F_1代法监测田间棉铃虫对转Bt基因棉的抗性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、棉铃虫抗性品系的筛选及抗性等位基因频率的鉴定
     继续采用转Bt基因棉叶喂饲法对棉铃虫室内抗性品系YCR进行筛选,从第73代至88代,该品系对Bt毒素的抗性从2523倍上升到7311倍,继续筛选到104代,保持着极高水平抗性。采用等位基因特异性PCR技术(PASA)对室内抗性品系棉铃虫的钙粘素大片断缺失基因(r_1)进行鉴定,其基因型r_1r_1,且其频率为1。
     二、建立抗性棉铃虫的检测标准
     室内比较了棉铃虫抗、感亲本及正反交后代在转Bt基因棉叶上5天的发育速率。结果表明:抗、感亲本及正反交后代在转Bt基因棉叶上5天的存活率与发育速率存在明显差异,抗性品系的存活率达到75%,其中65%(存活幼虫的87%)存活幼虫龄期达2龄中期以上,体重≥0.6 mg/头,正反交和敏感品系的存活率仅为6%(活虫体重0.1-0.5mg/头,龄期为1-2龄初)、2%(活虫体重0.1-0.3 mg/头,龄期为1龄)及0%。因此,确定棉铃虫在转Bt基因棉叶上5天发育到2龄中期以上、体重≥0.6 mg/头的个体作为判别抗性纯合子的标准。
     三、棉铃虫在转Bt基因棉上发育速率的研究
     采用叶片喂饲法比较抗性品系和敏感品系在转Bt基因棉和常规棉上的生长发育,结果表明:在室内条件下,该高抗品系棉铃虫用转Bt基因棉和常规棉叶片喂饲5天的存活率差异不显著,均为80%以上;继续喂饲棉叶,抗性棉铃虫在转Bt基因棉叶上能够完成整个生长发育,但仅有6.7%的羽化率。在转Bt基因棉上幼虫历期较在常规棉上长6天,其化蛹率、蛹重、羽化率等均较常规棉低,表明抗性品系在转Bt基因棉上生长发育存在明显的生存劣势。由于抗性与敏感棉铃虫生长发育的速率不一致以及在一个长期的转基因作物的选择压力下产生高抗的棉铃虫能够在转Bt基因棉上存活,并有少量个体能完成整个生长发育,这将影响到庇护区内大量发育速率快的敏感个体与转Bt基因棉田少量发育速率慢的抗性个体的正常随机交配,从而可能削弱了庇护区治理策略的治理效果。
     四、棉铃虫对转Bt基因棉的抗性遗传及抗性连锁分析
     采用饲料感染法测定了21%MVPII可湿性粉剂(WP)和20%MVPII胶悬剂(SC)对棉铃虫抗(YCR)、感(YCS)亲本及其正反交(F_1,F′_1)后代的毒力,21%MVPIIWP对正反交后代的毒力分别为12.031(95%CI:7.972-18.263)μg/mL和6.617(95%CI:4.337-9.960)μg/mL;20%MVPII SC对正反交后代的毒力分别为61.659(95%CI:43.05-90.55)和98.22(95%CI:76.73-123.65)μg/mL。两毒素对正反交后代的毒力差异均不显著(95%置信限重叠),表明其抗性为常染色体遗传。根据Stone公式计算得到21%MVPII WP对正反交后代的显性度分别为-0.51和-0.69(20%MVPII SC的显性度分别为-0.61和-0.44),二者均在-1~0之间,证实具有7000多倍极高水平抗性的YCR品系对Cry1Ac的抗性基因(r_1)为不完全隐性遗传。正交后代雌虫与抗性亲本雄虫回交(BC_1)后代、正交后代雄虫与抗性亲本雌虫回交(BC_2)后代分别用转Bt基因棉叶处理5d后,其基因型分离比例接近1∶1,经分子检测得到进一步验证,证明棉铃虫对转Bt基因棉的钙粘素大片断缺失基因(r_1)也是常染色体遗传,且该钙粘素大片断缺失基因(r_1)与抗性紧密连锁。
     五、田间棉铃虫的抗性监测
     2005、2006、2007年从河北邱县和威县(2005年)转Bt基因棉大田灯诱采集第二代棉铃虫雄虫采用F_1代法在室内用转Bt基因棉植株或棉叶喂饲法检测田间棉铃虫对表达单价Cry1Ac毒素的转Bt基因棉的抗性等位基因频率。三年期间分别检测了来自邱县棉田86、127和135头雄虫,其中分别有8、24和29头田间亲本检测到携带抗性等位基因,估测抗性等位基因的频率分别为0.047(95%CI:0.015-0.079)、0.094(95%CI:0.044-0.145)和0.107(95%CI:0.055-0.159);2005年采用F_1代法检测威县32头田间雄性成虫检测到1头携带有抗性等位基因,其抗性等位基因频率为0.016(0-0.0595)。2005年采用F_2代法从邱县131头田间雌性成虫中检测到7头携带有抗性等位基因,其频率值为0.01539(95%CI:0.0067-0.0277),单雌系抗性等位基因检出概率值(1-P_(NO))为93.8%。2005年两种方法检测邱县的结果基本一致,说明F_1和F_2代法均能检测到田间稀少的、携带隐性抗性杂合子的个体,与F_2代法相比,F_1代法是更为有效、经济、实用的田间抗性检测方法。在2007年又用剂量-反应法测定田间种群的抗性。结果表明:该种群对20%MVPII SC产生13.14倍抗性,为中等水平抗性。这些结果警示邱县棉铃虫种群的抗性已明显上升,长期大面积种植表达单价Cry1Ac毒素的转Bt基因棉和缺少非Bt棉做为有效庇护区可能加速了田间抗性进化,应在该地区尽快制定和实施有效的抗性治理策略。
1.The selection of resistance strain YCR and detecting freqency of resistance allele
     The resistant strain(YCR) was selected with Bt cotton leaves from 73 to 88 generation,and resistance rate to Cry1Ac protoxin was increased from 2523-fold of 73 generation to 7311-fold of 88 gerenation.The YCR strain was subsequently selected to 104 generation in the laboratory and maintained the extremely high level of resistance to Bt. thuringiensis.In addition,using PASA(PCR amplification of specific alleles) method,we identified the deletion mutation gene of cadhern-like(r_1) in YCR and detected the frequency of the resistance allele,the result showed that the frequency of resistance allele (r_1)in YCR strain approached 1.
     2.Establishing of standard of detection resistant cotton bollworm
     Comparing wtih the Bt-resistance and Bt-susceptible cotton bollworm on Bt cotton leaves for 5d,the result showed that Bt-susceptible and Bt-resistant H.armigera had significantly difference in larval surviving rate and growth rate on Bt cotton leaves. Resistant individuals(r_1r_1)had considerably higher survival rate(75%),and a majority of survivors(65%of the total or 87%of the survivors)reached≥0.6mg/larvae and at least mid-2~(nd) instar.Whereas the surviving rate of reciprocal crosses of YCR and YCS strain,and YCS strain were 6%(0.1-0.5mg/larvae weight,from first instar to early of second instar), 2%(0.1-0.3mg/larvae weight,first instar)and 0%,respectively.Therefore,individuals which reached>0.6 mg/larvae and beyond mid-2~(nd) instar on Bt cotton leaves for 5 days, were considered as the homozygous resistant individual standard.
     3.The growth rate of H.armigera on Bt cotton leaves
     Comparing with the development of Bt-resistant and Bt-susceptible bollworm(YCR and YCS)on Bt cotton leaves for 5 days,both the surviving rates of YCR on Bt cotton and non-Bt cotton leaves were 80%,which was not obviously different.6.7%survivors could developed adults by continuously feeding with Bt cotton leaves,and the development period of Bt-resistant larvae on Bt cotton leaves was delayed for 6 days than on non-Bt cotton.The pupation rate,pupa weight and emergence rate were lower than on non-Bt cotton,which indicated that the Bt-resistant insect suffered a survival disadvantage on Bt cotton leaves relative to its non-Bt counterpart.The asynchrony between susceptible and resistant populations and the surviving ability on Bt cotton under long-term selection pressure would influence the random mating between a lot of susceptible moths from refuge and few resistant moths from Bt cotton field,and weaken the efficiency of refuge strategy.
     4.Resistance inheritance and linkage analysis of resistance to Cry1Ac in H.armigera
     Using diet containing Bt toxin method,Logit regression analysis of Bt-resistant strain (YCR),Bt-susceptible strain(YCS)and reciprocal crosses between them(F_1 and F'_1) of H. armigera indicated that LC_(50) of the progenies from F_1 and F'_1 were 12.031(95%CI: 7.972-18.263)μg/mL and 6.617(95%CI:4.337-9.960)μg/mL for 21%MVPII WP; 61.659(95%CI:43.048-90.552)μg/mL and 98.217(95%CI:76.726-123.645)μg/mL for 20%MVPII SC,respectively,which there were no significantly difference between the two LC_(50)s.These results showed the gene that confers resistance to Bt toxin was on autosome. According to the formula of Stone(1968),the dominance degree(D) of F_1 and F'_1 were -0.51and -0.69 for 21%MVPII WP(-0.61 and -0.44 for 20%MVPII SC),respectively.The result indicated that the resistance to Cry1Ac toxin was inhetited as an incompeletely recessive trait(-1>D>0).The genetype of progenies of two backcrosses BC_1(♀_(F1)×♂_(YCR)) and BC_2 and(♂_(F1)×♀_(YCR)) on Bt cotton leaves for 5d had 1:1 separation following the Mendel's law,at same time,they were verified by using PASA method,results showed that the inheritance of resistance was on autosome too,and the truncated cadherin-like gene(r_1) in YCR strain was tightly linked to Cry1Ac resistance.
     5.Resistance monitoring of field populations of H.armigera
     During 2005-2007,we estimated frequencies of alleles conferring resistance to Bt cotton by using the F_1 screen method in Qiuxian and Weixian(2005) counties.By feeding Bt cotton plants or leaves for 5 d,F_1 offspring from each single-pair line established in 2005-2007 were screened for resistance alleles based on larval growth,development,and surviving rate.8,24 and 29 collected-field male moths out of 86,127 and 135 lines were detected to carry resistance alleles in Qiuxian,and the frequencies of resistance alleles were estimated as 0.047(95%CI:0.015-0.079)、0.094(0.044-0.145)and 0.107(0.055-0.159), respectively;1 collected-field male moth out of 32 lines were detected to carry resistance allele in Weixian,and the frequency of resistant allele Weixian was estimated as 0.016 (0-0.0595).In 2005,7 collected-field female moths out of 131 iso-lines were detected to carry resistance alleles by using F_2 screen method in Qiuxian,and the frequency of resistance alleles was estimated as 0.01539(0.0067-0.0277),the detection power of F_2 screen(1-P_(NO)) for lines screened was 93.8%.The results from the F_1 screen and F_2 screen methods in 2005 were consistant during detecting resistance of cotton bollworm population in Qiuxian,which indicated that the resistant herozygosis with rare and recessive gene can be detected by both F_1 screen and F_2 screen.Comparing with F_2 screen,the F_1 screen was more effective,applicative and low-cost method for monitoring resistance in field population.In 2007,the results from dose/response method showed that there was 13.14-fold resistance to 20%MVPII SC which means that there was a middle level resistance in this region.The results from several methods comfirmed that the resistance in field population had been increasing.Long-term use of Bt cotton expressing single Cry1Ac toxin and the lack of proper resistance management practice might accelerated the resistant evolution in field populations of the cotton bollworm.It is necessary to establish and implement effective resistance management strategy in this region as soon as possible.
引文
1.Adamczyk J J Jr,Hardee D D,AdamsL C,et al.Correlating differences in larval survival and development of bollworm(Lepidoptera:Noctuidae) and fall armyworm(Lepidoptera:Noctuidae) to differential expression of CrylA(e) δ-Endotoxin in various plant parts among commercial cultivarsof transgenie Bacillus thringiensis cotton[J].J Econ Entomol,2001,94(1):284-290
    2.Agrawal N,Malhotra P,Bhatnagar R K.Interaction of gene-cloned and insect cell-expressed aminopeptidase N of Spodoptera litura with insecticidal crystal protein CrylC[J].Appl Environ Microbiol,2002,68:4583-4592
    3.Akhurst R J,James W,Bird L,et al.Resistance to the CrylAc-endotoxin of Bacillus thuringiensis in the cotton bollworm,Helicoverpa armigera(Lepidoptera:Noetuidae)[J].J Econ Entomol,2003,96:1290-1299
    4.Alstad D N,Andow D A.Implementing management of insect resistance to transgenie crops[J].AgBiotech News Inf,1996,8:177-181
    5.Alves A P,Spencer T A,Tabashnik B E,et al.Inheritance of resistance to the CrylAb Bacillus thuringiensis toxin in Ostrinia nubilalis(Lepidoptera:Crambidae)[J].J Eeon Entomol,2006,99(2):494-501
    6.Andow D A,Alstad D N,Pang Y H,et al.Using an F_2 screen to search for resistance alleles to Bacillus thuringiensis toxin in European cornborer(Lepidoptera:Crambidae)[J].J Econ Entomol,1998,91:579-584
    7.Andow D A,Ives A B.Monitoring and adaptive resistance management[J].Ecol Appl,2002,12:1378-1390
    8.Andow D A,Olson D M,Hellmich R L,et al.Frequency of resistance to Bacillus thuringiensis toxin CrylAb in an Iowa population of European eom borer(Lepidoptera:Crambidae)[J].J.Econ.Entomol,2000,93(3):26-30
    9.Andow D A,Stodola T J.Detecting subtle effects of diet preservatives on European corn borer[J].J Agric Entomol,2001,36:285-296
    10.Andreadis S S,Alvarez-Alfageme F,Sanchez-Ramos I,et al.Frequency of resistance to Bacillus thuringiensis toxin CrylAb in Greek and Spanish population of Sesamia nonagrioides(Lepidoptera:Noctuidae)[J].J Eeon Entomol,2007,100(1):195-201
    11.Bagchi T.Partial purificationof CrylA toxin-binding proteins from Helicoverpa armigera larval midgut[J].World Journal of Microbiology & Bioteehnology,2000,16(7):635-640
    12.Banks D J,Hua G,Adang M J.Cloning of a Heliothis virescens 110 kDa aminopeptidase N and expression in Drosophila S2 cells[J].Insect Biochem Mol Biol,2003,33:499-508
    13.Barton K A,et al.Bacillus thuringiensis endotoxin expressed in transgenie Nicotiana tabcum provides resistance to Lepidopteran insects[J].Plant Physilo,1987,85:1103-1109
    14.Bentur J S,Andow D A,Cohen M B,et al.Frequency of alleles conferring resistance to a Bacillus thuringiensis toxin in a Philippine population of Scirpophaga incertulas(Lepidoptera:Pyralidae)[J].J Econ Entomol,2000,93(5):1515-1521
    15.Berliner E.Uber die schiaffsuchtr der mehlmotternraupe(Ephestia kuehniella zell),und ihren erreger Bacullus thuringiensis n.sp.Zeitsehrift f(u|¨) rangewandtes entomolgie(Ger.),1915,2:29-56
    16.Bird L J,Akhurst R J.Effects of host plant species on fitness costs of Bt resistance in Helicoverpa armigera(Lepidoptera:Noctuidae)[J].Biol Control,2007,40:196-203
    17.Bird L J,Akhurst R J.Relative fitness of CrylA-resistant and -susceptible Helicoverpa armigera (Lepidoptera:Noctuidae) on conventional and transgenie cotton[J].J Econ Entomol,2004,97:1699-1709
    18.Bird L J,Akhurst R J.The fittness of CrylA-resistant and -susceptible Helicoverpa armigera (Lepidoptera:Noctuidae) on transgenie cotton with reduced levels of CrylAc[J].J Econ Entomol,2005,98:1311-1319
    19.Bolin P C,Hutchison W D,Andow D A.Long-term selection for resistance to Bacillus thuringiensis CryIA(c) endotoxin in a Minnesota population of European tom borer(Lepidoptera:Crambidae)[J].J Econ Entomol,1999,92:1021-1030
    20.Bourguet D,Chaufaux J,Seguin M,et al.Frequency of alleles conferring resistance to Bt maize in French and US corn belt populations of the European corn borer,Ostrinia nubilalis[J].Theor Appl Genet,2003,106:1225-1233
    21.Bourguet D,Prout M,Raymond M.Dominance of insecticide resistance presents a plastic response [J].Genetics,1996,143:407-416
    22.Bourguet D.Resistance to Bacillus thuringiensis toxins in the European corn borer:what chance for Bt maize[J].Physiol Entomol,2004,29:251-256
    23.Bradley D,Harkey M A,Kim M K,et al.The insecticidal CrylB protein of Bacillus thuringiensis sp.thuringiensis has dual specificity to coleopteran and lepidopteran larvae[J].J lnvertebr Pathol,1995,65:162-173
    24.Bravo A,Miranda R,Gomez I,et al.Poreformation activity of CrylAb toxin from Bacillus thuringiensis in an improved membrane vesicle preparation from Manduca sexta midgut cell mierovilli[J].Biochim Biophys Acta,2002,1562:63-69
    25.Burd A D,Gould F,Bradley J R,et al.Estimated frequency of non-recessive Bt resistance genes in bollworm,Helicoverpa zea(Boddie)(Lepidoptera:Noctuidae) in eastern North Carolina[J].J Econ Entomol,2003,96,137-142
    26.Cao J,Tang J D,Shelton A M,et al.Transgenic broccoli with high levels of Bacillus thuringiensis CrylC protein are resistant to susceptible,crylA resistant and crylC resistant diamondback moths [J].Mol Breed,1999,5:131-141
    27.Caprio M A,Suckling D M.Simulating the impact of cross resistance between Bt toxin in transformed clover and apples in New Zealand[J].J Econ Entomol,2000,93(2):173-179
    28.Carriere Y,Dutilleul C,Ellers-Kirk C,et al.Sources,Sinks,and zone of influence of refuges for managing insect resistance to Bt crops[J].Ecol Appl,2004,14:1615-1623
    29.Carriere Y,Ellers-Kirk C,Biggs R W,et al.Cahderin-based resistance to Bacillus thuringiensis cotton in Hybrid strains of pink bollworm:fitness costs and incomplete resistance[J].J Econ Entomol,2006,99:1925-1935
    30.Carriere Y,Ellers-Kirk C,Kumar K,et al.Long-term evaluation of compliance with refuge requirement for Bt cotton[J].Pest Manag Sci,2005,61:327-330
    31.Carriere Y,Ellers-Kirk C,Liu Y-B,et al.Fitness costs and maternal effects associated with resistance to transgenic cotton in the pink bollworm(Lepidoptera:Gelechiidae)[J].J Econ Entomol,2001a,94:1571-1576
    32.Carriere Y,Ellers-Kirk C,Patin A L,et al.Overwintering cost associated with resistance to transgenie cotton in the Pink bollworm(Lepidoptera:Gelechiidae)[J].J Econ Entomol,2001b,94:935-941.
    33.Carriere Y,Tabashnik B E.Reversing insect adaption to transgenie insecticide crops[J].Proc R Soc Lond B,2001c,268:1475-1480
    34.Chaufaux J,Muller-Cohn J M,Buisson C,et al.Inheritance of resistance to the Bacillus thuringiensis CrylC toxin in Spodop tera littoralis(Lepidoptera:Noctuidae)[J].J Econ Entomol,1997,90(4):873-8781
    35.Chaufaux J,Seguin M,Swanson J J,et al.Chronic exposure of the European corn borer (Lepidoptera:Crambidae) to CrylAb Bacillus thuringiensis toxin[J].J Econ Entomol,2001,94:1564-1570
    36.Chen X J,Lee M K,Dean D H,et al.Site-directed mutations in a highly conserved region of Bacillus thuringiensis delta-endotoxin affect inhibition of short circuit current across Bombyx mori midguts[J].Proc Natl Acad Sci USA,1993,90:9041-9045
    37.Coates B S,Sumerford D V,Hellmich R L,et al.Sequence variation in the Cadherin gene of Ostrinia nubilalis:a tool for field monitoring[J].Insect Biochem Mol Biol,2005,35(2):129-139
    38.Cdckmore N,Zeigler D R,Feitelson,S E,et al.Revision of the nomenclature for the Bacillus thuringiensis pesticidai crystal proteins[J].Microbiol Mol Biol Rev,1998,62(3):808-813
    39.De Maagd R A,Weemen-Hendriks M,Stiekema W,et al.Bacillus δ-Endotoxin CrylC Domain ⅢCan Function as a Specificity Determinant for Spodoptera exigua in Different,but Not All,Cryl-CrylC Hybrids[J].Appl Environ Microb,2000,66:1559-1563
    40.Dennis R D,Wiegandt H,Haustein D,et al.Thiniayer chromatography overlay technique in the analysis of the binding of the solubilized protoxin of Bacillus thuringiensis var.kurstaki to an insect glyeosphingolipid of known structure[J].Biomed Chromatogr,1986,1:31-37
    41.Dorsch J A,Candas M,Griko N B,et al.Cry 1 A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracetlular domain of BTR1 in Manduca sexta:involvement of a cadherin in the entomopathogenieity of Bacillus thuringiensis[J].Insect Biochem And Mol Biol,2002,32:1025-1036
    42.Downes S,Mahon R,Olsen K.Monitoring and adaptive resistance management in Australia for Bt-cotton:Current status and future challenges[J].J Invertebr Pathol,2007,95:208-213
    43.Estada U,Ferre J.Binding of insecticidal crystal proteins of Bacillus thuringiensis to the midgut brush border of the Cabbage Looper,Trichoplusia ni(Hubner)(Lepidoptera:Noctuidae) and the selection for resistance to one of the crystal proteins[J].Appl Environ Microbiol,1994,60:3840-3846
    44.Fan X,Zhao J-Z,Fan Y,et al.Inhibition of transgenie Bt plants to the growth of cotton bollworm [J].Plant Protection,2000,26(2):3-5
    45.Ferre J,Real M D,Van Rie J,et al.Resistance to the Bacillus thuringiensis bioinsectieide in a field population of Plutella xylostella is due a change in a midgut membrane receptor[J].Proe Nail Acad Sci USA,1991,88:5119-5123
    46.Ferre J,van Rie J.Biochemistry and genetics of insect resistance to Bacillus thuringiensis[J].Annu Rev Entomol,2002,47:501-533
    47.Fisehhoff D A,Bowdish K S,Pedak F J,et al.Insect tolerant of transuenie tomato plant[J].Bin Technology,1987,5:801-813
    48.Fitt G P,Mares C L,Llewellyn D J.Field evaluation and potential ecological impact of transgenic cottons(Gossypium hirsuturn) in Australia[J].Biocontrol Sci Tech,1994,4:535-548
    49.Fitt G P.Proceedings of 8th Australian Cotton Conference,ACGRA.Broadbeach,Australia,1996,69-76
    50.Forcada C,Alcacer E,Garcera M D,et al.Differences in the midgut proteolytie activity of two Heliothis virescens strains,one susceptible and one resistant to Bacillus thuringiensis Toxins[J].Aech Insect Biochem Physiol,1996,31:257-272
    51.Forrester N W,Cab_ill M,Bird L,et al.Pyrethroid and endosulfen resistenee:biology of resistant and susceptible larvae and pupae[J],Bull Entomo Res Sup No.1,1993,36-42
    52. Forrester N, Pyke B. The Bt report [J]. The Australia Cotton Grower, 1998,4:14
    53. Gahan L J, Gould F, Heckel D G. Identification of a gene associated with Bt resistance in Heliothis virescens [J]. Science, 2001,293: 857-860
    54. Gahan L J, Gould F, Lopez J D, et al. A polymerase chain reaction screen of field population of Heliothis virescens for retrotransposon insertion conferring resistance to Bacillus thuringiensis toxin [J]. J Econ Entomol, 2007,100:187-194
    55. Gazit E, Rocca P L, Sansom M S P, et al. The structure and organization within the embrane of the helices composing the pore-forming domain of Bacillus thuringiensis 5-endotoxin are consistent with an "umbrella-like" structure of the pore [J]. Proc Natl Acad Sci USA, 1998, 95:12289-12294
    56. Genissel A, Augustin S, Courtin C, et al. Initial frequency of alleles conferring resistance to Bacillus thuringiensis poplar in a field population of Chrysomela tremulae [J]. Proc R Soc Biol Sci Ser B, 2003,270: 791-797
    57. Georghiou G P. Insecticide resistance in mosquitoes. Research on new chemicals and techniques for management in: Mosquito Control Research, University of California. Annual Report, 1983.
    58. Gill M, Ellar D. Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxin Cry1Ac1 [J], Insect Mol Biol, 2002,11: 619-625
    59. Gill S S, Cowles E A, Francis V. Identification, isolation, and cloning of a Bacillus thuringiensis CryIAc toxin-binding protein from the midgut of the Lepidopteran insect Heliothis virescens [J]. J Biol Chem, 1995, 270 (45): 27222-27282
    60. Gomez I, Dean D H, Bravo A, et al. Molecular basis for Bacillus thuringiensis CrylAb toxin specificity: two structural determinants in the Manduca sexta Bt-R1 receptor interact with loops alpha-8 and 2 in domain II of CrylAb toxin [J]. Biochemistry, 2003,42:10482-10489
    61. Gomez I, Oltean D I, Gill S S, et al. Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis CryIA toxin interaction using phage display [J]. J Biol Chem, 2001, 276: 28906-28912
    62. Gomez I, Sanchez J, Miranda R, et al. Cadherin-like receptor binding facilitates proteolytic cleavage of helix a-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis CrylAb toxin [J]. Febs Lett, 2002, 513:242-246
    63. Gould F, Andenson A, Jones A, et al. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens [J]. Proc Natl Acad Sci USA, 1997, 94:3519-3523
    64. Gould F, Anderson A, Reynolds A, et al. Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins [J]. J Econ Entomol, 1995, 88 (6): 1545-1559
    65. Gould F, Blair N, Reid M, et al. Bacillus thwingiensis toxin resistance management: stable isotope assessment of alternate host use by Helicoverpa zea [J]. Proc Natl Acad Sci USA, 2002, 99: 16581-16586.
    66. Gould F, Martinez-Ramirez A, Anderson A, et al. Broad-spectrum resistance to Bacillus thwingiensis toxin in Heliothis virescens [J]. Proc Natl Acad Sci USA, 1992, 89: 7986-7990
    67. Gould F. Bt-resistance management - theory meets data [J]. Nat Biotechnol, 2003,21:1451-1451
    68. Gould F. Evolutionary biology and genetically engineered crops [J]. BioScience.1988, 38:26-33
    69. Gould F. Potential and problems with high dose strategies for pesticidal engineered crops [J]. Biocontrol Sci Technol, 1994,4:451-461
    70. Gould F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology [J]. Annu Rev Entomol, 1998, 43: 701-726
    71. Griffitts J S, Aroian R V. Many roads to resistance: how invertebrates adapt to Bt toxins [J]. BioEssays, 2005,27: 614-624
    72. Grochulski P, Masson L, Borisova S, et al. Bacillus thwingiensis CrylA(a) insecticidal toxin: crystal structure and channel formation [J]. J Mo Biol, 1995,254:447-464
    73. Gujar G T, Kalia V, Kumari A, et al. Helicoverpa armigera baseline susceptibility to Bacillus thwingiensis Cry toxins and resistance management for Bt cotton in India [J]. J Invertebr Pathol, 2007, 95:214-219
    74. Gujar G T. will Bt cotton remain effective in India? [J]. Nat Biotechnol, 2005,23: 927-928
    75. Gunning R V, Dang H T, Kemp F C, et al. New Resistance Mechanism in Helicoverpa armigera Threatens Transgenic Crops Expressing Bacillus thwingiensis CrylAc Toxin [J], Appl Environ Microbiol, 2005,71 (5): 2558-2563
    76. Hardwick D F. The corn earworm complex [J]. Mem Entomol Soc can, 1965, 40: 247
    77. Heckel D G, Gahan L J , Gould F. Identification of a linkage group with a major effect on resistance to Bacillus thwingiensis CrylAc endotoxin in the tobacco budworm(Lepidoptera: Noctuidae) [J]. J Enco Entomo, 1997,90: 75-86
    78. Heckel G D. The complex genetic basis of resistance to Bacillus thwingiensis toxin in insects [J]. Biocontrol Sci Tech, 1994, 4: 405-417
    79. Hofte H, Whiteley H R. Insecticidal crystal proteins of Bacillus thwingiensis [J]. Microbiol Rev, 1989, 53: 242-255
    80. Hua G, Jurat-Fuentes J L, Adang M J. Bt-R1a extracellular cadherin repeat 12 mediates Bacillus thwingiensis CrylAb binding and cytotoxicity [J]. J Biol Chem, 2004,279 (27): 28051 - 28056
    81. Hua G, Masson L, Jurat-Fuentes J L, et al. Binding Analyses of Bacillus thwigiensis Cry δ-endotoxins using Brush Border Membrane Vesicles of Ostrinia nubilalis[J]. Appl Environ Microbil,2001,67(2):872-879
    82.Hua G,Tsukamoto K,Rasilo M,et al.Molecular cloningof a GPI-anchored aminopeptidase N from Bombyx mori midgut:a putative receptor for Bacillus thuringiensis CryIA toxin[J].Gene,1998,214(122):177-185
    83.Huang F,Buschman L L,Higgins R A,et al.Survival of Kansas Dipel-resistant European corn borer(Lepidoptera:Crambidae) on Bt and non-Bt corn hybrids[J].J Econ Entomol,2002a,95:614-621
    84.Huang F,Buschman L L,Higgns R A,et al.Inheritance of resistance to Bacillus huringiensis toxin (Dipel ES) in the European corn borer[J].Science,1999,284:965-967
    85.Huang F,Higgins R A,Buschman L L.Baseline susceptibility and changes in susceptibility to Bacillus thuringiensis subsp,kurstaki under selection pressure in European corn borer(Lepidoptera:Pyralidae)[J].J Econ Entomol,1997,90:1137-1143
    86.Huang F,Leonard B R,Andow D.Sugarcane borer(Lepidoptera:Crambidae) resistance to transgenic Bacillus thuringiensis maize[J].J Econ Entomol,2007a,100(1):164-171
    87.Huang F,Leonard B R,Cook D R,et al.Frequency of alleles conferring resistance to Bacillus thuringiensis maize in Louisiana populations of the southwestern corn borer[J].Entomol Exp Appl,2007b,122:53-58
    88.Huang F.Detection and monitoring of insect resistance to transgenic Bt crops.Insect[J].Science,2006,13:73-84
    89.Ingle S S,Trivedi N,Prasad R,et al.Aminopeptidase-N from the Helicoverpa armigera(H(u|¨)nber)brush border membrane vesicles as a receptor of Bacillus thuringiensis CrylAc-endotoxin[J].Current Microbiology,2001,43(4):255-259
    90.James C.ISAAA Briefs No.37-2007:Global Status of Commercialized Biotech/GM Crops:2007.
    91.Janmaat A F,Myers J.Rapid evolution and the cost of resistane to Bacillus thuringiensis in greenhouse populations of cabbage loopers.Trichoplusia ni[J].Proc R Soc Lond Ser B:Biol.Sci,2003,270:2263-3370
    92.Jurat-Fuentes J L,Adang M J.Characterization of a CrylAcreceptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae[J].Eur J Biochem,2004,271:3127-3135
    93.Jurat-Fuentes J L,Gould F,Adang M J.Altered glyeosylation of 63-and 68-kilodalton microvillar proteins in Heliothis virescens correlates with reduced Cryl toxin binding,decreased pore formation,and increased resistance to Bacillus thuringiensis Cryl toxins[J].Appl Environ Microbiol,2002,68:5711-5717
    94.Kain W C,Zhao J-Z,Janmaat A F,et al.Inheritance of resistance to Bacillus thuringiensis CrylAc toxin in a greenhouse-derived strain of cabbage looper(Lepidoptera:Noctuidae)[J].J Econ Entomol,2004,97(6):2073-2078
    95.Kjellsson G,Simonsson V,Ammann K.Methods for risk assessment of transgenic plants:Ⅱ.Polination,transfer and population impacts.Basel:Birkhauser Verlag,1997
    96.Knight P J K,Carroll J,Ellar D J.Analysis of giycan structures on the 120 kDa aminopeptidase N of Manduca sexta and their interactions with Bacillus thuringiensis CrylAc toxin[J].Insect Biochem Molec,2004,34:101-112
    97.Kota M,Darriell H L,Varma S,et al.Overexpression of the Bacillus thuringiensis(Bt) Cry2Aa2Protein in Chloroplasts Confers Resistance to Plants Against Susceptible and Bt-Resistant Insects [J].Proe Natl Acad Sci USA,1999,96(5):1840-1845
    98.Kranthi K R,and Kranthi N R.Modelling adaptability of cotton bollworm,Helicoverpa armigera (H(u|¨)bner) to Bt-cotton in India[J].Curr Sci(Bangalore),2004,8:1096-1107.
    99.Kranthi K R,Dhawad C S,Naidu S R,et al.Inheritance of resistance in Indian Helicovera armigera(H(u|¨)bner) to CrylAc toxin of Bacillus thuringiensis[J].Crop Prot.2006,25:119-124
    100.Kranthi K,Jadhav D,Kranthi S,et al.Insecticide resistance in five major insect pests of cotton in India[J].Crop Prot,2002,21:449-460
    101.Kumaraswarni N S,Maruyama T,Kurabe S,et al.Lipids of brush border membrane vesicles (BBMV) from Plutella xylostella resistant and susceptible to CrylAc delta-endotoxin of Bacillus thuringiensis[J].Comp Biochem Physiol B Biochem Mol Biol,2001,129:173-183
    102.Lee M K,You T H,Young B A,et al.Aminopeptidase N purified from gypsy moth brush border membrane vesicles is a specific receptor for Bacillus thuringiensis CryIAc toxin[J].Appl Environ Microbiol,1996,62(8):2845-2849
    103.Lee M K,Young B A,Dean D H.Domain Ⅲ exchanges of Bacillus thuringierrsis CryIA toxins affect binding to different gypsy moth midgut receptors[J].Biochem Biophys Res Commun,1995,216(1):306-312
    104.Li G,Wu K,Gould F,et al.Frequency of Bt resistance genes in Helicoverpa armigera populations from the yellow river cotton-farming region of China[J].Entomol Exp Appl,2004,112:135-143
    105.Li G,Wu K,Gould F,et al.Increasing tolerance to CrylAc cotton from cotton bollworm was confirmed in Bt cotton farming area of China[J].J Ecol Entomol(accepted),2007
    106.Li H,Oppert B,Higgins R A,et al.Susceptibility of Dipel-resistant and-susceptible Ostrinia nubilalis(Lepidoptera:Crarnbidae) to individual Bacillus thuringiensis protoxins[J].J Econ Entomol,2005,98:1333-1340
    107.Li J D,Carroll J,Ellar D J.Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 A resolution[J].Nature,1991,353(6347):815-821
    108.Li J,Koni P A,Ellar D J.Structure of the mosquitocidal δ-endotoxin CytB from Bacillus thuringiensis sp kyushuensis and implications and implications for membrane pore formation[J].J Mol Biol,1996,257(1):129-152
    109.Liao C,Heckel D,Akhhurst R.Toxicity of Bacillus thuringiensis insecticidal proteins for Helicoverpa armigera and Helicoverpa punctigera(Lepidoptera:Noctuidae),major pests of cotton [J].Invert Pathol,2002,80:55-63
    110.Liu Y B,Tabashnik B E,Pusztai-Carey M,et al.Field-evoled resistance to Bacillus thuringiensis toxin CrylC in diamondback moth[J].J Econ.Entomol,1996,89:798-804
    111.Liu Y-B,Tabashnik B E,Dennehy T J,et al.Effects of Bt cotton and CrylAc toxin on survival and development of pink bollworm(Lepidoptera:Gelechiidae)[J].J Econ Entomol,2001a,94:1237-1242
    112.Liu Y-B,Tabashnik B E,Dennehy T J,et al.Development time and resistance to Bt crops[J].Nature,1999,400:519
    113.Liu Y-B,Tabashnik B E,Meyer S K,et al,Genetics of pink bollworm resistance to Bacillus thuringiensis toxin CrylAc)[J].J Entomol,200 lb,94:248-252
    114.Liu Y-B,Tabashnik B E.Inheritance of resistance to the Bacillus thuringiensis toxin CrvIC in the diamondback moth[J].Appl Environ Microbiol,1997,63:2218-2223
    115.Lorence A,Darszon A,Bravo A.Aminopeptidase dependent pore formation of Bacillus thuringiensis CrylAc toxin on Trichoplusia ni membrane[J].FEBS Lett,1997,414:303-307
    116.Lu H,Rajamohan F,Dean D H.Identification of amino acid residues of Bacillus thuringiensis delta-endotoxin CryIAa associated with membrane binding and toxicity to Bombyx mori[J].J Bacteriol,1994,176(17):5554-5559
    117.Lu M-G,Rui C-H,Zhou J-Z,et al.Selection and inheritability of resistance to Bacillus thusingiensis subsp kurstaki and transgenic cotton in Helicoverpa armigera(Lepidoptera:Noctuidae)[J].Pest Manag Sci,2004,60:887-893
    118.Luttrell R G,Wan L,Knighten K.Variation in susceptibility of noctuid(Lepidoptera) larvae attacking cotton and soybean to purified endotoxin proteins and commercial formulations of Bacillus thuringiensis[J].J Econ Entomol,1999,92:21-32
    119.Manojkumar A S,Aronson A I.Analysis of Mutations in the Pore-Forming Region Essential for Insecticidal Activity of a Bacillus thurzngiensis δ-Endotoxin[J].J Bacteriol,1999,181:6103-6107
    120.Maroon P C,Siegfried R G,Spencer B D,et al.Development of diagnostic concentrations for monitoring Bacillus thuringiensis resistance in European corn borer(Lepidoptera:Crambidae)[J].J Econ Entomol,2000,93:925-930
    121.Marroquin L D,Elyassnia D,Griffitts J S,et al.Bacillus thuringiensis(Bt) toxin susceptibility and isolationof resistance mutants in the nematode Caenorhabditis elegans[J].Genetics,2000,155(4): 1693-1699
    122.McCaffery A R,Walker A J.Insecticide resistance in the bollworm,Helicoverpa armigera from Indonesia[J].Pestic Sci,1991,27:65-76
    123.McGaughey W H,Whalon M E.Managing insect resistance to Bacillus thuringiensis toxins[J].Science,1992,258:1451-1455
    124.McGaughey W H.Insect resistance to the biological iusectieide Bacillus thuringiensis[J].Science,1985,229:193-194
    125.McNall R J,Adang M J.Identification of novel Bacillus thuringiensis CrylAc binding proteins in Manduca sexta midgut through proteomie analysis[J].Insect Biochem Mol Biol,2003,33(10):999-1010
    126.Meng F,Shen J,Zhou W,et al.Long-term selection for resistance to transgenie cotton expressing Bacillus thuringiensis toxin in Helicoverpa armigera(Hiibner)(Lepidoptera:Noctuidae)[J].Pest Management Sci,2004,60(2):167-172
    127.Metz T D,Roush R T,Tang J D,et al.Transgenie broccoli expressing a Bacillus thuringiensis insecticidal crystal protein:implications for pest resistance management strategies[J].Mol.Breeding 1995,1:309-317
    128.Moar W J,Adang M J.Development of Bacillus thuringiensis CrylC resistance by Spodoptcra erigua(H(u|¨)bner)(Lepidoptera;Noctuidae)[J].Appl Environ Microbiol,1995,61:2086-2092
    129.Mohan M,Gujar G T.Characterization and comparison of midgut proteases of Bacillus thuringiensis susceptible and resistant diamondback moth(Plutellidae:Lepidoptera)[J].J Inverteb Pathol,2003,82(1):1-11
    130.Morin S,Biggs R W,Sisterson M S,et al.Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm[J].Proe Nail Aead Sei USA,2003,100:5004-5009
    131.Morin S,Henderson S,Fabrick J A,et al.DNA-based detection of Bt resistance alleles in pink bollworm[J].Insect Biochem Mol Biol,2004,34:1225-1233
    132.M(u|¨)ller-Cohn C J,Buisson C,Gilois N,et al.Spodoptera littoralis(Lepidoptera:Noetuidae)resistance to CryIC and cross resistance to other Bacillus thuringiensis Crystal toxins[J].J Econ Entomol,1996,89:791-797
    133.Nagamatsu Y,Koike T,Sasaki K,et al.The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryIAa toxin[J].FEBS Lett,1999,460(2):385-390
    134.Nagamatsu Y,Toda S,Koike T,et al.Cloning,sequencing,and expression of the Bombyx mori receptor for Bacillus thuringiensis insecticidal CryIA(a) toxin[J].Biosei Biotechnol Bioehem J,1998,62:727-734
    135. National Research Council, Environmental Effects of Transgenic Plants: The Scope and Adequacy of Regulation. National Academy Washington, D. C. 2002, 320
    136. Obukowicz M G, Perlak F J, Kusano-Kretzmer K, et al. Tn5-mediated intergration of the delta-endotoxin gene from Bacillus thuringiensis into the chromosome of root-colonizing pseudomonads [J]. J Bacteriol, 1986,168: 982-989
    137. Oppert B, Hammel R, Thorne J E, et al. Fitness cost of resistance to Bacillus thuringiensis in the Indianmeal moth, Plodia interpunctella [J]. Entomol Exp Appl, 2000,96: 281-287
    138. Parker M W, Pattus F. Rendering a membrane protein soluble in water: a common packing motif in bacterial protein toxins [J]. Trends Biochem Sci, 1993,18: 391-395
    139. Patin A L, Dennehy T J, Sims M A, et al. Status of pink bollworm susceptibility to Bt in Arizona. Proc. Beltwide Cotton Conferences, National Cotton Council, Mempis, TN. 1999,2: 991-996
    140. Perlak F J, Fuchs R L. Modification of the coding sequence enhances plant expression of insect control protein genes [J]. Proc Natl Acad Sci USA, 1991, 88: 3324-3328
    141. Rahardja U, Whalon M E, in Inheritance to resistance to Bacillus thuringiensis subsp. tenebrionis CryⅢA delta-endotoxin in Colorado potato beetle (Coleoptera: Chrysomelidae) [J]. J Econ Entomol, 1995, 88 (1): 21-26
    142. Rajagopal R, Agrawal N, Selvapandiyan A, et al. Recombinantly expressed isozymic aminopeptidases from Helicoverpa armigera midgut display differential interaction with closely related Bacillus thuringiensis insecticidal proteins [J]. J Biochemical Journal, 2003, 370 (3): 971-978
    143. Ramachandran S, Buntin G D, All J N, et al. Survival, development, and oviposition of resistant diamondback moth (Lepidoptera: Plutellidae) on transgenic canola producing a Bacillus thuringiensis toxin [J]. J Econ Entomol, 1998,91: 1239-1244
    144. Rang C, Vachon V, de Maagd R A, et al. Interaction between Functional Domains of Bacillus thuringiensis Insecticidal Crystal Proteins [J]. Appl Environ Microbiol, 1999,65 (7): 2918-2925
    145. Reed W, P.C.S. Heliothis: A global problem. Paper presented at: Proceedings of the International workshop on Heliothis Management. (ICRISAT, Ceter, Palancheru, A P India). 1981
    146. Rochester I J. Effect of Genotype, Edaphic, Environmental Conditions, and Agronomic Practices on Cry1Ac Protein Expression in Transgenic Cotton [J]. J Cotton Sci. 2006,10: 252-262
    147. Roush R T, Miller G L. Considerations for design of insecticide resistance monitoring program [J]. J Econ Entomol, 1986, 79: 293-298
    148. Roush R T. Bt transgenic crops: just another pretty insecticide or a chance for a new start in resistance management? [J]. Pestic Sci, 1997, 51 (3): 328-334
    149. Roush R T. Two toxin strategies for management of insecticidal transgenic crops.xan pyramiding succeed where pesticide mixtures have not?[J],Philos Trans R Soc London B,1998,353:1777-1786
    150.Ru L J,Zhao J-Z,Rui C.A simulation model for adaptation of cotton bollworm to transgenic Bt cotton in northern China[J].Acta Entomol Sinica.2002,45:153-159
    151.SAS Institute.SAS/STST User's guide.SAS Institute Inc.,Cary,NC USA.1990.
    152.Sayyed A H,Gatsi R,Ibiza-Palacios M S,et al.Common,but Complex,Mode of Resistance of Plutella xylostella to Bacillus thuringiensis Toxins CrylAb and CrylAc[J].Appl Environ Microbiol,2005,71(11):6863-6869
    153.Schnepf H E,Whiteley H.R.Cloning and expression of the Bucillus thuringiensis crystal protein gene in Escherichia coli[J].Proc Natl Acad Sci,1981,78:2893-2897
    154.Shao Z,Cui Y,Liu X,et al.Processing of delta-endotoxin of Bacillus thuringiensis subsp,kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors[J].J Inverteb Pathol,1998,72(1):73-81
    155.Sheltonl A M,Tang J D,Roush R T,et al.Field tests on managing resistance to Bt-engineered plants[J].Nat Biotech.2000,18:339-342
    156.Shen J,Lu P,He D,et al.Monitoring of Bt resistance in CBW China.Proceedings of the 15~(th)International Plant Protection Congress.Foreign Languages Press 2004.285
    157.Simmons A L,Dennehy T J,Tabashnik B E,et al.Evaluation of Bt cotton deployment strategies and efficacy against pink bollworm in Arizona.Proc Beltwide Cotton Conferences,National cotton Council,USA.1998,1025-1030
    158.Sims M,Dennehy T J,Patin A,et al.Arizonas multiagency resistance management program for Bt cotton:Sustaining the susceptibility of pink bollworm.Proc.Beltwide Cotton Conferences,National cotton Council,USA.2001,1175-1179
    159.Sims S R,Stone T B.Genetic basis of tobacco budworm resistance to an engineered Pseudomonas Fluoreccens expressing the delta-endotoxin of Baciilus thuringiensis kurslaki[J].J Invertebr Pathol,1991,57:206-210
    160.Smith G P,Ellar D J,Keeler S J,et al.Nucleotide sequence and analysis of an insertion sequence from Bacillus thuringiensis related to ISI50[J].Plasmid,1994,32:10-18
    161.Steichen J C,Ffrench-Constant R H.Amplification of specific cyclodiene insecticide resistance alleles by the polymerase chain reaction[J].Pesticide Biochem Physiol,1994,48:1-7
    162.Stodola T J,Andow D A,Hyden A R,et al.Frequency of Resistance to Bacillus thuringiensis toxin CrylAb in southern US corn belt population of European corn borer(Lepidoptera:Crambidae)[J].J Econ Entoml,2006,99(2):502-507
    163.Stodola T J,Andow D A.F_2 screen variations and associated statistics[J].J Econ Entoml,2004,97: 1756-1764
    164.Stone B F.A formula for determining degree of dominance in cases of monofactoriai inheritance of resistance to chemicals.WHO Bull.,1968,38:325-326
    165.Stone B.Agricultural technology in China.China Quarterly,1988,110:767-822
    166.Storer N P,John W V D,George G K.Life history traits of Helicoverpa zea(Lepidoptera:Noctuidae) on non-Bt and Bt transgenic corn hybrids in eastern north Carolina[J].J Econ Entoml,2001,94(5):1268-1279
    167.Tabashnik B E,Biggs R W,Fabrick J A,et al.High-level resistance to Bacillus thuringiensis toxin CrylAc and cadherin genotype in pink bollworm[J].J Econ Entomol,2006a,99:2125-2131
    168.Tabashnik B E,Biggs R W,Higginson D M,et al.Association between resistance to Bt cotton and cadherin genotype in pink bollworm[J].J Econ Entomol,2005b,98(3):635-644
    169.Tabashnik B E,Carriere Y,Dennehy T,et al.Insect resistance to transgenic Bt crops:lessons from the laboratory and field[J].J Econ Entomol,2003,96:1031-1038
    170.Tabashnik B E,Dennehy T J,Carriere Y.Delayed resistance to transgenic cotton in pink bollworm [J].Proc Natl Acad Sci USA,2005a,102(43):15389-15393
    171.Tabashnik B E,Fabrick J A,Henderson S,et al.DNA screening reveals pink bollworm resistance to Bt cotton remains rare after a decade of exposure[J].J Econ Entomol,2006b,99:1525-1530
    172.Tabashnik B E,Finson N,Johnson M W,et al.Resistamce to toxins from Bacillus thuringiensis subsp.Kurstaki causes minimal cross-resistance to Bacillus thuringiensis subsp.Aizawai in the diamondback moth(Lepidoptera:Plutellidar)[J].Appl Environ Microbiol,1993,59:1332-1335
    173.Tabashnik B E,Gushing N L,Finson N,et al.Field development of resistance to Bacillus thuringiensis in diamondback moth(Lepidoptera:Plutellidae)[J].J Econ Entomol,1990,83:1671-1676
    174.Tabashnik B E,Liu Y-B,Dennehy T J,et al.Inheritance of resistance to Bt toxin CrylAc in a field-derived strain of pink bollworm(Lepidoptera Gelechiidae)[J].J Econ Entomol,2002,95(5):1018-1026
    175.Tabashnik B E,Liu Y-B,Finson N,et al.One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins[J].Proc Natl Acad Sci USA,1997,94(5):1640-1644
    176.Tabashnik B E,Liu Y-B,Malvar T.et al.Insect resistance to Bacillus thuringiensis:uniform or diverse[J].Philos Trans R Soc London B,1998,353:1751-1756
    177.Tabashnik B E,Liu Y-B,Ruud A,et al.Cross-resistance of pink bollworm(Pectinophora gossypiella) to Bacillus thurinyensis toxins[J].Appl Environ.Microbiol.2000a,66(10):4582-4584
    178.Tabashnik B E,Liu Y-B,Unnithan D C,et al.Shared genetic basis of resistance to Bt toxin CrylAc in independent strains of pink bollworm[J].J Econ Entomol,2004,97:721-725
    179.Tabashnik B E,Malvar T,Liu Y-B,et al.Cross-resistance of diamondback moth indicates altered interactions with domain Ⅱ of Bacillus thuringiensis toxins[J].Appl Environ Microbiol,1996,62:2839-2844
    180.Tabashnik B E,Patin A L,Dermehy T J,et al.Frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm[J].Proc Natl Aead Sei USA,2000b,97:12980-12984
    181.Tabashnik B E.Evolution of resistance to Bacillus thuringiensis[J].Ann Rev Entomol,1994b,39:47-79
    182.Tabashnik B E.Finson N,Johnson M W,et al.Cross-resistance to Bacillus thuringiensis toxin CryIF in the diamondback moth(Lepidoptera:Plutellidar)[J].Appl Environ Microbiol,1994a,60(12):4627-4629
    183.Tabashnik B E.Seeking the root of insect resistance to transgenic plants[J].Proe Natl Aead Sci USA,1997,94:3488-3490
    184.Tang J D,Collins H L,Metz T D.Greenhouse tests on resistance management of Bt transgenie plants using refuge strategies[J].J Econ Entomol,2001,94(1):240-247
    185.Tang J D,Collins H L,Roush R T,et al.Survival,weight gain,and ovipositon of resistant and susceptible Plutella xylostella(L.) on broccoli expressing CrylAc toxin of Bacillus thusingiensis[J].J Eeon Entomol,1999,92:47-55
    186.Tang J D,Shelton A M Van Rie J,et al.Toxicity of Bacillus thuringiensis spore and Crystal protein to resistance diamondback moth(Plutella xylostella)[J].Appl Env Microbiol,1996,62(2):564-569
    187.US EPA 2001.Biopesticides registration action document:Bacillus thuringiensis plant-incorporated protectants,http://www.epa.gov/pestisides/biopesticides/reds/brad_bt_.pip2.htm.
    188.US EPA and USDA 1999.EPA and USDA position paper on insect resistance management in Bt crops,http://www.epa.gov/oppbppdl/biopesticides/otherdocs/bt_.position_paper_618.html.
    189.Vadlamudi R K,Weber E,Ji I,et al.Cloning and Expression of a Receptor for an Insecticidal Toxin of Bacillus thuringiensis[J].J Bio Chem J,1995,270(10):5490-5494
    190.Valaltis A P,Jenkins J L,Lee M K,et al.Isolation and partial characterization of gypsy moth BTR-270,an anionic brush border membrane glycoeonjugate that binds Bacillus thuringiensis CrylA toxins with high affinity[J].Arch Insect Biochem Physiol,2001,46(4):186-200
    191.Valaltis A P,Lee M K,Rajamolhan F,et al.Brush border membrane aminopeptidase-N in the midgut of the gypsy moth serves as the receptor for the CrylAe delta-endotoxin of Bacillus thuringiensis[J].Insect Biochem Mol Biol,1995,25:1143-1151
    192.Venette R C,Hutchison W D,Andow D A.An in field screen for early detection and monitoring of insect resistance to Bacillus thuringiensis in U'ansgenie crops[J].J Econ Entomol,2000,93(4):1055-1064
    193.Wang G R,Liang G M,Wu K M,et al.Cloning and sequencing of a gene encoding aminopeptidase N in the mid-gut of Helicoverpa armigera(H(u|¨)bner)[J].Agricultural Science in China,2003,2(7):760-767
    194.Wang P,Rodrigo A,Zhao J-Z,et al.Mechanism of resistance to Bacillus thuringiensis toxin CrylAc in cabbage looper,Trichoplusia ni[J].Appl Environ Microbiol,2007,73:1199-1207
    195.Williams S,Friedrich L,Dincher S,et al.Chemical regulation of Bacillus thuringiensis δ-endotoxin expression in transgenic plants[J].Bio Technology,1992,10:540-543
    196.Wilson A G.Resistance of Heliothis armigera to Insecticides in the Ord irrigation area,North Western Australia[J].J Econ Entomol,1974,66:523-524
    197.Wright D J,Iqbal M,Granero F,et al.A change in a single midgut receptor in the diamondback moth(Plutella xylostella) is only in part responsible for field resistance to Bacillus thuringiensis subsp,kursaki and B.thuringiensis subsp,alaawai[J].Appl.Environ Microbiol,1997,63:1814-1819
    198.Wu K,Feng H,Guo Y,Evaluation of maize as a refuge for management of resistance to Bt cotton by Helicoverpa armigera(H(u|¨)bner) in the Yellow River cotton farming region of China[J].Crop Prot,2004,23:523-530
    199.Wu K,Guo Y,Gao S.Evalution of the natural refuge function for Helicoverpa armigera(H(u|¨)bner)within Bt transgenic cotton growing areas in north China[J].J Econ Entomol,2002b,95:832-837
    200.Wu K,Guo Y,Head G.Resistance monitoring of Helicoverpa armigera(Lepidoptera:Noctuide) to Bt protein during 2001-2004 in China[J].J Econ Entomol,2006,99(3):893-898
    201.Wu K,Guo Y,Lv N,et al.Efficacy of transgenic cotton containing a CrylAc gene from Bacillus thuringiensis against Helicoverpa armigera(Lepidoptera:Noctuidae) in northern China[J].J Econ Entomol,2003,96:1322-1328
    202.Wu K,Guo Y,Lv N,et al.Resistance monitoring of Helicoverpa armigera(Lepidoptera:Noctuide)to Bacillus thuringiensis insecticidal protein in China[J].J Econ Entomol,2002a,95:826-831
    203.Wu K,Guo Y.The evolution of cotton pest management practices in China[J].Annu Rev Entomol.2005,50:31-52
    204.Wu K.Monitoring and management strategy for Helicoverpa armigera resistance to Bt cotton in China[J].J Invertebr Pathol,2007,95(3):220-223
    205.Wu S J,Dean D H.Functional Significance of Loops in The Receptor Binding Domain of Bacillus thuringiensis CryⅢA delta-Endotoxin[J].J Mol Biol,1996,255:628-640
    206.Xu X,Yu L,Wu Y.Disruption of a cadherin gene associated with resistance to CrylAc 8-endotoxin of Bacillus thuringiensis in Helicoverpa armigera[J].Appl Env Microbiol,2005,71(2):948-954
    207.Yang Y,Chen H,Wu Y,et al.Mutated cadherin alleles of Helicoverpa armigera conferring resistance to Bacillus thuringiensis toxin CrylAc detected in the field[J].Appl Environ Microbiol (in press),2007.
    208.Yaoi K,Nakanishi K,Kadotani T,et al.cDNA cloning and expression of Bacillus thuringiensis CrylAa toxin binding 120 kDa aminopeptidase N from Bombyx mori[J].J Biochimica et Bio physica Acta,1999,1444(1):131-137
    209.Zhang J H,Wang C Z,Qin J D.The interactions between soybean trypsin inhibitor and δ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera larvae[J].J Invertb Pathol,2000,75:259-266
    210.Zhao J-Z,Cao J,Li Y-X,et al.Transgenic plantsexpressing two Bacillus thuringiensis toxins delay insect resistance evolution[J].Nature Biotechnology,2003,21(12):1493-1497
    211.Zhao J-Z,Collins H L,Tang J D,et al.Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of CrylC[J].Appl Environ Microbiol,2000,66:3784-3789
    212.Zhao J-Z,Li Y-X,Collins H L,et al.Different cross-resistance patterns in the diamondback moth resistant to Bacillus thuringiensis toxin CrylC[J].J Econ Entomol,2001,94:1547-1552
    213.Zhao J-Z,Li Y-X,Collins H L,et al.Examination of the F_2 screen for rare resistance alleles to Bacillus thuringiensis toxins in the diamondback moth(Lepidoperta:Plutellidae)[J].J Econ Entomol,2002,95:14-21
    214.Zhu Y C,Kramer K J,Oppert B,et al.cDNAs of aminopeptidase-like protein genes from Plodia interpunctella strains with different susceptibilities to Bacillus thuringiensis toxins[J].Insect Biochem Molec Biol,2000,30:215-224
    215.Zhu Y H,Oppert B,Kramer K J,et al.cDNAs for a chymotrypsinogen-like protein from two strains of Plodia interpunctella[J].Insect Bio Biol,1997,27:1027-1037
    216.陈海燕,杨亦桦,武淑文,等.棉铃虫田间种群Bt毒素CrylAc抗性基因频率的估算[J],昆虫学报,2007,50(1):25-30
    217.范贤林,芮昌辉,孟香清,等.一种监测棉铃虫对Bt杀虫晶体蛋白抗性的技术[J].植物保护学报,2002,9:254-258
    218.高聪芬,沈晋良,钱燕,等.转基因棉对高抗Bt棉棉铃虫生长发育及活动频率的影响[J].西北农林科技大学学报(自然科学版),2004,32(12):47-50
    219.高聪芬.转基因棉对棉铃虫的抗虫性、高表达及生长发育的影响[D].南京:南京农业大学,2004
    220.郭予元,主编.棉铃虫的研究[M].北京:中国农业出版社,1998
    221.郭予元.棉铃虫大发生原因和1998年发生趋势预测[J].植物保护,1998,24(2):25-26
    222.何丹军,沈晋良,周威君,等.应用单雌系F_2代法检测棉铃虫对转Bt基因棉抗性等位基因的频率[J].棉花学报,2001,13(2):105-108
    223.贾士荣,郭三堆,安道吕,主编.转基因棉花[M].北京:科学出版社,2001
    224.梁革梅,谭维嘉,郭予元.棉铃虫对Bt的抗性筛选及交互抗性研究[J].中国农业科学,2000b,33(4):46-53
    225.梁革梅,谭维嘉,郭予元.棉铃虫对转Bt基因棉的抗性筛选及遗传方式的研究[J].昆虫学报,2000a,43:57-61
    226.卢美光,芮昌辉.抗性棉铃虫在转基因棉花上某些生命参数的研究[J].棉花学报,2002,14(2):117-120
    227.孟凤霞,沈晋良,周威君,等.转Bt基因棉对棉铃虫抗虫性测定方法的研究[J].南京农业大学学报,2000,23(1):109-113
    228.孟香清,芮昌辉,赵建周,等.抗三氟氯氰菊酯棉铃虫种群相对适合度研究[J].植物保护,1998,24(6):12-14
    229.沈晋良,吴益东,主编.棉铃虫抗药性及其机理[M].中国农业出版社,1995:91-95
    230.沈晋良,周威君,吴益东,等.棉铃虫对Bt生物农药早期抗性及与转Bt基因棉抗虫性的关系[J].昆虫学报,1998,41(1):8-14
    231.石渡繁胤,剧烈なる一种の软化病(卒倒病)に就て[J].大日本蚕丝会报,1901,104:1-5
    232.苏建亚,沈晋良.棉铃虫幼虫中肠非糖基磷酯酰肌醇锚着氨肽酶N基因的克隆和测序[J].昆虫学报,2005,48(3):444-449
    233.苏建亚,周晓梅,沈晋良.抗Bt棉棉铃虫幼虫Bt受体氨肽IN(APN2)基因克隆[J].中国生物工程杂志,2004,24(10):59-62
    234.苏建亚.棉铃虫对转基因棉抗性的分子机理及抗性基因分子检测技术[D].南京:南京农业大学,2004
    235.谭声江,陈晓峰,李典谟.昆虫对Bt毒素的抗性机理研究进展[J].昆虫知识,2001,38(1):12-17
    236.谭声江,陈晓峰,李典谟.棉铃虫对转Bt基因棉的抗性及其治理策略研究进展[J].昆虫学报,2002,45(1):138-144
    237.汤慕瑾,余健秀,李建华,等.利用突变技术研究Bt杀虫晶体蛋白的进展[J].生物工程进展,2001,21(4):54-56
    238.唐振华,韩罗珍,张朝远.抗马拉硫磷淡色库蚊不同基因型的自然内禀增长率及其对抗性演化的影响[J].昆虫学报,1990,33(4):385-392
    239.唐振华,吴士雄.昆虫抗药性的遗传与进化会性[M].上海:科学技术出版社,2000.
    240.王桂荣,吴孔明,梁革梅,等.棉铃虫中肠钙粘蛋白基因的克隆、表达及CrylA结合区定位[J].中国科学C辑生命科学,2004,34(6):537-546
    241.王利华,吴益东.与拟除虫菊酯抗性相关的烟粉虱钠通道基因突变及其检测[J].昆虫学报,2004.47(4):449-453
    242.吴继星,陈在佴,谢天健,等.一株对棉铃虫高效的苏云金杆菌[J].微生物学通报,1995,22(4):195-197
    243.吴益东,沈晋良,谭福杰,等.棉铃虫对氰戊菊酯抗性品系和敏感品系的相对适合度[J].昆虫学报,1996,39(3):233-237
    244.吴益东,沈晋良,尤子平.棉铃虫对氰戊菊酯抗性和敏感品系的选育[J].昆虫学报,1994,37(2):129-136
    245.夏敬源,邹奎,马志强。等.国产转基因抗虫棉技术集成创新与推广应用[J].中国棉花,2006,33(10):2-5
    246.谢道昕,倪万潮,等.苏云金芽孢杆菌(Bacillus thuringiensis)杀虫晶体蛋白导入棉花获得转基因植株[J].中国科学B辑,1991,4:367-373
    247.谢德意.转基因抗虫棉研究进展、问题及对策[J].中国棉花,2001,28(2):6-8
    248.喻子牛,孙明,刘子铎,等.苏云金芽孢杆菌的分类及生物活性基因[J].中国生物防治,1996,12(2):85-89
    249.喻子牛,主编.苏云金杆菌[M].北京:科学出版社,1990
    250.张长青,吕群燕,王志兴,等.抗2,4-D转基因棉花漂流频率的研究[J].中国农业科学.1997,30(1):92-93
    251.张锐,王远,孟志刚,等.国产转基因抗虫棉研究回顾与展望[J].中国农业科技导报,2007,9(4):32-42
    252.张孝羲.棉铃虫种群猖獗的剖析[J].昆虫知识,1996,33(2):121-124
    253.周晓梅,沈晋良.棉铃虫对转CrylAc基因棉的抗性遗传及AFLP标记研究[J].棉花学报,2005,17(5):269-274
    254.周燚,王中康,喻子牛,主编.微生物农药研发与应用[M].2006,北京:化学工业出版社,p:27
    255.周兆斓,朱祯.植物抗虫基因工程研究进展[J].生物工程进展,1994,14:18-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700