新型杀菌剂氰烯菌酯对禾谷镰孢菌(Fusarium graminearum)的作用方式及抗药性遗传研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氰烯菌酯(2-氰基-3-氨基-3-苯基丙烯酸乙酯,试验号:JS399-19)是由国家南方农药创制中心江苏基地最新合成的一种对镰孢菌具有较高活性的化合物,特别是对禾谷镰孢菌(Fusarium graminearum)菌丝生长具有强烈的抑制活性,显示了该化合物具有防治麦类赤霉病的应用前景。在新型杀菌剂进入市场之前研究其作用方式及抗药性遗传,对科学制定该杀菌剂的开发和应用策略具有重要意义。
     离体条件下,采用菌丝生长测定法测定该药剂对禾谷镰孢菌抗性菌株和敏感菌株的生长抑制活性;同时采用孢子萌芽测定法测定了其对禾谷镰孢菌分生孢子萌芽的影响。结果表明,氰烯菌酯能够强烈地抑制禾谷镰孢菌敏感菌株菌丝的生长,ECso值分布在0.092~0.141μg/mL之间;并可降低敏感菌株分生孢子的萌发速率,以及影响其萌发的方式,使芽管从分生孢子基部和中间细胞萌发的比率增加;同时氰烯菌酯使敏感菌株分生孢子膨大畸形,并使其芽管肿胀、扭曲,明显抑制其芽管的伸长生长,但对抗性菌株的抑制作用和致畸作用不明显。氰烯菌酯对禾谷镰孢菌菌体呼吸的抑制作用较弱,同时也几乎不影响菌体丙酮酸的合成量,说明该药剂很可能不直接作用于禾谷镰孢菌的呼吸代谢。
     将3个抗氰烯菌酯的禾谷镰孢菌(Fusarium graminearum Schw.)菌株分别在含氯酸盐的MMC培养基上培养,共获得了50个硝酸盐利用缺陷突变体(nit)。比较了抗性菌株的nit突变体与亲本在无性和有性阶段的主要生物学性状。抗性菌株的nit突变体与亲本在菌落生长速率、培养性状和致病性方面没有显著差异;但某些突变体中,产孢量和产子囊壳能力方面存在一定差异。此外,禾谷镰孢菌对氯酸盐和氰烯菌酯之间没有交互抗药性,且抗性可以稳定遗传。因此,可以将nit作为遗传标记来研究禾谷镰孢菌对氰烯菌酯的抗药性遗传学。
     离体条件下,通过紫外光诱变和药剂驯化从5个野生敏感的亲本菌株中共获得了86个对氰烯菌酯的抗性菌株,紫外光诱变产生抗性的频率在1.25×10-7-2.29×10-7之间,而通过药剂驯化产生抗性的频率在2.5-6.0%之间,说明发生抗性的频率偏高,且大部分抗性菌株都属于中等抗性水平(MR)或高等抗性水平(HR)。虽然禾谷镰孢菌对氰烯菌酯发生抗药性以后,不会改变其营养亲和能力,但是抗药性基因不能通过菌丝融合传递给另一个菌株或发生的概率极低,这将不利于对氰烯菌酯的抗性群体的发展。因此,菌丝融合在禾谷镰孢菌对氰烯菌酯的抗药性群体发展中的作用较小。
     选择了43个单孢分离的田间野生敏感菌株和45个实验室诱导的对氰烯菌酯的抗性菌株,测定这些菌株对氰烯菌酯的敏感性,将其划分为敏感(S)、中抗(MR)和高抗(HR)3个水平(根据其对氰烯菌酯的敏感性)。所选的3个禾谷镰孢菌(2043,Y2021B和YNT,分别代表S,MR和HR)对氰烯菌酯的敏感性在自交和无性繁殖过程中可以稳定遗传。从这些菌株中,随机选取8个代表这三个敏感性水平的菌株用于抗药性的遗传研究(F1代法)。并以硝酸盐营养缺陷型突变体(nit)作为遗传标记,来确认来自杂交的单个子囊壳。按照S×S、S×HR、MR×HR、HR×HR、MR×S等共设计了6个杂交组合,对各杂交后代对氰烯菌酯的敏感性测定发现, S×HR、MR×HR和MR×S的杂交后代出现了1:1的分离比例。在杂交组合S×S和HR×HR的后代中均未出现除双亲表现型以外的重组性个体(即未出现抗性水平的分离)。因此,笔者认为,禾谷镰孢菌对氰烯菌酯的抗药性是由单个基因控制的,该基因的不同突变类型很可能导致不同水平的抗药性(MR和HR),抗药性不受修饰基因或细胞质遗传因子的影响。
     以硝酸盐营养缺陷型突变体(nit)和多菌灵抗性为遗传标记,在6个所选菌株中设计了3个禾谷镰孢菌(Furarium graminearum)的室内杂交组合和三个田间杂交组合,使各菌株之间进行杂交,从而研究有性重组。在每个田间杂交组合的稻桩表面随机挑取100个以上杂交或自交的单个子囊壳,检测结果表明三个杂交组合的杂交频率为5.7-20.9%,从而确认了在田间条件下发生了有性重组。从各杂交组合的后代中任意挑选出3个有性重组体,比较了这些有性重组体与其亲本在无性和有性阶段的主要生物学性状。结果表明,禾谷镰孢菌中的nit基因及对杀菌剂多菌灵的抗药性基因可以通过有性杂交的方式重组,即发生了有性重组。有性重组体与其亲本在菌落生长、培养性状和致病性方面没有显著差异;但某些有性重组体中,产孢量和产子囊壳能力方面存在一定差异。总体看来,有性重组体仍然保持了较高的适合度。因此,可以认为有性重组在禾谷镰孢菌群体对多菌灵抗药性发生发展以及群体遗传进化中可能起着重要的作用。
     为了评估田间对多菌灵已经产生抗药性的禾谷镰孢菌对氰烯菌酯产生抗性的风险,选择了5个菌株(对多菌灵抗性或敏感),并被鉴定为对多菌灵敏感(S)、中抗(MR)和高抗(HR),并用来在含10μg/mL氰烯菌酯的PSA培养基平板上诱导对氰烯菌酯的抗药性。总共获得了24个对氰烯菌酯抗性的突变体这些抗药性突变体能在PSA培养基平板上转代培养8次后和在4℃冰箱里保存60天后仍然保持着对氰烯菌酯和(/或)多菌灵的抗药性。可以推测,对多菌灵的抗药性和对氰烯菌酯的抗药性在两个亲和菌株的菌丝融合过程中不能发生抗药性物质的交换,这可能会在一定程度上能够延缓田间菌株对氰烯菌酯产生抗药性。在某些抗药性突变体中,菌丝生长和产孢能力出现下降,说明禾谷镰孢菌对氰烯菌酯产生抗药性突变也可能导致适合度的降低。然而,大多数突变体都显示了与其亲本相似的有性繁殖能力和致病性。而且,总体看来,大多数突变体都拥有着与亲本相似的适合度。多菌灵和氰烯菌酯的防效试验与室内活性测定的结果一致。氰烯菌酯对田间抗多菌灵的菌株引起的赤霉病有着较好的防效,而对抗氰烯菌酯的菌株及双抗菌株的防效较差。而且同时使用多菌灵和氰烯菌酯对双抗菌株的防效显著低于对单抗菌株或敏感菌株的防效。以上结果表明,氰烯菌酯和多菌灵同时使用,在防治小麦赤霉病时具有较高的抗药性风险,而且对这两种药剂的抗药性很可能会产生并且成为实际生产中一个很严重的问题。为了避免对氰烯菌酯抗药性的产生以及维持氰烯菌酯的使用价值,应当尽早采取抗药性治理措施,防患于未然。
JS399-19,2-cyano-3-amino-3-phenylancryic acetate is a novel cyanoacrylate fungicide introduced by Jiangsu Branch of National Pesticide Research & Department South Center. This fungicide was demonstrated to have activity against Fusarium. spp, especially for Fusarium graminearum. In order to develop a sound recommendation for the use and exploitation of a new crop fungicide, sufficient biological mode of action and genetic analysis of its resistance should be studied.
     In vitro, the inhibitory activity of the fungicide against mycelial growth of both sensitive and resistant isolates of F. graminearum was measured and the influence of the fungicide on conidial germination of F. graminearum was determined. The results showed that JS399-19 could strongly inhibit the mycelial growth of a sensitive isolate of F. graminearum with the EC50 values 0.092-0.141μg/mL. JS399-19 decreased the speed of conidial germination of the sensitive isolate of F. graminearum, strongly inhibited the germtube growth of the conidia, and affected the conidia germination by causing the ratio of the tubes germinated from the basal and that from the middle parts of the conidia increased. Moreover, JS399-19 could cause abnormality of conidia and the tubes of the sensitive isolate, by inducing the conidia to swell, and inducing the tubes to swell and contort, respectively. However, this fungicide weakly affected the JS399-19-resistant isolates. JS399-19 could hardly inhibit the respiration of and pyruvic acid production of F. graminearum, suggesting that JS399-19 might not directly affect the respiration pathway of this fungus.
     Fifty nitrate nonutilizing mutants (nit) were obtained by transferring the 3 JS399-19-resistant mutants of F. graminearum on MMC media. The results showed that there were no significant differences in mycelial growth rate, cultural characters and pathogenicity between JS399-19-resistant nit mutants and their parental isolates. But the conidiophore production and perithecigerous capacity changed more or less in some mutants. Results also indicated that there were no cross-resistance toward chlorate and fungicide JS399-19 in F. graminearum, and the resistance to both chlorate and JS399-19 could be transferred by asexual reproduction steadily. Therefore, the nit can be used as a genetic marker for genetic studies of F. graminearum resistant to fungicide JS399-19.
     In vitro, a total of 86 JS399-19-resistant mutants were recovered from 5 wild-type strain by ultra-violet (UV) irradiating and fungicide training with the high frequency 1.25×10-7-2.29×10-7 for UV and 2.5-6.0% for fungicide training, respectively. The results also revealed that most of the resistant mutants belong to MR or HR. Although JS399-19-resistance mutation did not change the vegetative compatibility of F. graminearum, nevertheless, JS399-19-resistance could not be transferred by hyphal fusion or could be transferred with very low chance between two vegetatively compatible isolates. Therefore, hyphal fusion presumably took very little part in the development of JS399-19-resistant population in F. graminearum. Forty-three isolates sensitive to fungicide JS399-19 were collected from three commercial wheat fields of China. Forty-five isolates resistant to JS399-19 which had already been recovered from five sensitive isolates by selection for resistance to the fungicide JS399-19 were selected. Three sensitivity levels were identified:sensitive (S), moderately resistant (MR) and highly resistant (HR) to JS399-19 based on their sensitivity to JS399-19. All the conidia and ascospore progeny of three representative isolates (2043, Y2021B and YNT, representing S, MR and HR) exhibited unchanged resistance level to JS399-19, indicating resistance stability in asexual and self-crossed reproduction. Eight isolates representing three sensitivity level phenotypes were randomly selected for a study on the inheritance of JS399-19 resistance by analyzing the sensitivity of hybrid F1 progeny. The nitrate nonutilizing mutant (nit) was used as a genetic marker to confirm that individual perithecia were the result of out-crossing. Six crosses were assessed:S×S, S×HR, MR×HR, HR×HR, and MR×S. In crosses between the parents with different sensitivity levels, such as S×HR, MR×HR and MR×S, the progeny fit a 1:1 segregation ratio of the two parental phenotypes. No segregation was observed in the crosses of S×S and HR×HR. We concluded that the MR and HR phenotypes in F. graminearum were presumably conferred by different allelic mutations within the same locus. In these isolates, resistance to JS399-19 was not affected by modifying genes or cytoplasmic components.
     In order to study sexual recombination of F. graminearum, six selected isolates were adopted as parents and crossed in three designed pairs under laboratory conditions and under field conditions, respectively, by using nitrate non-utilizing (nit) mutants and carbendazim-resistance as genetic markers. Three sexual recombinants from each of the three combinations were randomly selected to compare the major biological properties with their parental isolates. The results showed that the nit gene and carbendazim-resistance gene could be recombined by sexual crosses. There were no significant differences in mycelial growth, traits of culture and pathogenicity between the sexual recombinants and their parental isolates. Sporulation and perithecigerous capacities, however, changed more or less in some sexual recombinants. The fitness of the sexual recombinants was comparable to the parents in general. Over 100 putative self-crossing or outcrossing perithecia for each cross were randomly sampled on the surface of the haulms of dead rice for each pair of the two parents and the results showed that about 5.7-20.9% outcrossing frequency occurred in the three crosses and confirmed sexual recombination under field conditions. Therefore, it is concluded that sexual recombination may play an important role in carbendazim resistance development and genetic evolution of F. graminearum populations.
     To evaluate the potential risk of resistance development in MBC-resistant F. graminearum isolates to the new fungicide JS399-19, five isolates (MBC-resistant or-sensitive) which were classified into three different sensitivity phenotypes, such as sensitive (S), moderately resistant (MR), and highly resistant (HR) to MBC, were selected to induce JS399-19-resistant mutants by selection for resistance on potato sucrose agar (PSA) plates amended with 10μg/mL JS399-19. Totally, twenty-four JS399-19-resistant mutants were obtained by selection for resistance to the new fungicide from the selected MBC-resistant or -sensitive isolates. All of the resistant mutants maintained their resistance to JS399-19 and/or MBC through 8 transfers on PSA plates for 40 days and when stored on PSA slants at 4℃for 60 days. It was hypothesized that MBC resistance and JS399-19 resistance could not be exchanged by mycelial fusion or there is a small chance to be exchanged between two compatible isolates, which might delay the development of JS399-19 resistance in field MBC-resistant F. graminearum isolates. The mycelial growth and conidial production capacity were decreased in some resistant mutants, indicating that a fitness cost was associated with JS399-19 resistant phenotypes of F. graminearum isolates. However, most of the mutants resistant to both MBC and JS399-19, exhibited high sexual reproduction capacity and pathogenicity as their parental isolates. Nevertheless, most of these mutants possessed fitness levels comparable to their parents. The results on the efficacy of the two fungicides for controlling FHB incited by the fungicide-resistant mutants were generally in consistence with that of in vitro sensitivity tests. JS399-19 was effective in controlling FHB caused by MBC-resistant isolates under field conditions, while it was not effective in controlling FHB caused by the JS399-19 resistant isolates and the special isolates resistant to both MBC and JS399-19. Moreover, the efficacy of MBC+JS399-19 was also significantly lower when controlling FHB caused by the special isolates resistant to both MBC and JS399-19 than when controlling disease caused by the sensitive isolates, the MBC-resistant isolates or JS399-19-resistant isolates. All these results indicated that JS399-19 possessed a high risk in the development of resistance in MBC-resistant and -sensitive F. graminearum isolates, and double resistance to the two fungicides could presumable emerge and become a practical problem when both of the fungicides were extensively used. Appropriate precautions against JS399-19 resistance development in natural populations should be taken into account to avoid unexpected control failures and to sustain the usefulness of MBC and the new product JS399-19.
引文
[1]Champeil A, Dore T, Fourbet J.F. Fusarium head blight:epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains [J]. Plant Science,2004,166:1389-1415.
    [2]Wang Y Z, Miller J D. Effects of Fusarium graminearum metabolites on wheat tissue in relation to Fusarium head blight resistance [J]. Journal of Phytopathology,1988,122:118-125.
    [3]Miller J, Greenhalgh D R, Wang Y, Lu M. Trichothecene chemotypes of three Fusarium species [J]. Mycologia,1991,83:121-130.
    [4]Mesterhazy A. Types and components of resistance to Fusarium head blight of wheat [J], Plant Breeding,1995,114:377-386.
    [5]Parry D W, Jenkinson P, McLeod L. Fusarium ear blight (scab) in small grain cereals-a review [J]. Plant Pathology,1995,44:207-238.
    [6]McMullen M, Jones R, Gallenberg D. Scab of wheat and barley:a re-emerging disease of devastating impact [J]. Plant Disease,1997,81:1340-1348.
    [7]Bottalico A. Fusarium diseases of cereals:species complex and related mycotoxin profiles, in Europe [J]. Journal Plant Pathology,1998,80 (2):85-103.
    [8]Rudd J C, Horsley R D, McKendry A L. Host plant resistance genes for Fusarium head blight: sources, mechanisms and utility in conventional breeding systems [J]. Crop Science,2001,41 (3):620-627.
    [9]Bottalico A., Perrone G. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe [J]. European Journal of Plant Pathology,2002,108:611-624.
    [10]全国小麦赤霉病研究协作组.我国小麦赤霉病穗部镰刀菌种类、分布和致病性[J].上海师范大学学报,1984,3:69-82.
    [11]陆维忠,程顺和,王裕中.小麦赤霉病研究[M].北京:科学出版社,2001,2-39.
    [12]姚金保,陆维忠.中国小麦抗赤霉病育种研究进展[J].江苏农业学报,2000,16(4):242-248.
    [13]王裕中,Mllier.中国小麦赤霉病菌优势种一禾谷镰刀菌产毒素能力的研究[J].真菌学报,1994,13(3):229-234.
    [14]林一波,杨竹平,吴兆苏.不同地理来源抗赤霉病小麦品种的抗性遗传分析[J].上海农业学报,1992,8(1):31-36.
    [15]王广金,李社荣.小麦赤霉病毒素对小麦抗病突变体及亲本细胞超微结构的影响[J].植物病理学报,1997,27(3):215-219.
    [16]武爱波,赵纯森,瞿波,廖玉才.镰刀菌毒素及其分子生物学研究进展[J].华中农业大学学报,2003,22(5):516-521.
    [17]俞刚,陈利锋,姚红燕,柴一秋.脱氧雪腐镰刀菌烯醇在小麦赤霉病病程中的作用[J].植物病理学报,2003,33(1):40-43.
    [18]俞刚,陈利锋,谢卫平,柴一秋.禾谷镰孢的产毒与致病性[J].南京农业大学学报,2001,24(4):19-23.
    [19]史建荣,王裕中,何晨阳,王金生.镰刀菌单端孢霉烯毒素及其在植物病程中的作用[J].植物病理学报,1997,24(4):298-302.
    [20]白清云.农产品中的真菌毒素污染[J].农业环境保护,1997,16(1):40-43.
    [21]石晓燕,邓福友.禾谷镰刀菌液体培养产毒条件研究初报[J].河北农业大学学报,1992,15(4):34-38.
    [22]Cromey M G, Shorter S C, Lauren D R, Sinclair K I. Cultivar and crop management influences on Fusarium head blight and mycotoxins in spring wheat (Triticum aestivum) in New Zealand [J]. Crop Horticultural Science,2002,30:235-247.
    [23]Starkey D E, Ward T J. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity[J]. Fungal Genetics and Biology,2007,44:1191-1204.
    [24]Pugh G W, Johann H, Dickson J G. Factors affecting infection of wheat heads by Gibberella saubinetii [J]. Journal of Agricultural Research,1933,46:771-797.
    [25]Caron D, Les Fusarioses. In:Maladies des bles et orges, ITCF,1993, pp.30-39
    [26]Rapilly F, Lemaire J M, Cassini R, Les Fusarioses. In:Les maladies des cereals-Principales maladies cryptogamiques, INRAITCF,1973,119 pp.
    [27]Strange R N, Smith H. A fungal growth stimulant in anthers which predisposes wheat to attack by Fusarium graminearum[J]. Physiological Plant Pathology,1971,1:141-150.
    [28]Homdork S, Fehrmann H, Beck R. Influence of different storage conditions on the mycotoxin production and quality of Fusarium-infected wheat grain[J]. Journal of Phytopathology,2000,148: 7-15.
    [29]Vesonder R F, Hesseltine C W. Vomitoxin:natural occurrence on cereal grains and significance as a refusal and emetic factor to swine [J]. Process Biochemestry,1980,16:12-15.
    [30]Snijders C H A. Fusarium head blight and mycotoxin contamination of wheat, a review[J]. Netherlands Journal of Plant Pathology,1990,96:187-198.
    [31]Casale W L, Hart L P. Inhibition of 3H-leucine incorporation by trichothecene mycotoxins in maize and wheat tissue [J]. Phytopathology,1988,78:1673-1677.
    [1]Dubin H J, Gilchrist L, Reeves J, Mcnab A. Fusarium head scab; Global status and prospects. CIMMYT, Mexico, DF, Mexico.1997:130.
    [2]Parry D W, Jenkinson P, McLeed L. Fusarium ear blight (scab) in small grains-a review [J]. Plant patholology,1995,44:207-238.
    [3]McMullen M, Jones R, Gallengberg D. Scab of wheat and barely:a re-emerging disease of devastating impact [J]. Plant Disease,1997,81:1340-1348.
    [4]Gilbert J, Abramson D, McCallum S and Clear R. Comparison of Canadian Fusarium graminearum isolates for aggressiveness, vegetative compatibility, and production of ergosterol and mycotoxins. Mycopathologia,2001,153:209-215.
    [5]Gibert J, Tekauz A. Review:Recent developments in research on fusarium head blight of wheat in Canada [J]. Canadian Journal of Plant Patholology,2000,22:1-8.
    [6]Dill-Macky R, Jones R K. Effects of previous crop and tillage on Fusarium head blight of wheat[J]. Phytopathology,1999,89:S21 (abstr).
    [7]Windels C E, Kommedahl T. Population differences in indigenous Fusarium Species by corn culture of prairie soil[J]. American Journal of Botany,1974,61:141-145.
    [8]Sturz A V, Johnston H W. Characterization of Fusarium colonization of spring barely and wheat produced on stubble and fallow soil [J]. Canadian Journal of Plant Pathology,1985,7:270-276.
    [9]Celetti M J, Johnston H W, Kimpinski J, Platt H W, Martin R A. Incidence ofsoil-borne plant pathogens isolate from barely and winter wheat, and other crops in the rotation, on Prince Edward Island [J]. Plant Pathology,1990,39:606-611.
    [10]王雅平,刘伊强,潘乃穟,陈章良.枯草芽抱杆菌TG26防病增产效应的研究[J].生物防治通报,1993,9(2):63-68.
    [11]余桂容,张敏,叶华智.小麦赤霉病的生物防治研究(1.拮抗芽袍杆菌的分离、筛选、鉴定和防病效果)[J].四川农业大学学报,1998,16(3):314-318.
    [12]戴富明,周世明.防治小麦赤每病微生物菌株的筛选与利用[J].植物保护学报,1995,22(2):112-116.
    [13]戴富明,周世明,周蓓琪,张安.4个细菌菌株对小麦赤霉病的防治效果[J].上海农业学报,1994,10(4):59-63.
    [14]Jensen B, Knudsen I M B, Jensen D F. Biological seed treatment of cereals with fresh and long-term stored formulations of Clonostachys roses:Biocontrolefficacy against Fusarium culmorum[J]. European Journal Plant Pathology,2000,106:233-242.
    [15]Khan N, Schisler D A, Boehm M J. Selection and evaluation of microorganisms for biocontrol of Fusarium head blight of wheat incited by Gibberella zeae[J]. Plant Disease,2001,85 (12): 1253-1258.
    [16]Knudsen I M B, Hockenhull J, Jensen D F. Biocontrol of seeding diseases of barley and wheat caused by Fusarium culmorum and bipolaris sorokiniana:effects of selected fungal antagonists on growth and yield components[J]. Plant Pathology,1995,44:467-477.
    [17]Hardin B. Yeast debuts in tests on controlling wheat scab[J]. Agricultural Research,2001,49 (6): 20-21.
    [18]Teperi E, Keskinen M, Ketoja E. Screeing for fungal antagonists of seed-borne Fusarium cuhnorum on wheat using in vivo tests[J]. European Journal Plant Pathology,1998,104:243-251.
    [19]Mercer P C, Kirk S A. Biological treatments for the control of decay in tree wounds[J]. Annals of Applied Biology,1984,104:211-229.
    [20]Baker C J, Stavely J R, Mock N. Biocontrol of bean rust by Bacillus subtilis under field conditions[J]. Plant Disease,1985,69:770-772.
    [21]Hall T J, Sclueiber L R, Leben C. Effect of xylemcolonizing Bacillus spp. on Verticillium wilt in maples[J]. Plant Disease,1985,70:521-524.
    [22]Mesterhazy A. Types and componets of resistance to Fusarium head blight of wheat[J]. Plant Breeding,1995,114:377-386.
    [1]叶钟音,周明国.江淮地区小麦赤霉病菌对多菌灵耐药性的测定[J].植物保护学报,1985,12(3):188-189.
    [2]顾宝根,刘经芬.小麦赤霉病菌对多菌灵抗药性的研究[J].南京农业大学学报,1990,13(1):57-61.
    [3]Yuan S K, Zhou M G.A major gene for resistance to carbendazim, in field isolates of Gibberella zeae[J]. Canadian Journal of Plant Pathology,2005,27:58-63.
    [4]周明国,叶钟音,刘经芬.杀菌剂抗性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    [5]周明国,叶钟音,王建新.禾谷镰刀菌对多菌灵的抗药性研究[A].见:刘仪主编.植物病理学研究进展[M].北京:中国农业科技出版社,1998,158-163.
    [6]周明国.我国几种植物病害的抗药性监测情况[J].农药科学与管理.1999,20(3):39-40.
    [7]Vonk J W, Sijpesteijn A K. Methyl benzimidazole-2-ylcarbamate, the fungitoxic principle of thiophanate-methy1[J]. Pesticide Science,1971,2:160-164.
    [8]Hastie A C. Benlate-induced instability of Aspergillus diploids[J]. Nature,1970,226:771.
    [9]Clemons G P, Sisler H D. Localization of the site of action of a fungitoxic benomyl derivative[J]. Pesticide Biochemistry and Physiology,1971,1:32-43.
    [10]Davidse L C. Antimitotic activity of methyl benzimidazole-2-yl carbamate (MBC) in Aspergillus nidulans[J]. Pesticide Biochem.istry and Physiology,1973,3:317-325.
    [11]Hammerschlag R S, Sisler H D. Benomyl and methyl-2-benzimidazole carbamate (MBC): Biochemical, cytological and chemical aspects of toxicity to Ustilago maydis and Saccharomyces cerevisiae[J]. Pesticide Biochem.istry and Physiology,1973,3:42-54.
    [12]Davidse L C. Benzimidazole fungicides:mechanism of action and biological impact[J]. Annual Review of Phytopathology,1986,24:43-65.
    [13]Cleveland D W, Sullivan K F. Molecular biology and genetics of tubulin[J]. Annual Review of Biochemistry,1985,54:331-365.
    [14]De Brabander M J, Van de Veire R M L, Aerts F E M, Borgers M, Janssen P A J. The effects of methyl [5-(2-thienyl-carbonyl)-1H-benzimidazol-2-yl]-carbamate (R17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro[J]. Cancer Research,1976,36:1011-1018.
    [15]Hoebeke R J, Van Nyen G, De Brabander M. Interaction of oncodazole (R17934), a new antitumoral drug, with rat brain tubulin[J]. Biochemical and Biophysical Research Communications,1976,69:319-324.
    [16]Davidse L C, Flach W. Differential binding of methyl benzimidazol-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans[J].Journal of Cell Biology,1977,72:174-193.
    [17]Howard R J, Aist J R. Effects of MBC on hyphal tip organization, growth and mitosis of Fusarium acuminatum and their antagonism by D2O[J]. Protoplasm,1977,92:195-210.
    [18]Howard R J, Aist J R. Cytoplasmic microtubules and fungal morphogenesis:Ultrastructural effects of methyl benzimidazol-2-yl carbamate determined by freeze-substitution of hyphal tip cells[J]. Journal of Cell Biology,1980,87:55-64.
    [19]Kunkel W. Antimitotische Aktivitat von Methylbenzimidazol-2-ylcarbamat (MBC). I. Licht-, elektronenmikroskopische und physiologische Untersuchungen an keimenden Konidien von Aspergillus nidulans. Zeitschrft fur allgemeine Mikrobiologie,1980,20:113-120.
    [20]Davidse L C. Biochemical aspects of benzimidazole fungicides action and resistance[A]. In:Lyr Heds. Modern selective fungicides-properties, applications, mechanisms of action. London: Longman Group UK.1987:245-257.
    [21]王建新,周明国.禾谷镰刀菌对多菌灵抗药性的快速监测技术研究[A].见:周明国主编.中国植物病害化学防治研究(第一卷)[c].北京:中国农业科技出版社,1998.325-328.
    [22]王建新,周明国.小麦赤霉病对多菌灵抗药性监测技术研究[J].植物保护学报,2002,29(1):73-77.
    [23]周明国,王建新.禾谷镰孢菌对多菌灵的敏感基线及抗药性菌株生物学性质研究[J].植物病理学报,2001,31(4):365-370.
    [24]王建新.禾谷镰孢霉对多菌灵抗药性研究[C].南京农业大学植物保护学院硕十学位论文,2000,46-49.
    [25]王建新,周明国,陆悦健.小麦赤霉病抗药性群体动态及其治理药剂[J].南京农业大学学报,2002,25(1):43-47.
    [26]潘洪玉,杜红军,郭金鹏,刘友良,朱玉奎.东北春麦区小麦赤霉病菌对多菌灵敏感性的测定[J].吉林农业科学,2002,27(增刊):44-45.
    [27]顾宝根,刘经芬.小麦赤霉病菌对多菌灵抗药性的研究.Ⅱ.抗性检测和诱导[J].南京农业大学学报,1990,13(1):57--61.
    [28]Takeuchi T. Studies of the epidemiology of fungicide resistant gray mold strains[J]. Special Bulletion of the Chiba-Ken Agricultural Experiment Station,1987,14:1-75.
    [29]Shabi E, Katan T. Fitness of Venturia pirina isolates resistant to benzimidazole fungicides[J]. Phytopathology,1980,70:1172-1174.
    [30]Kendall S, Hollomon D W, Ishii H, Heaney S P. Characterisation of benzimidazole resistant strains of Rhynchosporium secalis[J]. Pesticide Science,1993,40:175-181.
    [31]Leroux P, Chapeland F, Desbrosses D, Gredt M.1999. Patterns of cross-resistance to fungicides in Botryotinia fuckeliana (Botrytis cinerea) isolates from French vineyards. Crop Protection, 18:687697.
    [32]Jones A L, Shabi E, Ehret G R. Genetics of negatively correlated cross-resistance to a N-phenylcarbamate in benomyl-resistant Venturia inaequalis[J]. Canadian Journal of Plant Pathology,1987,9:195-199.
    [33]Kato T. Negative cross-resistance activity of MDPC and diethofencarb against benzimidazole-resistant fungi[A]. In:Fungicide resistance in north America[C], Delp C J ed. Minnesota:APS Press,1988,40.
    [34]Nakata A, Snao S, Hashimoto S, Hayakawa K, Nishikawa H, Yasuda Y. Negatively correlated cross-resistant to N-phylformamidoximes in benzimidazole-resistant phytopathogenic fungi [J]. Annals of the Phytopathological Society of Japan,1987,53:659-662.
    [35]Josepovits G, Gasztonyi M, Mikite G. Negative cross-resistance to N-phenylanilines in benzimidazole-resistant strains of Botrytis cinerea, Venturia nashicola and Venturia inaequalis[J]. Pesticide Science,1992,35:237-242.
    [36]Ishii H, van Raak M. Inheritance of increased sensitivity to N-phenylcarbamates in benzimidazole-resistant Veuturia nashicola[J]. Phytopathology,1988,78:695-698.
    [37]袁善奎,周明国.玉蜀黍赤霉(Gibberella zeae)对多菌灵的抗药性遗传研究[J].遗传学报,2003,30(5):474-478.
    [38]Ma Z, Yoshimura, M, Michailides, T. J. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California[J]. Applied and Environmental Microbiology,2003,69:7145-7152.
    [39]McKay, G J, Egan D, Morris E, Brown A E. Identification of benzimidazole resistance in Cladobotryum dendroides using a PCR-based method[J]. Mycological Reseach,1998,102: 671-676.
    [40]Gafur, A, Tanaka C, Shimizu, K. Analysis and characterization of the Cochliobolus heterostrophus beta-tubulin gene and its possible role in conferring resistance to benomyl[J]. Journal of Genetic and Applied Microbiology,1998,44:217-223.
    [41]Baraldi E, Mari M, Chierici E. Studies on thiabendazole resistance of Penicillium expansum of pears, pathogenic fitness and genetic characterization [J]. Plant Pathology,2003,52:362-370.
    [42]McKay G J, Cooke L R. A PCR-based method to characterize and identify benzimidazole resistance in Helminthosporium solani[J]. FEMS Microbiology Letter,1997,152:371-378.
    [43]Luck J E, Gillings M R. Rapid identification of benomyl resistant strains of Botrytis cinerea using the polymerase chain reaction [J]. Mycological Research,1995,99:1483-1488.
    [44]Albertini C, Gredt M, Leroux P. Mutations of the β-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acutormis [J]. Pesticide Biochem.istry and Physiology,1999,64:17-23.
    [45]Koenraadt H, Somerville S C, Jones A L. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi[J]. Phytopathology,1992,82:1348-1354.
    [46]Ma Z, Yoshimura M, Holtz B A. Characterization and PCR-based detection of benzimidazoleresistant isolates of Monilinia laxa in California [J]. Pest Management Science,2005, 56:567-571.
    [47]Ma Z, Michailides T J. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi[J]. Crop Protection,2005, 24:853-863.
    [48]陆悦健,周明国,Hollomon D W.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究[J].植物病理学报,2002,1(30):30-34.
    [49]李红霞,陆悦健,王建新,周明国.禾谷镰孢菌p-微管蛋白基因克隆及其与多菌灵抗药性关系的分析[J].微生物学报,2003,43(4):424-429.
    [50]陈长军,李俊,祁之秋,王建新,周明国.禾谷镰孢菌a-微管蛋白基因克隆及其与多菌灵抗药性关系分析[J].微生物学报,2005,45(2):288-291.
    [51]周明国,王建新,叶钟音.抗菌灵对小麦赤霉病和白粉病的防效及抗性治理研究[J].南京农业大学学报,1996,19(增刊):42-47.
    [52]童蕴慧,徐敬友,彭青,吴翠萍,陈占荣,姚志龙,周训芝.施保克对稻麦重要真菌的毒力及病害的防效[A].见:周明国主编.中国植物病害化学防治研究[C].北京:中国农业科技出版社,1998.325-328.
    [1]王龙根,倪珏萍,王凤云,等.新型杀菌剂JS399-19的生物活性研究[J].农药.2004(8):380-383.
    [2]Li H, Diao Y, Wang J, Chen C, Ni J, Zhou M. JS399-19, a new fungicide against wheat scab[J]. Crop Protection,2008,27:90-95.
    [3]李恒奎,周明国.氰烯菌酯对禾谷镰孢菌的生物活性及其内吸输导性研究[J].农药学学报,2006,8(1):30-35.
    [4]李恒奎,陈长军,王建新,周明国.禾谷镰孢菌对氰烯菌酯的敏感性基线及室内抗药性风险初步评估[J].植物病理学报,2006,36(3):273-278.
    [5]Chen Y, Li H, Chen C, Zhou M. Sensitivity of Fusarium graminearum to fungicide JS399-19:in vitro determination of baseline sensitivity and the risk of developing fungicide resistance[J]. Phytoparasitica,2008,36(4):326-337.
    [6]李恒奎,周明国,王建新,倪玉萍,刁亚梅.氰烯菌酯防治小麦赤霉病及治理多菌灵抗药性研究[J].农药,2006,45(2):92-94.
    [7]刁亚梅,朱桂梅,潘以楼,倪珏萍,施娟娟.氰烯菌酯(JS399-19)防治水稻恶苗病的研究[J].现代农药,2006,5(1):14-16.
    [8]陈雨,张文芝,周明国.氰烯菌酯对禾谷镰孢菌分生孢子萌发和菌丝生长的影响[J].农药学学报,2007,9(3):235-239.
    [9]黄伟清,王建良,蒋杏华,周益民,石磊,周建平.25%氰烯菌酯悬浮剂防治小麦赤霉病应用技术[J].上海农业科技,2007,6:133-134.
    [1]周明国,王建新.禾谷镰孢菌对多菌灵的敏感性基线及抗药性菌株生物学性质研究[J].植物病理学报,2001,31:365-370.
    [2]周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    [3]王建新,周明国,陆悦健,叶钟音.小麦赤霉病菌抗药性群体动态及其治理药剂[J].南京农业大学学报,2002,25(1):43-47.
    [4]袁善奎,周明国.玉蜀黍赤霉的营养亲和性及其对多菌灵的抗性在菌丝融合过程中的遗传[J].南京农业大学学报,2004,27(2):39-42.
    [5]袁善奎,周明国.玉蜀黍赤霉(Gibberella zeae)对多菌灵的抗药性遗传研究[J].遗传学报,2003,30:474-478.
    [6]Yuan S K, Zhou M G.A Major Gene for Resistance to Carbendazim, in Field Isolates of Gibberella zeae [J]. Canadian Journal of Plant Pathology,2005,27:58-63.
    [7]王龙根,倪珏萍,王凤云,刁亚梅,韦萍.新杀菌剂JS399-19的生物活性研究[J].农药,2004,43:380-383.
    [8]陈长军,周明国,叶钟音.二硫氰基甲烷对水稻恶苗病菌菌体作用机理研究[J].植物病理学报,2003,33(1):48-51.
    [9]陈长军,周明国,王建新,叶钟音.二硫氰基甲烷对啤酒酵母的影响[J].南京农业大学学报,2004,27(1):51-54.
    [10]Shirane N, Masuko M and Takeda R. Effects of SSF-126, a novel alkoxyiminoacetamide blasticide, on mycelial growth and oxygen consumption of Pyricularia oryzae[J]. Plant Pathology,1994,44: 636-640.
    [11]陈毓荃.生物化学实验方法和技术[M].北京:科学出版社,2002.
    [12]Jelitto T C, Page H A, Read N D. Role of external signals in regulating the pre-penetration phase of infection by the rice blast fungus Magnaporthe grisea [J]. Planta,1994,194:471-477.
    [13]李恒奎,周明国,王建新,倪珏萍,刁亚梅.氰烯菌酯防治小麦赤霉病及治理多菌灵抗药性研究[J].农药,2006,45(2):92-94.
    [14]李恒奎,陈长军,王建新,周明国.禾谷镰孢菌对氰烯菌酯的敏感性基线及室内抗药性风险初步评估[J].植物病理学报,2006,36:273-278.
    [15]李恒奎,周明国.氰烯菌酯对禾谷镰孢菌的生物活性及其内吸输导性研究[J].农药学学报,2006,8(1):30-35.
    [1]周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    [2]周明国,王建新.禾谷镰孢菌对多菌灵的敏感性基线及抗药性菌株生物学性质研究[J].植物病理学报,2001,31(4):365-370.
    [3]王建新,周明国,陆悦健,叶钟音.小麦赤霉病菌抗药性群体动态及其治理药剂[J].南京农业大学学报,2002,25(1):43-47.
    [4]袁善奎,周明国.玉蜀黍赤霉的营养亲和性及其对多菌灵的抗性在菌丝融合过程中的遗传[J].南京农业大学学报,2004,27(2):39-42.
    [5]袁善奎,周明国.玉蜀黍赤霉(Gibberella zeae)对多菌灵的抗药性遗传研究[J].遗传学报,2003,30(5):474-478.
    [6]Yuan S K, Zhou M G.A major gene for resistance to carbendazim, in field isolates of Gibberella zeae[J]. Canadian Journal of Plant Pathology,2005,27:58-63.
    [7]王龙根,倪珏萍,王凤云,刁亚梅,韦萍.新杀菌剂JS399-19的生物活性研究[J].农药,2004,43(8):380-383.
    [8]Cove D J. Chlorate toxicity in Aspergillus nidulans:the selection and characterization of chlorate resistant mutants[J]. Heredity,1976,36:191-203.
    [9]Bowden R L, Leslie J F. Nitrate non-utilizing mutants of Gibberella zeae (Fusarium graminearum) and their use in determining vegetative compatibility [J]. Experimental Mycology,1992,16: 308-315
    [10]Bowden R L, Leslie J F. Sexual recombination in Gibberella zeae. Phytopathology,1999,89: 182-188.
    [11]Correll J C, Kllitich C J R, Leslie J F. Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests[J]. Phytopathology,1987,77:1640-1646.
    [12]Kllitich C J R, Leslie J F. Nitrate reduction mutants of Fusarium moniliforme (Gibberella fujikuroi)[J]. Genetics,1988,118:417-423.
    [13]Giovanni Vi, Caterian C. Characterization of chlorate-resistant sectors from isolates of Fusarium moniliforme and F. proliferatum[J]. Journal of Microbiological methods,1998,31:175-184.
    [14]Gilbert J, Abramson A, McCallum B, Clear R. Comparison of Canadian Fusarium graminearum isolates for aggressiveness, vegetative compatibility, and production of ergosterol and mycotoxins[J]. Mycopathologia,2001,153:209-215.
    [15]McCallum B D, Tekauz A and Gilbert J. Vegetative compatibility among Fusarium graminearum (Gibberella zeae) isolates from barley spikes in southern Manitoba[J]. Canadian Journal of Plant Pathology,2001,23:83-87.
    [16]Maria L R, Maria M R, Maria C. F, Sofia C. Vegetative compatibility and mycotoxin chemotypes among Fusarium graminearum (Gibberella zeae) isolates from wheat in Aegentina[J]. European Journal of Plant Pathology,2006,115:139-148.
    [17]李恒奎,周明国,王建新,倪玉萍,刁亚梅.氰烯菌酯防治小麦赤霉病及治理多菌灵抗药性研究[J].农药,2006,45(2):92-94.
    [18]李恒奎,陈长军,王建新,周明国.禾谷镰孢菌对氰烯菌酯的敏感性基线及室内抗药性风险初步评估[J].植物病理学报,2006,36(3):273-278.
    [19]李恒奎,周明国.氰烯菌酯对禾谷镰孢菌的生物活性及其内吸输导性研究[J].农药学学报,2006,8(1):30-35.
    [1]周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    [2]周明国,王建新.禾谷镰孢菌对多菌灵的敏感性基线及抗药性菌株生物学性质研究[J].植物病理学报,2001,31(4):365-370.
    [3]王建新,周明国,陆悦健,叶钟音.小麦赤霉病菌抗药性群体动态及其治理药剂[J].南京农业大学学报,2002,25(1):43-47.
    [4]袁善奎,周明国.玉蜀黍赤霉(Gibberella zeae)对多菌灵的室内抗药突变体的诱导及其抗药性遗传分析[J].遗传学报,2004,31(4):363-368.
    [5]袁善奎,周明国.玉蜀黍赤霉(Gibberella zeae)对多菌灵的抗药性遗传研究[J].遗传学报,2003,30(5):474-478.
    [6]Yuan S K, Zhou M G. A major gene for resistance to carbendazim, in field isolates of Gibberella zeae[J].Canadian Journal of Plant Pathology,2005,27:58-63.
    [7]王龙根,倪珏萍,王凤云.新型杀菌剂JS399-19的生物活性研究[J].农药.2004(8):380-383.
    [8]Li H, Diao Y, Wang J, Chen C, Ni J, Zhou M. JS399-19, a new fungicide against wheat scab. Crop Protection,2008,27:90-95.
    [9]李恒奎,周明国.氰烯菌酯对禾谷镰孢菌的生物活性及其内吸输导性研究[J].农药学学报,2006,8(1):30-35.
    [10]李恒奎,陈长军,王建新,周明国.禾谷镰孢菌对氰烯菌酯的敏感性基线及室内抗药性风险初步评估[J].植物病理学报,2006,36(3):273-278.
    [11]Chen Y, Li H, Chen C, Zhou M. Sensitivity of Fusarium graminearum to fungicide JS399-19:in vitro determination of baseline sensitivity and the risk of developing fungicide resistance[J]. Phytoparasitica,2008,36(4):326-337.
    [12]李恒奎,周明国,王建新,倪玉萍,刁亚梅.氰烯菌酯防治小麦赤霉病及治理多菌灵抗药性研究[J].农药,2006,45(2):92-94.
    [13]陈雨,张文芝,周明国.氰烯菌酯对禾谷镰孢菌分生孢子萌发和菌丝生长的影响[J].农药学学报,2007,9(3):235-239.
    [14]Cove D J. Chlorate toxicity in Aspergillus nidulans:the selection and characterization of chlorate resistant mutants[J]. Heredity,1976,36:191-203.
    [15]Bowden R L, Leslie J F. Nitrate non-utilizing mutants of Gibberella zeae (Fusarium graminearum) and their use in determining vegetative compatibility [J]. Experimental Mycology,1992,16: 308-315.
    [16]Bowden R L, Leslie J F. Sexual recombination in Gibberella. zeae[J]. Phytopathology,1999,89: 182-188.
    [17]陈雨,陈长军,王建新,金丽华,周明国.抗氰烯菌酯的禾谷镰孢菌nit突变体的诱导及其生物学特性[J].中国农业科学,2007,40(4):735-740.
    [18]Correll J C, Kllitich C J R, Leslie J F. Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests[J]. Phytopathology,1987,77:1640-1646.
    [19]袁善奎,周明国.玉蜀黍赤霉的营养亲和性及其对多菌灵的抗性在菌丝融合过程中的遗传[J].南京农业大学学报,2004,27(2):39-42.
    [20]Lesie J F. Funfal vegetative compatibility[J]. Annual Review of Phytopathology,1993,31: 127-150.
    [21]Goswami R S, Kistler H C. Heading for disaster:Fusarium graminearum on cereal crops[J]. Molecular Plant Pathology,2004,5(6):515-525.
    [1]周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    [2]周明国,王建新.禾谷镰孢菌对多菌灵的敏感性基线及抗药性菌株生物学性质研究[J].植物病理学报,2001,31(4):365-370.
    [3]王建新,周明国,陆悦健,叶钟音.小麦赤霉病菌抗药性群体动态及其治理药剂[J].南京农业大学学报,2002,25(1):43-47.
    [4]袁善奎,周明国.玉蜀黍赤霉的营养亲和性及其对多菌灵的抗性在菌丝融合过程中的遗传[J].南京农业大学学报,2004,27(2):39-42.
    [5]袁善奎,周明国.玉蜀黍赤霉(Gibberella zeae)对多菌灵的抗药性遗传研究[J].遗传学报,2003,30(5):474-478.
    [6]Yuan S K, Zhou M G. A major gene for resistance to carbendazim, in field isolates of Gibberella zeae[J]. Canadian Journal of Plant Pathology,2005,27:58-63.
    [7]王龙根,倪珏萍,王凤云.新型杀菌剂JS399-19的生物活性研究[J].农药.2004(8):380-383.
    [8]Li H, Diao Y, Wang J, Chen C, Ni J, Zhou M. JS399-19, a new fungicide against wheat scab. Crop Protection,2008,27:90-95.
    [9]李恒奎,周明国.氰烯菌酯对禾谷镰孢菌的生物活性及其内吸输导性研究[J].农药学学报,2006,8(1):30-35.
    [10]李恒奎,陈长军,王建新,周明国.禾谷镰孢菌对氰烯菌酯的敏感性基线及室内抗药性风险初步评估[J].植物病理学报,2006,36(3):273-278.
    [11]Chen Y, Li H, Chen C, Zhou M. Sensitivity of Fusarium graminearum to fungicide JS399-19:in vitro determination of baseline sensitivity and the risk of developing fungicide resistance[J]. Phytoparasitica,2008,36(4):326-337.
    [12]李恒奎,周明国,王建新,倪玉萍,刁亚梅.氰烯菌酯防治小麦赤霉病及治理多菌灵抗药性研究[J].农药,2006,45(2):92-94.
    [13]陈雨,张文芝,周明国.氰烯菌酯对禾谷镰孢菌分生孢子萌发和菌丝生长的影响[J].农药学学报,2007,9(3):235-239.
    [14]Cove D J. Chlorate toxicity in Aspergillus nidulans:the selection and characterization of chlorate resistant mutants[J]. Heredity,1976,36:191-203.
    [15]Bowden R L, Leslie J F. Nitrate non-utilizing mutants of Gibberella zeae (Fusarium graminearum) and their use in determining vegetative compatibility[J]. Experimental Mycology,1992,16: 308-315.
    [16]Bowden R L, Leslie J F. Sexual recombination in Gibberella. zeae[J]. Phytopathology,1999,89: 182-188.
    [17]陈雨,陈长军,王建新,金丽华,周明国.抗氰烯菌酯的禾谷镰刀菌nit突变体的诱导及其生物学特性[J].中国农业科学,2007,40(4):735-740.
    [18]Klittich C J R, Leslie J F. Nitrate reduction mutants of Fusarium moniliforme (Gibberella fujikuroi). Genetics,1988,118:417-423.
    [19]Chen Y, Chen C, Wang J, Jin L, Zhou M. Genetic study on JS399-19 resistance in hyphal fusion of Fusarium graminearum by using nitrate nonutilizing mutants as genetic markers[J]. Journal of Genetics and Genomics,2007,34:469-476.
    [20]Goswami R S, Kistler H C. Heading for disaster:Fusarium graminearum on cereal crops[J]. Molecular Plant Pathology,2004,5(6):515-525.
    [21]Chen C J, Wang J X, Luo Q Q, Yuan S K, Zhou M G. Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum (wheat scab). Pest Management Science, 2007,63:1201-1207.
    [1]周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    [2]周明国,王建新.禾谷镰孢菌对多菌灵的敏感性基线及抗药性菌株生物学性质研究[J].植物病理学报,2001,31(4):365-370.
    [3]王建新,周明国,陆悦健,叶钟音.小麦赤霉病菌抗药性群体动态及其治理药剂[J].南京农业大学学报,2002,25(1):43-47.
    [4]袁善奎,周明国.玉蜀黍赤霉的营养亲和性及其对多菌灵的抗性在菌丝融合过程中的遗传[J].南京农业大学学报,2004,27(2):39-42.
    [5]袁善奎,周明国.玉蜀黍赤霉(Gibberella zeae)对多菌灵的抗药性遗传研究[J].遗传学报,2003,30(5):474-478.
    [6]Yuan S K, Zhou M G. A major gene for resistance to carbendazim, in field isolates of Gibberella zeae[J]. Canadian Journal of Plant Pathology,2005,27:58-63.
    [7]Georgopoulos S G. The genetics of fungicide resistance. Lyr H. Modern selective fungicides properties, applications and mechanisms of action[M]. New York:Longman Scientific & Technical,1987,53-63.
    [8]Grindle M. Genetic basis of fungicide resistance. Ford M G, Hollomon D W, Khambay BPS. Combating resistance to xenobiotics:biological and chemical approaches[M]. Chichester:Ellis Horwood,1987,75-93.
    [9]Correll J C, Klittich C J R, Leslie J F. Nitrate nonutilizing mutants of Fusarim oxysporum and their use in vegetative compatibility tests [J]. Phytopathology,1987,77 (12):1640-1646.
    [10]Bowden R L, Leslie J F. Sexual recombiuation in Gibberella zeae [J]. Phytopathology,1999,89 (2): 182-188.
    [11]Tomohiro B, Kazuhiro, S. Genetic analysis of resistance to Fusarium head blight caused by Fusarium graminearum in Chinese wheat cultivar Sumai 3 and the Japanese cultivar Saikai 165 [J]. Euphytica,2000,113:87-99.
    [12]Kato T. Negative cross resistance activity of MDPC and diethofencarb against benzimidazole-resistant fungi. Delp C J. Fungicide resistance in North America [M].Minnesota: APS press,1988,40.
    [13]Wang J X, Zhou M G. Methods for monitoring resistance of Gibberella zeae to Carbendazim [J]. Acta Phytophylacica Sinica,2002,29, (1):73-77.
    [14]Jung M K, Wilder I B, Oakley B R. Amino acid alterations in the benA (Beta-tubulin) gene of Aspergillus nidulans that confer benomyl resistance [J]. Cell Motility and the Cytoskeleton,1992, 22(2):170-174.
    [15]Chen C J, Wang J X, Luo Q Q, Yuan S K, Zhou M G. Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum (wheat scab). Pest Management Science, 2007,63:1201-1207.
    [16]Gale L R, Chen L F, Hernick C A. Population analysis of Fusarium graminearum from wheat heads in eastern China. Phytopathology,2002,92:1315-1322.
    [17]Zeller K A, Bowden R L, Leslie J F. Population differentiation and recombination in wheat scab populations of Gibberella zeae from United States [J]. Molecular Ecology,2004,13:563-571.
    [1]周明国,叶钟音,刘经芬.杀菌剂抗药性研究进展[J].南京农业大学学报,1994,17(3):33-41.
    [2]周明国,王建新.禾谷镰孢菌对多菌灵的敏感性基线及抗药性菌株生物学性质研究[J].植物病理学报,2001,31(4):365-370.
    [3]王建新,周明国,陆悦健,叶钟音.小麦赤霉病菌抗药性群体动态及其治理药剂[J].南京农业大学学报,2002,25(1):43-47.
    [4]袁善奎,周明国.玉蜀黍赤霉的营养亲和性及其对多菌灵的抗性在菌丝融合过程中的遗传[J].南京农业大学学报,2004,27(2):39-42.
    [5]袁善奎,周明国.玉蜀黍赤霉(Gibberella zeae)对多菌灵的抗药性遗传研究[J].遗传学报,2003,30(5):474-478.
    [6]Yuan S K, Zhou M G. A major gene for resistance to carbendazim, in field isolates of Gibberella zeae[J]. Canadian Journal of Plant Pathology,2005,27:58-63.
    [7]Forsyth O M, Yoshizawa T and Morooka N. Emetic and refusal activity of deoxynivalenol to swine[J]. Appllied and Environtal Microbiology,1977,34:547-552.
    [8]Vesonder R F, Hesseltine C W. Vomitoxin:natural occurrence on cereal grains and significance as a refusal and emetic factor to swine[J]. Process Biochemistry,1980,16:12-15.
    [9]. Bai G H, Shamer G, Ohm H. Inheritance of resistance to Fusarium graminearum in wheat[J]. Theoretical and Appllied Genetics,2000,100:1-8.
    [10]Bushnell W R, Somers D A, Giroux R W. Genetic engineering of disease resistance in cereals[J]. Canadian Journal of Plant Pathology,1998,20:137-149.
    [11]Johnston H W. Resistance in advanced winter wheat breeding lines to scab. Biological and Cultural Tests.1993,9:119.
    [12]王龙根,倪珏萍,王凤云.新型杀菌剂JS399-19的生物活性研究[J].农药.2004(8):380-383.
    [13]Li H, Diao Y, Wang J, Chen C, Ni J, Zhou M. JS399-19, a new fungicide against wheat scab. Crop Protection,2008,27:90-95.
    [14]李恒奎,周明国.氰烯菌酯对禾谷镰孢菌的生物活性及其内吸输导性研究[J].农药学学报,2006,8(1):30-35.
    [15]李恒奎,陈长军,王建新,周明国.禾谷镰孢菌对氰烯菌酯的敏感性基线及室内抗药性风险初步评估[J].植物病理学报,2006,36(3):273-278.
    [16]Chen Y, Li H, Chen C, Zhou M. Sensitivity of Fusarium graminearum to fungicide JS399-19:in vitro determination of baseline sensitivity and the risk of developing fungicide resistance[J]. Phytoparasitica,2008,36(4):326-337.
    [17]李恒奎,周明国,王建新,倪玉萍,刁亚梅.氰烯菌酯防治小麦赤霉病及治理多菌灵抗药性研究[J].农药,2006,45(2):92-94.
    [18]陈雨,张文芝,周明国.氰烯菌酯对禾谷镰孢菌分生孢子萌发和菌丝生长的影响[J].农药学学报,2007,9(3):235-239.
    [19]Chen Y, Wang J X., Zhou M G, Chen C J, Yuan S K. Vegetative compatibility of Fusarium graminearum isolates and genetic study on their carbendazim-resistance recombination in China[J]. Phytopathology,2007,97:1584-1589.
    [20]Chen Y, Chen C, Wang J, Jin L, Zhou M. Genetic study on JS399-19 resistance in hyphal fusion of Fusarium graminearum by using nitrate nonutilizing mutants as genetic markers[J]. Journal of Genetics and Genomics,2007,34:469-476.
    [21]陈雨,陈长军,王建新,金丽华,周明国.抗氰烯菌酯的禾谷镰刀菌nit突变体的诱导及其生物学特性[J].中国农业科学,2007,40(4):735-740.
    [22]Davidse L C, Ishii H. Biochemical and molecular aspects of the mechanisms of action of benzimidazoles, N-phenylformamidoximes and the mechanism of resistance to these compounds in fungi. In Modern selective fungicides:properties, applications and mechanisms of action[M]. Edited by H. Lyr. Longman Scientific & Technical,1995, New York. pp.305-322.
    [23]Chen C J, Wang J X, Luo Q Q, Yuan S K and Zhou M G. Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum (wheat scab). Pest Management Science, 2007,63:1201-1207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700