Y. B., Malvar, T., Heckel, D. G., Masson, L., Ballester, V., Granero, F., Mensua, J. L., Ferre, J. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 1997, 94(24): 12780-12785
    48. Tabashnik, B. E., Liu, Y. B., Ruud A. DE Maagd, et al., Cross-resistance of pink bollworm (Pectinophora gossypiella) to Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 2000, 66(10): 4582-4584
    49. Tabashnik, B. E., Patin, A. L., Dennehy, T. J., Liu, Y. B., Miller, E., Robert, T. S. Dispersal of pink bollworm (Lepidoptera: Gelechiidae) males in transgenic cotton that produces a Bacillus thuringiensis toxin. J. Entomol. 1999, 92(4): 772-780
    50. Tabashnik, B. E., Cushing, N.L., Finson, N., etal. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae) [J].J Econ Entomol, 1990,83:1671-1676
    51. Timmons, A. M., E. T. O'Brien, Y. M. Charrers , et al. 1995. Assesing the risks of wind pollination from fields of genetically modified Brassica napusso. Oleifera. Euphytica, 85:417-423
    52. Vaeck, M., Reynaerts, A., Hfte, H. et al. Transgenic plants protected from insect attack. Nature. 1987, 328(2): 33-37
    53. Venette RC: Hutchison WD: Andow DA, An in-field screen for early detection and monitoring of insect resistance to Bacillus thuringiensis in transgenic crops. Journal of Economic Entomology. 2000, 93: 4, 1055-1064
    54. Whalon, M. E., Miller, D. L., Hollingworth, R. H., et al. Selection of a Colorado potato beetle (Coleptera:Chrysomelidae) strain resistant to Bacillus thuringiensis. J. Econ. Entomol. 1993, 86:226-233
    55. Zhao JZ: Li YX: Collins HL: Shelton an Examination of the F_2 screen for rare resistance alleles to Bacillus thuringiensis toxins in the diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology. 2002, 95: 1, 14-21
    56.崔金杰,夏敬源 转Bt基因棉对棉铃虫抗性的时空动态棉花学报 1999,11(3):141~146
    57.崔金杰 夏敬源 转Bt基因棉对棉铃虫低龄幼虫取食行为的影响,河南职技师院学报.1998,26(1):9~11
    58.崔金杰.转Bt基因棉对昆虫群落的影响及其作用机制.硕士论文.1998.
    
    
    59.戴顺英,高梅影,李小刚等.1996.我国南北方土壤中苏云金芽孢杆菌的分布及杀虫特性.微生物学报,36(4):295-302
    60.董双林,转Bt基因棉极其抗虫性研究与利用进展,棉花学报.1998(10):57-63
    61.董双林等,转Bt基因棉的抗虫性研究简报,棉花学报.1998(6)334-335
    62.范贤林,芮辉,孟香清等.一种监测棉铃虫对Bt杀虫晶体蛋白抗性的技术.植物保护学报,2002,29(3):254-258
    63.郭三堆,崔洪志,夏兰芹等.双价抗虫转基因棉花的研究.中国农业科学.1999,32(3):1-7.
    64.郭三堆.植物Bt抗虫基因工程研究进展.中国农业科学.1995,28(5):8-13.
    65.何丹军,沈晋良,周威君等.应有单雌系F2代法检测棉铃虫对转Bt基因棉抗性等位基因的频率.棉花学报.2001,13(2):65-66.
    66.贾士荣,郭三堆,安道昌.转基因棉花.北京:科学出版社,2000
    67.昆虫中肠Bt晶体蛋白受体的研究进展 卷第3期 1999,42(3)昆虫学报
    68.李荣森,高梅影,戴顺英等.1999.土壤来源的五个苏云金芽孢杆菌新亚种的鉴定.微生物学报,39(2):154-159
    69.梁革梅,谭维嘉,郭予元 棉铃虫对Bt的抗性筛选及交互抗性研究 中国农业科学 2000,33(4):46-53
    70.梁革梅,谭维嘉,郭予元棉铃虫对转Bt基因棉的抗性筛选及遗传方式的研究,2000,第43卷(增) 昆虫学报 41-43.
    71.卢美光 赵建周 芮昌辉 范贤林 魏岑 棉铃虫对Bt杀虫蛋白抗性测定方法的研究 农药学学报 1999,1(3):61~66
    72.孟凤霞 棉铃虫对转Bt基因棉的抗性:抗性品系选育与抗性遗传 南京农业大学博士论文 2001
    73.邵宗泽,生物工程进展苏云金芽胞杆菌杀虫晶体蛋白作用的分子机制研究进展 1 2001,21(6):38-41
    74.沈晋良,吴益东.棉铃虫抗药性及其治理.北京:中国农业出版社,1995.6-11.
    75.沈晋良,周威君,吴益东等.棉铃虫对Bt生物农药早期抗性及与转Bt基因棉抗虫性的关系.昆虫学报,1998.41(1):8-14
    76.束春娥,柏立新,孙宏武,孙以文 棉铃虫多代连续取食转基因抗虫棉的抗性演变 2001,17(1)1~5 中国生物防治
    77.束春娥,孙洪武 孙以文等.转基因棉Bt毒性表达的时空动态及对棉铃虫生存、繁殖的影响.棉花学报.1998,10(3):131-135.
    78.唐振华,昆虫抗药性及其治理。北京:农业出版社,1993
    79.吴孔明,郭予元.棉铃虫滞育的种群内变异性.动物学集刊.1995.12(增):44-48
    80.夏敬源,崔金杰,马丽华,董双林,崔学芬转Bt基因抗虫棉在害虫综合治理中的作用研究.棉花学报 1999.11(2):57~64
    
    
    81.夏敬源,汪若海,文绍岩等.抗虫棉在棉铃虫综合治理中的作用研究初报.中国棉花.1995.22(8):8-11.
    82.喻子牛(主编).苏云金杆菌.科学出版社出版.1990,91-93.
    83.喻子牛.微生物农业及其产业化.科学出版社,2000,35-44.
    84.张天真.转Bt基因抗虫棉品种的推广利用与棉铃虫的抗性治理 作物研究 2001年S1期 10-15
    85.赵建周,剧正理,朱国仁等.小菜蛾抗药性的田间监测方法研究[J].农业科学集刊,1993,(1):253-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700