应用单雌系F_2代法监测田间棉铃虫种群对转Bt基因棉的抗性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表达CrylAc毒蛋白的转Bt基因棉花在中国北方地区种植多年,虽然Bt棉因其高效和对环境低风险迅速受到种植者的青睐,但是如此商业化大面积推广使用Bt棉将会增加靶标害虫对Bt棉产生抗性的风险,室内研究已经表明棉铃虫能对CrylAc毒素和Bt棉产生高抗性。
     在中国河北邱县地区,1998年开始推广种植Bt棉,1999年采用单雌系F_2代法检测到邱县地区田间棉铃虫野生种群对Bt棉初始抗性等位基因频率达到了0.0058。考虑到棉铃虫在如此高的抗性初始频率值和持续的田间选择压情况下,有可能对Bt棉产生抗性风险。2003-2007年在前人研究的基础上,我们采用单雌系F_2代法、剂量反应法、F_1代法和DNA分子生物学方法相结合的综合抗性监(检)测体系,研究长期大面积种植转Bt基因棉地区棉铃虫田间种群对Bt棉的抗性发展趋势,为设计制定合理有效的抗性治理策略提供及时、准确的科学依据,以延长转Bt基因棉在大田的使用。
     2003-2005年采用Bt棉株作为筛选媒介,对河北邱县(2003-2005年)和威县(2004年)地区田间棉铃虫种群进行单雌系F_2代法抗性监测。结果表明,这两个地区3年监测的340对单雌系中有20对被确定为携带有对Bt棉抗性的等位基因,棉铃虫种群的抗性等位基因频率(E(q))范围为0.0119-0.0297。
     其中邱县地区连续3年监测到的棉铃虫对Bt棉的平均抗性等位基因频率值(E(q))为0.0146(95%CI=0.0084-0.0225),明显高于1999年的监测结果(p=0.042);2003-2005年分别监测了105对、42对和131对单雌系,平均每个单雌系在Bt棉株上分别处理筛选了372.4±16.0头、328.1±9.5头和314.0±9.0头F_2代初孵幼虫,最终分别有4对、4对和7对单雌系被确定为田间亲本携带有抗性基因的阳性反应单雌系,每年的抗性等位基因频率值分别为0.0119(95%CI=0.0039-0.0243)、0.0297(95%CI=0.0099-0.0606)和0.0154(95%CI=0.0067-0.0277),监测处理单雌系的总抗性等位基因检出累计概率值(1-P_(NO))分别为96%、97%和94%;
     威县地区2004年共筛选了62对单雌系,平均每个单雌系筛选了334.7±8.6头F_2代初孵幼虫,最终有5个单雌系被确定田间亲本携带有抗性基因,抗性等位基因频率值为0.0243(95%CI=0.0091-0.0471),单雌系总的抗性等位基因检出累计概率值(1-P_(NO))为95%。结果表明威县地区棉铃虫野生种群对Bt棉的抗性等位基因频率值处在一个较高的阈值,并且超过了高剂量/庇护区策略的要求。
     采用Bt棉叶喂饲法处理室内敏感、抗性及两者杂交后代的初孵幼虫,通过四者在转基因棉花上5天生长发育速率的不同来加以区分。试验结果表明,敏感与抗性品系棉铃虫在Bt棉上5天的存活率与生长发育速率存在明显差异,敏感幼虫不能在转Bt基因棉叶上存活,抗性品系在转Bt基因棉叶上处理5天的存活率达到75%,正反交的幼虫存活率仅为2-6%.棉铃虫抗性品系存活幼虫中65%个体在Bt棉上发育到2龄中期、0.6mg以上;而杂合子和敏感纯合子存活幼虫均达不到此生长发育速率。因此可以确定棉铃虫幼虫在Bt棉上5天发育到2龄中期以上、体重≥0.6mg的个体为抗性个体。
     2006-2007年改进单雌系F_2代法,采用Bt棉叶作为筛选媒介进行邱县田间棉铃虫抗性监测。2006年和2007年共筛选了134对和137对单雌系,平均每个单雌系分别筛选了187.9±3.4头和105.1±1.5头F_2代初孵幼虫,抗性等位基因频率值分别为0.1135(95%CI=0.0862-0.1449)和0.0745(95%CI=0.0532-0.0995),2006年和2007年单雌系总的抗性等位基因检出累计概率值(1-P_(No))分别为95%和90%。2007年,采用大田雄虫与室内抗性雌虫杂交的F_1代法监测邱县棉铃虫抗性等位基因频率,共筛选了135对单雌系,平均每个单雌系筛选了165.2±5.2头F_1代初孵幼虫,经过F_2代核查后最终确定有29对单雌系的田间亲本携带有抗性基因,抗性等位基因频率值为0.107(95%CI=0.055-0.159)。
     2003-2007年,采用剂量反应法监测邱县、威县地区棉铃虫种群对CrylAc毒蛋白的抗性水平。5年的研究结果显示,田间棉铃虫对CrylAc毒蛋白的抗性倍数分别为15.3、12.9、12.5、6.7、16.5和11.5,基本达到了中等水平抗性。
     2006-2007年,将单雌系F_2代法确定为携带有对Bt棉抗性等位基因的田间亲本提取基因组DNA,利用根据室内抗性和敏感棉铃虫钙粘素受体基因序列设计的三个引物对田间抗性棉铃虫进行PASA分子检测,探索性的研究这三个引物在田间抗性检测中的应用。2006年共检测了50头田间亲本成虫,2007年共检测了44头田间亲本成虫。结果显示,根据室内抗、敏棉铃虫钙粘素受体基因设计的PASA引物无法有效的应用于田间棉铃虫Bt抗性检测,田间Bt抗性分子检测技术还有待进一步的改进。
     通过长达5年的田间抗性监测研究发现,邱县等大面积种植表达单一CrylAc毒蛋白Bt棉的地区,田间棉铃虫种群对Bt棉的抗性等位基因频率已经显著上升,证实了害虫抗药性发展模式中,在初始抗性等位基因频率值较高(>0.005)地区的害虫,对Bt棉的抗性发展较快的这一推论。类似于邱县作物种植种类和结构的地区需要采取有效、灵敏的抗性检测与监测体系进行害虫的Bt抗性研究,同时结合田间生态环境,建立合理、有效的抗性管理策略,从而延长转Bt基因作物的应用。
Transgenic Bacillus thuringiensis(Bt) cotton producing Cry1Ac protein has been widely planted in northern China for a long time.The high degree of effectiveness and low environmental risk of Bt crops have encouraged Bt cotton producers to rapidly adopt this technology.The rapid and extensive commercialization of Bt cotton could increase the risk of resistance development in target insects.The studies showed that Helicoverpa armigera have been selected for high levels of resistance to Cry1Ac toxins or transgenic Bt cotton in labs.
     In Qiuxian County(Hebei,China),Bt cotton has been commercially planted since 1998. Previous study using F_2 screen in 1999 found that the frequency of resistance alleles to Bt cotton in field populations of Helicoverpa armigera was 0.0058.Considering the high selection pressures in this region,we conducted another F_2 screen,high-dose bioassay, F_1screen and DNA-based method to monitor the Bt resistance in the field populations of H. armigera from 2003 to 2007 as Bt cotton acreage continued to increase over the years.The resistance monitoring program is to be used in a proactive way for resistance management, and the results of resistance monitoring will be used to ensuring the long-term durability of Bt plants
     The results from the F_2 screen showed that 20 out of 340 isofemale lines during 2003 to 2005 were identified to carry resistance alleles to Bt cotton in Qiuxian County(2003 to 2005) and Weixian County(2004).The resistance allele frequency in field populations of H. armigera ranged from 0.0119 to 0.0297.
     The data analysis showed an overall frequency of 0.0146 and a 95%confidence interval of 0.0084-0.0225 for the 3-year period in Qiuxian County.This value is significantly greater than the value reported from 1999(p=0.042).The F_2 screen for detecting Bt resistance alleles was successfully conducted for 105,42 and 131 lines with an average of 372.4±16.0,328.1±9.5 and 314.0±9.0 F_2 neonates were screen on Bt cotton plants, respectively from 2003 to 2005.The results showed that 4,4 and 7lines were considered to be true positive lines for Bt resistance,respectivelyand thus the resistance allele frequency for the population collected during 2003 to 2005was estimated as 0.0119 with a 95%CI of 0.0039-0.0243,0.0297 with a 95%CI of 0.0099-0.0606 and 0.0154 with a 95%CI of 0.0067-0.0277,respectively.The average detection powers of F_2 screen(1-P_(NO)) for all the lines screened were 96%,97%and 94%,respectively.
     In 2004 in Weixian County,F_2 screen for detecting Bt resistance alleles was successfully conducted for 62 lines,and an average of 334.7±8.6 F_2 neonates were screened on Bt cotton plants.The results showed that 4 lines were considered to be true positive lines for Bt resistance and thus the resistance allele frequency for the population collected during 2004 was estimated as 0.0243 with a 95%CI of 0.0091-0.0471.The F_2 screen had>80%detection power for 96%of the lines screened with an average detection power of 95.1%.
     Comparing the lab strain of Bt-resistance(YCR) and Bt-susceptible(YCS) H. armigera on Bt cotton leaf for 5d,the result showed that the resistant and susceptible H. armigera had significant difference in larval surviving rate and growth rate on Bt cotton leaf.The susceptible strain(ss) was unable to survive on Bt cotton.Only 2-6% heterozygous individuals(r_1s) survived,the survivors could not reach stage of mid-2~(nd) instar and body weight of≥0.6mg.The resistant individuals(r_1r_1) had considerably higher survival rate(75%),and a majority of survivors(65%among survivors) reached≥0.6 mg and at least mid-2~(nd) instar.Therefore,the survivors reached≥0.6 mg and beyond mid-2~(nd) instar on Bt cotton leaf for 5 days were categorized as resistant individuals.
     In 2006 to 2007,we used Bt cotton leaves as screen media to monitor the resistance allele frequency of field population of H.armigera in Qiuxian County.In 2006 and 2007,F_2 screen for detecting Bt resistance alleles was successfully conducted for 134 and 137lines, and an average of 187.9±3.4 and 105.1±1.5F_2 neonates were screened on Bt cotton plants, respectively.The resistance allele frequency for the population collected during 2006 and 2007 were estimated as 0.1135with a 95%CI of 0.0862-0.1449 and 0.0745 with a 95%CI of 0.0532-0.0995,respectively.The average detection powers of F_2 screen(1-P_(NO)) for all the lines screened were 95%and 90%,respectively.
     In 2007,F_1 screen for detecting Bt resistance alleles was successfully conducted for 135 lines,and an average of 165.2±5.2 F_1 neonates were screened on Bt cotton plants.The results showed that 29 lines were considered to be true positive lines for Bt resistance and thus the resistance allele frequency for the population collected during 2007 was estimated as 0.107 with a 95%CI of 0.055-0.159.
     Dose-response bioassay is used to monitor Bt resistance in field population of H. armigera in Hebei Province from 2003 to 2007.The results showed that the RF to Cry1Ac toxin were 15.3、12.9、12.5、6.7、16.5 and 11.5.
     In 2006 to 2007,the DNA-based method was used to detect the mutation of Cadherin gene in the field resistance H.armigera individuals.The results showed that the primers designed by YCR and YCS could not be used to detect r_1 resistance gene in filed resistance individuals.
     Our results suggest that significant shift in resistance allele frequency had occurred in the field populations of H.armigera in Qiuxian and Weixian County.It confirmed that after intinial resistance allele frequencies reaches 0.005;Bt resistance in field population will develop more fast.It is necessary to focuse on the development and refinement of cost-effective methods for Bt resistance decetion and monitoring.It also need to introduce Bt cotton that expressing multi-Bt toxins and integrate the Bt cotton technology with biological,chemical,and cultural practices for management of this key cotton pest.
引文
1.Akhurst R J,James W,Bird L,Beard C.Resistance to the CrylAc-endotoxin of Bacillus thuringiensis in the cotton bollworm,Helicoverpa armigera(Lepidoptera:Noctuidae)[J].Journal of Economic Entomology,2003,96:1290-1299.
    2.Alves A P,Spencer T A,Tabashnik B E,et al.Inheritance of resistance to the CrylAb Bacillus thuringiensis toxin in Ostrinia nubilalis(Lepidoptera:Crambidae)[J].J.Econ.Entomol,2006,99:494-501
    3.Anderadis S S,E Alvarea- Alfageme I,Sdnchez-Ramos,et al..Frequency of resistance to Bacillus thuringiensis toxin CryIab in Greek and Spanish population of Sesamia nonagrioides(Lepidoptera:Crambidae)[J].Journal of Economic Entomology,2007,100:195-201.
    4.Andow D A,Alstad D N,Pang Y-H,et al.Using an F2 screen to search for resistance alleles to Bacillus thuringiensis toxin in European corn borer(Lepidoptera:Crambidae)[J].Journal of Economic Entomology,1998,91:579-584.
    5.Andow D A,Alstad D N.F_2 screen for rare resistance alleles[J].Journal of Economic Entomology,1998,91:572-578.
    6.Andow D A,Olson D M,Hellmich R L,et al.Frequency of resistance to Bacillus thuringiensis toxin CrylAb in an Iowa population of European corn borer(Lepidoptera:Crambidae)[J].Journal of Economic Entomology,2000,93:26-30.
    7.Banks D J,Hua Q,Adang M J.Cloning of a Heliothis virescens 110 kDa aminopeptidase N and expression in Drosophila S2 cells[J].Insect Biochem Molec Biol,2003,33:499-508.
    8.Baute T A.Growers Handbook:Controlling Corn Insect Pests with Bt Corn Technology[M].Second edition.Canadian Corn Coalition.Ridgetown,Ontario.2004,1-24.
    9.Beebee T C,Bond R P M.Effect of the exotoxin of Bacillus thuringiensis on normal and ecdysone-stimulated ribonucleic acid polymerase activity in intact nuclei from the fat-body of Sarcophaga bullata larvae[J].The Biochemical Journal,1973,136:1-7;
    10.Bentur J S,Andow D A,Cohen M B,et al.Frequency of alleles conferring resistance to a Bacillus thuringiensis toxin in a Philippine population of Scirpophaga incertulas(Lepidoptera:Pyralidae)[J].Journal of Economic Entomology,2000,93:1515-1521.
    11.Bird L J,Akhurst R J.The fittness of CrylA-resistant and -susceptible Helicoverpa armigera (Lepidoptera:Noctuidae) on transgenic cotton with reduced levels of CrylAc[J].J.Econ.Entomol,2005,98:1311-1319.
    12.Bird L J,Akhurst R J.Effects of host plant species on fitness costs of Bt resistance in Helicoverpa armigera(Lepidoptera:Noctuidae)[J].Biol.Control,2007,40:196-203.
    13.Bolin P C,Hutchison W D,Andow D A.Long-term selection for resistance to Bacillus thuringiensis CrylAc endotoxin in a Minnesota population of European corn borer(Lepidoptera:Crambidae)[J].J.Econ.Entomol,1999,92:1021-1030.
    14.Bolin P C,Hutchison W D,Andow D A,et al.Monitoring for European corn borer(Lepidoptera:Crambidae) resistance to Bacillus thuringiensis:logistical considerations when sampling larvae[J].Journal of Agricultural Entomology,1998,15:231-238.
    15.Bourguet D,Chaufaux J,Seguin M,et al.Frequency of alleles conferring resistance to Bt maize in French and US corn belt populations of Ostrinia nubilalis[J].Theor.Apple.Genet,2003,106:1225-1233.
    16.Burd A D,Gould F,Bradley J R,et al.Estimated frequency of non-recessive Bt resistance genes in bollworm,Helicoverpa zea(Boddie)(Lepidoptera:Noctuidae) in eastern North Carolina[J].Journal Economic Entomology,2003,96:137-142.
    17.Chaufaux J,Seguin M J,Swanson J,et al.Chronic exposure of the European corn borer (Lepidoptera:Crambidae) to CrylAb Bacillus thuringiensis toxin[J].J Econ Entomol,2001,94:1564-1570.
    18.Coates B S,Sumerford D V,Hellmich R L,et al.Sequence variation in the cadherin gene of Ostrinia nubilalis:a tool for field monitoring[J].Insect Biochemistry and Molecular Biology,2005,35:129-139.
    19.Crickmore N,Zeigler D R,Feitelson J,et al.Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins[J].Microbiol Mol Biol Rev,1998,62:807-813.
    20.Downes S,Mahon R,Olsen K.Monitoring and adaptive resistance management in Australia for Bt-cotton:Current status and future challenges[J].J Invertebr Pathol,2007,95:208-213.
    21.Dorsh J A,Candas M,Griko N B,et al.CrylA toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R(1) in Manduca sexta:involvement of a Cadherin in the entomopathogenicity of Bacillus thuringiensis[J].Insect Biochem Mol Biol,2002,32(9):1025-1036.
    22.Environmental Protection Agency.The environmental protection agency white paper on Bt plant pestitede resistance management.Washington:EPA Publication 739-S-98-001,1998.
    23.Everich R C,Dively G P,Linduska J J.Baseline monitoring of Colorado potato beetle sensitivity to Bacillus thuringiensis and associations with pyrethroid resistance[J].Resistant Pest Management,1992,4:14-15.
    24. Farinos G P, Poza M, Hernandez-Crespo P, et al. Resistance monitoring of field populations of the corn borers Sesamia nonagrioides and Ostrinia nubilalis after 5 years of Bt maize cultivation in Spain [J]. Entomologia Experimentalis et Applicata, 2004,110:23 - 30.
    25. Ferre J, Real M D, Van Rie J, et al. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor [J]. Proc. Natl. Acad. Sci. USA, 1991, 88: 5119-5123.
    26. Ferre J, Escriche B, Bel Y. et al. Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins [J]. FEMS Microbio Letters, 1995,132:1-7.
    27. Ferre J, VanRie J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis [J]. Annu. Rev. Entomol, 2002, 47: 501-533.
    28. Fitt G P. Getting the bugs out of cotton [J]. Austral Sci, 1998, 9: 33-35.
    29. Fitt G P , Mares C L , Liewellyn D J. Field evolution and potential ecological impact of transgenic cottons (Gossypium hirsumtum) in Australia [J]. Biocontrol Sci Tech, 1994,4: 535-548.
    30. Forcada C, Alcacer E, Garcera M D, et al. Differences in the midgut proteolytic activity of two Heliothis Virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins.[J]. Aech Insect Biochem Physiol, 1996, 31:257-272.
    31. Gahan L J, Gould F, Heckel D G. Identication of a gene associated with Bt resistance in Heliothis virescens[J]. Science, 2001,293: 857-860.
    32. Gahan L J, Gould F, L6pez J D, et al. A polymerase chain reaction screen of field populations of Heliothis virescens for a retrotransposon insertion conferring resistance to Bacillus thuringiensis toxin [J]. Journalof Economic Entomology, 2007,100:187 - 194.
    33. Genissel A, Augustin S, Courtin C, et al. Initial frequency of alleles conferring resistance to Bacillus thuringiensis poplar in a field population of Chrysomela tremulae [J]. Proceedings of the Royal Society of London. Series B, Biological Sciences, 2003,270:791-797.
    34. Ghidiu G M, Zehnder G W. Timing of the initial spray application of Bacillus thuringensis for control of the Colorado potato beetle (Coleoptera:Chrysomelidae) in potatoes [J].Biological Control, 1993:348-352.
    35. Gill M , Ellart D. Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxin CrylAc [J]. Insect Molecular Biology, 2002 ,11: 619—625 .
    36. Gill S S, Cowles E A , Francis V. Identification, isolation, and cloning of a Bacillus thuringiensis CryIAc toxin binding protein from the midgut of the lepidopteran insect Heliothis virescens [J]. J Biol Chem, 1995,270: 27277 - 27282.
    37. Gomez I, Sanchez J, Miranda R. et al. Cadherin-like receptor binding facilitates proteolytic cleavage of helix alpha-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin[J].FEBS Lett,2002,513:242-246.
    38.Gonzalez-Cabrera J,Escriche B,Tabashnik B E,et al.Binding of Bacillus thuringienis toxins in resistant and susceptible strains of pink bollworm(Pectinophora gossypiella)[J].Insect Biochem Mol.Biol,2003,33(9):929 - 935.
    39.Gould F,Martinez-Ramirez A,Anderson A,et al.Broad-spectrum resistance to Bacillus thuringiensis toxin in Heliothis virescens[J].Proc Natl Acad Sci USA,1992,89:7986-7990.
    40.Gould F,Anderson A,Reynolds A et al.,Selection and genetic analysis of a Heliothis virescens (Lepidoptera:Noctuldae) strain with high levels of resistance to Bacillus thuri ngiensis toxins[J].J Econ Entomol,1995,88:1545-1559.
    41.Gould F,Andenson A,Jones A,et al.Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens[J].Proceedings of National Academy of Sciences,USA,1997,94,3519-3523.
    42.Gould F.Sustainability of transgenic insecticidal cultivars:integrate pest genetics and ecology[J].Annual Review of Entomology,1998,43:701-726.
    43.Griffitts J S,Huffman D L,Whitacre J L,et al.Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin-host interactions[J].J Biol.Chem,2003,278:45594 - 45602.
    44.Griffitts J S,Aroian R.Many roads to resistance:how invertebrates adapt to Bt toxins[J].BioEssays,2005,27,614-624.
    45.Griffitts J S,Whitacre J L,Stevens D E,et al.Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme[J].Science,2001,293:860-864.
    46.Gujar G T,Kalia V,Kumari A,et al.Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis Cry toxins and resistance management for Bt cotton in India[J].J Invertebr Pathol,2007,95:214-219
    47.Gunning R V,Dang H T,Kemp F C,et al.New Resistance Mechanism in Helicoverpa armigera Threatens Transgenic Crops Expressing Bacillus thuringiensis CrylAc Toxin[J].Applied and Environmental Microbiology,2005,71:2558-2563.
    48.Hardee D D,Adams LC,Solomon WL,et al.Tolerance to CrylAc in populations of Helicoverpa zea and Heliothis virescens(Lepidoptera:Noctuidae) three-year summary[J].Journal of Agricultural and Urban Entomology,2001,18,187-197.
    49.Harvey W R,Wolfersberger M G.Mechanism of inhibition of active potassium transport in isolated midgut ofMancluca sexta by Bacillus thuringiensis endotoxin[J].J Exp Biol,1979,83:293 - 304.
    50.Heckel D G.The complex genetics basis of resistance to Bacillus thuringiensis toxin in insects[J].Bio-control Sci Technol,1994,4:405-417.
    51.Heckel D G,Gahan L C,Gould F,et al.Identification of a linkage group with a major effect on resistance to Bacillus thuringensis CrylAc endotoxin in the tobacco budworm (Lepidoptera:Noctuidae)[J].Journal of Economic Entomology,1997a,90:75-86.
    52.Heckel D G,Gahan L C,Liu Y B,et al.Genetics of Heliothis and Helicoverpa resistance to chemical insecticides and to Bacillus thuringensis CrylAe[J].Pestic Sci,1997b,51:251-258.
    53.Heckel D G.Genomics in pure and applied entomology[J].Annual Review of Entomology,2003,4.8:235-260.
    54.Heckel David G,Gahan L J,Simon W Baxter,et al.The diversity of Bt resistance genes in species of Lepidoptera[J].Journal of Invertebrate Pathology.2007,95:192-197.
    55.Hofte H,Whiteley H R.Insecticidal crystal proteins of Bacillus thuringienses[J].Microbiol Rev.1989,53:242-255.
    56.Hua G,Jurat-Fuentes J L,Adang M J.Fluorescent-based assays establish Manduca sexta Bt-R(la)Cadherin as a receptor for multiple Bacillus thuringiensis CrylA toxins in Drosophila S2 cells[J].Insect Biochem Mol Biol,2004,34:193-202.
    57.Huang F,Higgins R A,Buschman L L.Baseline susceptibility and changes in susceptibility to Bacillus thuringiensis subsp,kurstaki under selection pressure in European corn borer(Lepidoptera:Pyralidae)[J].J Econ Entomol,1997,90,1137-1143.
    58.Huang F,Buschman L L,Higgins R A,et al.Inheritance of resistance to Bacillus thuringiensis toxin(Dipel ES) in the European corn borer[J].Science,1999,284:965-967.
    59.Huang F,Buschman L L,Higgins R A,et al.Survival of Kansas Dipel-resistant European corn borer(Lepidoptera:Crambidae) on Bt and non-Bt corn hybrids[J].J Econ Entomol,2002,95:614-621.
    60.Huang F.Detection and monitoring of insect resistance to transgenic Bt crops[J].Insect Science,2006a,13,73-84.
    61.Huang F,Leonard B R,and Gable RG.Comparative susceptibility of European corn borer,southwestern corn borer,and sugarcane borer(Lepidoptera:Crarnbidae) to Crylab protein in a commercial Bt-corn hybrid[J].Journal of Economic Entomology,2006b,99,194-202.
    62.Huang F,Leonard B R,Andow D A.F_2 screen for resistance to a Bacillus thuringiensis-maize hybrid in the Sugarcane borer(Lepidoptera:Crambidae)[J].Bulletin of Entomological Research,2007a,97:437-444.
    63.Huang F,Leonard B R,Cook D R,et al.Frequency of alleles conferring resistance to Bacillus thuringiensis maize in Louisiana populations of the southwestern corn borer[J].Entomologia Experimentalis et Applicata,2007b,122:53-58.
    64.James C.Global Status of Commercialized Biotech/GM Crops:2006,ISAAA Briefs No.34.Ithaca,NY.
    65.Janmaat A F,Myers J H.Rapid evolution and the cost of resistance to Bacillus thuringiensis in green-house populations of cabbage loopers,Trichoplusia ni[J].Proc R Soc Lond B 2003,270:2263-2270.
    66.Jerkins J L,Lee M K,Valaitis A P,et al.Bivalent sequential binding model of a Bacillus thuringiensis toxin to gypsy moth aminopeptidase N receptor[J]J Biol Chem,2000,275:14423-I 4431.
    67.Jenkins J L,and Dean D H.Binding specificity of Bacillus thuringiensis CrylAa for purified,native Bombyx mori aminopeptidase N and cadherin-like receptors[J].BMC Biochemistry,2001,2:12-18.
    68.Knight P J,Carroll J,Ellar D J.Analysis of glycan structures on the 120 kDa aminopeptidase Nor Manduca sexta and their interactions with Bacillus thuringiensis CrylAc toxin[J].Insect Biochem Mol Biol,2004,34:101 - 112.
    69.Kota M,.Daniell H,Varma,S,et al.Over-expresssion of the Bacillus thuringiensis(Bt) CrylAa protein in chlorplasts confers resistance to plants against susceptible and Bt-resistant insects[J].Proc Natl Acad Sci USA,1999,96:1840-1845.
    70.Kranthi K R,Kranthi S,Ali S,et al.Resistance to CrylAc-endotoxin of Bacillus thuringiensis in a laboratory selected strain of Helicoverpa arm igera(Hübner)[J].Curt Sci,2000,78:1001-1004.
    71.Kranthi,K.R.,and Kranthi,N.R.Modelling adaptability of cotton bollworm,Helicoverpa armigera(Hübner) to Bt-cotton in India.Curt Sci(Bangalore),2004,8:1096-1107.
    72.Kumaraswami N S,Maruyama T,Kurabe S,et al.Lipids of brush border membrane vesicles (BBMV) from Plutella xylostella resistant and susceptible to CrylAc delta-endotoxin of Bacillus thuringiensis[J].Comp Biochem Physiol B Biochem Mol Biol,2001,129:173-183.
    73.Lee M K,You T H,Young B A,et al.Aminopeptidase N purified from gypsy moth brush border membrane vesicles is a specific receptor for Bacillus thuringiensis CrylAc toxin[J].Appl Environ Microbiol,1996a,62:2845-2849
    74.Lee M K,Dean D H.Inconsistencies in determining Bacillus thuringiensis toxin binding sites relationship by comparing competition assays with ligand blotting[J].Biochem Biophys Res Commun,1996b,220:575-580.
    75.Li G,Wu K,Gould F,et al.Frequency of Bt resistance genes in Hellicoverpa armigera populations from the yellow river cotton-farming region of China[J].Entomol Exp Appl,2004,112:135-143.
    76.Li G,Wu K,Gould F,et al.Increasing tolerance to CrylAc cotton from cotton bollworm was confirmed in Bt cotton farming area of China[J].J Ecol Entomol,2007,32(4):366-375.
    77.Liang G,Tan W,and Guo Y.Study on screening and inheritance mode of resistance to Bt transgenic cotton in Helicoverpa armigera[J].Acta Entomol Sin,2000.43:57-62.
    78.Liao C,Heckel D,Akhhurst R.Toxicity of Bacillus thuringiensis insecticidal proteins for Helicoverpa armigera and Helicoverpa punctigera(Lepidoptera:Noctuidae),major pests of cotton [J].J Invert Pathol,2002,80,55-63.
    79.Liu Y B,Tabashnik B E,Pusztai-Carey M.Field-evolved resistance to Bacillus thuringiensis toxin Cryl C in diamondback moth(Lepidoptera:Plutellidae)[J].J Econ Entomol,1996,89:798-804.
    80.Liu Y B,Tabashnik B E,Dennehy T J,et al.Development time and resistance to Bt crops[J].Nature,1999,400:519.
    81.Liu Y B,Tabashnik B E,Dennehy T J,et al.Effects of Bt cotton and CrylAe toxin on survival and development of pink bollworm(Lepidoptera:Gelechiidae)[J].J Econ Entomol,2001a,94:1237-1242.
    82.Liu Y-B,Tabashnik B E,Meyer S K,et al,Genetics of pink bollworm resistance to Bacillus thuringiensis toxin CrylAc)[J].J Econ Entomol,2001b,94:248-252
    83.Lorence A,Darszon A,Bravo A.Aminopeptidase dependent pore formation of Bacillus thuringiensis CrylAc toxin on Trichoplusia ni membranes[J].FEBS Lett,1997,414:303 - 307.
    84.Loseva O,Ibrahim M,Candas M,et al.Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle:implications for insect resistance to Bacillus thuringiensis toxins[J].Insect Biochem Mot Biol,2002,32(5):567 - 577.
    85.Luo K,Lu Y,AdangMJ.A 106 kDa formof aminopeptidase is a receptor for Bacillus thuringiensis CrylC δ-endotoxin in the brush border membrane of Manduca sexta[J].Insect Bioehem Mol Biol,1996,26:783 -791.
    86.Luo K,Sangadala S,Masson L,et al.The Heliothis virescens 170 kDa aminopeptidase functions as"receptor A"by mediating specific Bacillus thuringiensis CrylA delta endotoxin binding and pore formation[J].Insect Biochem Mol Biol,1997a,27:735 - 743.
    87.Luo K,Tabashnik B,Adang M J.Binding of Bacillus thuringiensis CrylAc toxin to aminopeptidase in susceptible and resistant diamondback moths(Plutella xylostella)[J].Appl Environ Microbiol,1997b,63:1024 -1027.
    88.Luttrell R,Wan L,Knighten K.Variation in susceptibility ofNoctuid(Lepidoptera) larvae attacking cotton and soyabean to purified endotoxin proteins and commercial formulations of Bacillus thuringiensis[J].Journal of Economic Entomoi,1999,92:21-32.
    89.Marcon P C RG,Siegfried B D,Spencer T et al.Development of diagnostic concentrations for monitoring Bacillus thuringiensis resistance in European corn borer(Lepidoptera:Crambidae)[J].Journal of Economic Entomology,2000,93,925-930.
    90.Marcon P C R G,Young L J,Steffey K L,et al.Baseline susceptibility of European corn borer(Lepidoptera:Crambidae) to Bacillus thuringiensis toxins[J].Journal Economic Entomology,1999,92,279-285.
    91.Marroquin L D,Dino Elyassnia,Joel S.Griffitts,et al.Bacillus thuringiensis(Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans[J].Genetics.2000,155:1693-1699.
    92.Mascarenhas V J,Graves J B,Leonard B R,et al.Susceptibility of field populations of beet armyworm(Lepidoptera:Noctuidae) to commercial and experimental insecticides[J].Journal of Economic Entomology,1998,91,827-833.
    93.Masson L,Lu Y J,Mazza A,et al.The CrylA(c) receptor purified from Manduca sexta displays multiple specificities[J].J Biol Chem,1995,270:20309-20315.
    94.Matten S M,Reynolds A H.Current Resistance Management Requirements for Bt Cotton in the United States.Bacillus Thuringiensis:A Cornerstone of Modem Agriculture[M].2004a.
    95.Matten S M,Hellmich RL,Reynolds A H.Current resistance management strategies for Bt corn in the United States.Transgenic Crop Protection:Concepts and Strategies(eds.O.Koul and G.S.Dhaliwal),[M].Science Publishers,Plymouth,UK,2004b,261 - 288
    96.McGaughey W H.Insect resistance to the biological insecticide Bacillus thuringiensis[J].Science,1985,229,193-194.
    97.McGaughey W H,Whalon M E.Managing insect resistance to Bacillus thuringiensis toxins[J].Science,1992,258:1451-1455.
    98.McGaughey W H,Johnson D E.Indian meal moth(Lepidoptera:Pyalidae) resistance to different strains and mixtures of Bacillus thuringiensis[J].J Econ Entomol,1992,85:1594-1600.
    99.Meng F X,Shen J L,ZhouW J,et al.Long-term selection for resistance to transgenic cotton expressing Bacillus thuringiensis toxin in Helicoverpa armigera(Hübner)(Lep idop tera:Noctuidae)[J].PestManagement Science,2004,60:167 - 172.
    100.Metz T D,Roush R T,Tang J D,et al.Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein:implications for pest resistance management strategies[J].Mol Breed,1995,1:309-317.
    101.Midboe EG,Candas M,Bulla LAJr.Expressionof a midgut-specific cadherin BT-R1 during the development of Manduca sexta larva[J].Comp Biochem Physiol B Biochem Mol Biol,2003,135:125-137.
    102.Moar W J,Pusztai- Carey M,Faassen van H,et al.Develpoment of Bacillus thuringiensis CrylAc resistance by Spodoptera littoral&(Hübner)(Lepidoptera:Noctuidae)[J].Appl.Environ Microbil,1995,61:2086-2092.
    103.Mohan M,Gujar G T.Characterization and comparison of midgut proteases of Bacillus thuringiensis susceptible and resistant diamondback moth(Plutellidae:Lepidoptera)[J].J Inverteb Pathol.2003.82(1):1-11
    104.Morin S,Henderson S,Fabrick J A,et al.DNA-based detection of Bt resistance alleles in pink bollworm[J].Insect Biochemistry and Molecular Biology,2004,34,1225-1233.
    105.Morin S,Biggs R W,Sisterson M S,et al.Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm[J].Proc Natl Acad Sci USA,2003,100:5004-5009
    106.Müller-Cohn J,Chaufaux J,Buisson C,et al.Spodoptera littoralis(Hübner)(Lepidoptera:Noctuidae) resistance to Cryl C and cross-resistance to other Bacillus thuringiensis crystal toxins[J].J Econ Entomol,1996,89:791-797.
    107.Nagamatsu Y,Koike T,Sasaki K,et al.The Cadherin-like protein is essential to specificity determination and cytotoxin action of the Bacillus thuringiensis insecticidal CrylAa toxin[J].FEBS Lett,1999,460:385-390.
    108.Nakanishi K,Yaoi K,Nagino Y,et al.Aminopeptidase N isoforms from the midgut ofBombyx mori and Plutella xylostella:their classification and the factors that determine their binding specificity to Bacillus thuringiensis CrylA toxin[J].FEBS Lett,2002,519:215 - 220.
    109.National Research Council Environmental Effects of Transgenic Plants:The Scope and Adequacy of Regulation[M].National Academy.Washington,D.C.2002,:320.
    110.NASS(National Agricultural Statistics Service) Acreage.USDA,Washington,D.C.http://usda.mannlib.cornell.edu/ reports/nassr/field/pcp-bba/acrgO605.pdf,2005.
    111.Ostlie K R,Hutchison W D,Hellmich R L.Bt Corn and European Corn Borer[M].North Central Region Extension Publication NCR 602.University of Minnesota,St.Paul,Minnesota,U.S.A,1997.
    112.Patin A L,Dennehy T J,Sims M A,et al.Status of pink bollworm susceptibility to Bt in Arizona,In Proceedings of Beltwide Cotton Conferences.National Cotton Council of America,Memphis,TN.1999,2:991-996.
    113.Pray C E,Huang J,Hu R,et al.Five years of Bt cotton in China-the benefits continue.The Plant Journal,2002,31:423-430.
    114.Perez C J,Tang J D,Shelton A M.Comparison of leaf-dip and diet bioassays for monitoring Bacillus thuringiensis resistance in Teld populations of diamondback moth(Lepidoptera:Plutellidae)[J].J Econ Entomol,1997,90:94-101.
    115.Rahadrdja U,Whalon M E.Inheritance to resistance to Bacillus thuringiensis subsp,tenebrionis CryⅢAδ-endotoxin in Colorado patato beetel(Leptinotarsa decem lineata[J].J Econ Entomol,1995,88:21-26.
    116.Rajagopai R,Agrawal N,Selvapandiyan A,et al.Recombinantly expressed isoenzymic aminopeptidases from Helicoverpa armigera(American cotton bollworm) midgut display differential interaction with closely related Bacillus thuringiensis insecticidal proteins[J].Biochem J,2003,370:971 - 978.
    117.Rajamohan F,Lee M K,Dean D H.Bacillus thuringiensis insecticidal proteins:molecular mode of action[M].Progress in Nucleic Acid Research and Molecular Biology,Academic Press,New York,N.Y.1998,60.
    118.Ramachandran S,Buntin G D,All J N,et al.Survival,development,and oviposition of resistant diamondback moth(Lepidoptera:Plutellidae) on transgenic canola producing a Bacillus thuringiensis toxin[J].J Econ Entomol,1998,91:1239-1244.
    119.Rochester I J.Effect of Genotype,Edaphic,Environmental Conditions,and Agronomic Practices on CrylAc Protein Expression in Transgenic Cotton[J].J Cotton Sci.2006,10:252-262.
    120.Roush RT,Miller G L.Considerations for design of insecticide resistance monitoring program[J].Journal of Economic Entomology,1986,79,293-298.
    121.Roush R T.Managing pests and their resistance to Bacillus thuringiensis:can transgenics be better than sprays ?[J]Biocontrol Sci Technol,1994,4:501-516.
    122.Ru L J,Zhao J Z,Rui C.A simulation model for adaptation of cotton bollworm to transgenic Bt cotton in northern China.Acta.Entomol.Sinica.2002,45:153-159.
    123.Saeglita C,Bartsch D,Eber S,et al.Monitoring the CrylAb Susceptibility of European Corn Borer in Germany[J].J Econ Entomol,2006,99:1768-1773.
    124.Salvador H,Brenda O,Juan F.Different mechanisms of resistance to bacillus thuringiensis toxins in the Indianmeal moth[J].Appl Environ Microbio,2001:1085-1089.
    125.Sangadala S,Waiters F S,English L H,et al.A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiesis insecticide(CrylA(c) toxin binding and 86Rb(+)-K+efflux in vitr of Jl[J].J Biol Chem,1994,269:10088-10092.
    126.SchnepfE,Cdckmore N,Van Rie J,et al.Bacillus thuringensis and its pesticidal crystal proteins[J].Microbiol Mol Biol Rev,1998,62:775-806.
    127. Schnepf H E, Whiteley H.R. Cloning and expression of the Bucillus thuringiensis crystal protein gene in Escherichia coli [J]. Proc Natl Acad Sci, 1981, 78: 2893-2897.
    128. Sebesta K, Farkas J, I-Iorska K, et al. Thuringiensin. the beta-exotoxin of Bacillus thurirrgiensis in Microbial control of pests and plant diseases 1970-1980 (ed. H. D. Burges), academic press, London [M]. 1981, 249-281.
    129. Shao Z, Cui Y, Liu X, et al. Processing of δ-Endotoxin of Bacillus thuringiensis subsp.kurstakiHD-1 in Heliothis armigera Midgut Juice and the Effects of Protease Inhibitors [J]. Journal of Invertebrate Pathology, 1998,72: 73-81.
    130. Shelton A M, Wyman J A. Insecticide resistance of Diamondback Moth and other crucifer pests in North America [M]. Proc. Second Int. Workshop, Taiwan, Asian Vegetable Research and Development Center. 1992,447-454.
    131. Shelton A M, Robertson J L, Tang J D et al. Resistance of diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field. J Econ Entomol, 1993, 86:697-705.
    132. Shelton A M, Zhao J Z, Roush R T. Economic, Ecological, Food Safety, And Social Consequences Of The Deployment Of Bt Transgenic Plants [J]. Annu Rev Entomol, 2002, 47:845-81.
    133. Sims M, Dennehy T J, Patin A, et al. Arizona's multiagency resistance management program for Bt cotton: Sustaining the susceptibility of pink bollworm [M]. Proceedings of the Beltwide Cotton Conference, National cotton Council, USA. 2001,1175-1179.
    134. Stodola T J, Andow D A. F_2 screen variations and associated statistics [J]. Journal of Economic Entomology, 2004,97:1756-1764.
    135. Stodola T J, Andow D A, Hyden A R, et al. Frequency of Resistance to Bacillus thuringiensis toxin Cry1Ab in southern US corn belt population of European corn borer (Lepidoptera: Crambidae) [J]. Journal of Economic Entomology, 2006, 99: 502-507.
    136. Tabashnik B E, Cushing N L, Finson N, et al. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae) [J]. Journal of Economic Entomol, 1990, 83:1671-1676.
    137. Tabashnik B E, Finson N, Johnson M W,et al. Resistance to toxins from Bacillus thuringiensis subsp. kurstaki causes minimal cross-resistance to B. thuringiensis subsp. aizawai in diamondback moth (Lepidoptera: Plutellidae) [J]. Appl Environ Microbiol, 1993, 59:1332-1335.
    138. Tabashnik B E. Evolution of resistance to Bacillus thuringiensis [J]. Annual Review of Entomology. 1994a.39: 47-79.
    139. Tabashnik B E, Finson N, Johnson M W, Heckel D G. Crossing-resistance to Bacillus thuringiensis toxin Cryl F in the diamondback moth(Lepidoptera:Plutellidae)[J].Appl Environ Microbiol,1994b,60:4627-4629.
    140.Tabashnik B E,Liu Y-B,Finson N,et al.One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins[J].Proc Natl Acad Sci USA,1997,94:1640-1644.
    141.Tabashnik B E,Liu Y-B,Malvar T.et al.Insect resistance to Bacillus thuringiensis:uniform or diverse[J].Philos Trans R Soc London B,1998,353:1751-1756.
    142.Tabashnik B E,Patin A L,Dennehy T J,et al.Frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm[J].Proc Natl Acad Sci USA,2000a,97:12980-12984.
    143.Tabashnik B E,Roush R T,Earle E D,and Shelton A M.Resistance to Bt toxins[J].Science,2000b,287:42.
    144.Tabashnik B E,Johnson K W,Engleman J T,et al.Cross-resistance to Bacillus thuringiensis toxin Cry1Ja in a strain of diamondback moth adapted to artificial diet[J].J Invertebr Pathol,2000c,76:81-83.
    145.Tabashnik B E,Liu Y-B,Dennehy T J,et al.Inheritance of resistance to Bt toxin Cry1Ac in a field-derived strain of pink bollworm(Lepidoptera Gelechiidae)[J].J Econ Entomol,2002,95(5):1018-1026.
    146.Tabashnik B E,Carrière Y,Dennehy T J,Morin S,Sisterson M S,Roush R T,Shelton A M,and Zhao J Z.Insect resistance to transgenic Bt crops:lessons from the laboratory and field[J].J Econ Entomol,2003,96:1031-1038.
    147.Tabashnik B E,Liu Y-B,Unnithan D C,et al.Shared genetic basis of resistance to Bt toxin CrylAc in independent strains of pink bollworm[J].J Econ Entomol,2004,97:721-725.
    148.Tabashnik B E,Biggs R W,Higginson D M,et al.Association between resistance to Bt cotton and cadherin genotype in Pink Bollworm[J].J Econ Entomol,2005,98:635-644.
    149.Tabashnik B E,Fabrick J A,Henderson S,et al.DNA screening reveals pink bollworm resistance to Bt cotton remains rare after a decade of exposure[J].J Econ Entomol,2006,99:1525-1530.
    150.Tang J D,Gilboa S,Roush R T,et al.Inheritance,stability,and lack-of-fittness costs of field selected resistance to Bacillus thuringiensis in diamondback moth(Lepidoptera:Plutellidae) from Florida[J].J Econ Entomol,1997,90:732-741.
    151.Trisyono Y A,Chippendale G M.Susceptibility of field-collected populations of the southwestern corn borer,Diatraea grandiosella,to Bacillus thuringiensis[J].Pest Management Science,2002,58:1022-1028.
    152.Vadlamudi R K,Ji T H,Bulla L A Jr.A specific binding protein from Mcmduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp.Berliner[J].J.Biol.Chem,1993,268:12334 - 12340.
    153. Valaitis A P, Lee M K, Rajamohan F, et al. Brush border membrane aminopeptidase2N in the midgut of the gypsy moth serves as the receptor for the CryIAc delta endotoxin of Bacillus thuringiensis[J]. Insect Biochem Mol Biol, 1995,25 :1143-1151.
    154. Van Emden, H F. Transgenic host plant resistance to insects some reservations [J]. Annals of the Entomological Society of America, 1999:788-797.
    155. Venette E C, Hutchison W D, Andow D A. An infield screen for early detection and monitoring of insect resistance to Bacillus thuringiensis in transgenic crops [J]. Journal of Economic Entomology, 2000, 93,1055-1064.
    156. Whalon Mark E, Wingerd Byron A. Bt: Mode of action and use. Arch [J]. Insect Biochem Physiol, 2003,54:200-211
    157. Whalon M E, McGaughey W H. Insect resistance to Bacillus thuringiensis [M]. In Advanced Engineered Pesticides, edited by Leo Kim, New York, 1993,215-232.
    158. Williams S, Friedrich L, Dincher S, et al . Chemical regulation of Bacillus thuringiensis toxins expression in transgenic plants[J]. Bio Technology, 1992 ,10 : 540-543.
    159. Wu K, Guo Y, Lv N, et al. Resistance monitoring of Helicoverpa armigera (Lepidoptera: Noctuide) to Bacillus thuringiensis insecticidal protein in China [J]. Journal of Economic Entomology, 2002a, 95:826-831.
    160. Wu K, Guo Y, Gao S. Evaluation of the natural refuge function for Helicoverpa armigera (Lepidoptera: Noctuidae) within Bacillus thuringiensis transgenic cotton growing areas in northern China [J]. Journal of Economic Entomology, 2002b, 95: 832-837.
    161. Wu K, Guo Y, Lv N, et al. Efficacy of transgenic cotton containing a Cry1Ac gene from Bacillus thuringiensis against Helicoverpa armigera (Lepidoptera: Noctuidae) in northern China [J]. J Econ Entomol, 2003, 96:1322-1328.
    162. Wu K, Feng H, Guo Y, Evaluation of maize as a refuge for management of resistance to Bt cotton by Helicoverpa armigera (Hubner) in the Yellow River cotton farming region of China [J]. Crop Prot, 2004a, 23: 523-530.
    163. Wu K, Guo Y. Changes in susceptibility to conventional insecticides of a Cry1Ac-selected population of Helicoverpa armigera (Lepidoptera: Noctuidae) [J]. Pest Management Science, 2004b, 60:680-684.
    164. Wu K, Guo Y, Head G. Resistance monitoring of Helicoverpa armigera (Lepidoptera: Noctuidae) to Bt insecticidal protein during 2001-2004 in China [J]. J Econ Entomol, 2006, 99: 893-896.
    165. Wu K. Monitoring and management strategy for Helicoverpa amigera resistance to Bt cotton in China[J].Journal of Invertebrate Pathology,2007,95:220-223.
    166.Xu X J,Yu L Y,and Wu Y D.Disruption of a Cadberin Gene Associated with Resistance to CrylAc-Endotoxin of Bacillus thuringiensis in Helicoverpa armigera[J]Applied and environmental microbiology,2005,71:948-954.
    167.Yang Y,Chen H,Wu Y,et al.Mutated cadherin alleles of Helicoverpa armigera conferring resistance to Bacillus thuringiensis toxin CrylAc detected in the field[J].Appl Environ Microbiol (in press),2007.
    168.Yaoi K,Kadotani T,Kuwana H,et al.Aminopeptidase N from Bombyx mori as a candidate for the receptor of Bacillus thuringiensis Cry1Aa toxin[J].Eur J Biochem,1997,246:652 - 657.
    169.Zhang Ji-hong,Chen-zhu Wang,Jun-de Qin.The Interactions between Soybean Trypsin Inhibitor and δ-Endotoxin of Bacillus thuringiensis in Helicoverpa armigera Larva[J].Journal of Invertebrate Pathology,2000,75:259-266.
    170.Zhao J Z,Collins H L,Tang J D,et al.Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of Cry1C[J].Appl Environ Microbiol,2000,66:3784-3789.
    171.Zhao J Z,Li Y X,Collins H L,et al.Examination of the F2 screen for rare resistance alleles to Bacillus thuringiensis toxins in the diamondback moth(Lepidoptera:Plutellidae)[J].J Econ Entomol,2002,95:14-21.
    172.Zhu Y C,Oppert B,Kramer K J,et al.cDNAs for a chymotrypsinogen-like protein from two strains of Plodia interpunctella[J].Insect Biocbem Mol Biol,1997,27:1027- 1037.
    173.陈海燕,杨亦桦,武淑文,等.棉铃虫田间种群Bt毒素Cry1Ac抗性基因频率的估算[J].昆虫学报.2007,50:25-30.
    174.陈锦绣,章东方,许仲武,等.棉铃虫对苏云金杆菌(Bt)的抗性监测及延缓抗性策略[J].安徽农业科学,1998,26:356-359.
    175.高聪芬,沈晋良,钱燕,等.转基因棉对高抗Bt棉棉铃虫生长发育及活动频率的影响[J].西北农林科技大学学报(自然科学版).2004,12:47-51.
    176.郭三堆,倪万潮,徐琼芳.编码杀虫蛋白质融合基因和表达载体及其应用.中国专利,1995,专利号:ZL995119563.8.C12N15/32.
    177.何丹军,沈晋良,周威君,等.应用单雌系F_2代法检测棉铃虫对转Bt基因棉抗性等位基因的频率[J].棉花学报.2001,13:105-108.
    178.贾士荣,郭三堆,安达昌.转基因棉花[M].北京:科学出版社,2001.
    179.梁革梅,谭维嘉,郭予元.棉铃虫对转Bt基因棉的抗性筛选及遗传方式的研究[J].昆虫学报,2000,43:57-62.
    180.卢美光,赵建周,范贤林,等.华北地区棉铃虫对Bt杀虫蛋白的抗性监测[J].棉花学报,2000,12:180-183.
    181.孟凤霞,沈晋良,周威君,等.转Bt基因棉对棉铃虫抗虫性测定方法的研究[J].南京农业大学学报,2000,23:109-113.
    182.潘有祥.害虫对苏云金杆菌的抗性研究进展[J].华东昆虫学报,2005,14(4):353-357
    183.沈晋良,周威君,吴益东,等.棉铃虫对Bt生物农药早期抗性及与转Bt基因棉抗虫性的关系[J].昆虫学报,1998,41:8-14.
    184.沈晋良,吴益东.棉铃虫抗药性及其机理[M].中国农业出版社,1995:91-95.
    185.苏建亚.棉铃虫对转Bt基因棉抗性的分子机理及抗性基因分子检测技术.南京农业大学博士论文[D],2004.
    186.谭声江,陈晓峰,李典谟,等.其他寄主作物能成为Bt抗性棉铃虫的庇护所吗[J].科学通报,2001,46:1101-1104.
    187.谭声江,陈晓峰,李典谟.棉铃虫对转Bt基因棉的抗性及其治理策略研究进展[J].昆虫学报.2002,45:138-144.
    188.王莉,李学锋,徐宝仁,等.Bt杀虫晶体蛋白受体分子的结构与功能[J].昆虫学报2006,49:1009-1016
    189.王桂荣,梁革梅,吴孔明,等.棉铃虫中肠氨基氨肽酶N基因的克隆及序列分析[J].中国农业科学,2003,36:1293-1300.
    190.夏敬源,邹奎,马志强,夏文省,柏长青.国产转基因抗虫棉技术集成创新与推广应用[J].棉花学报,2006.33(10):2-5
    191.徐艳聆,王振营,何康来,白树雄.昆虫对Bt杀虫蛋白的抗性机制及治理策略[J].植物保护学报,2006,33(4):437-444.
    192.喻子牛.苏云金杆菌[M].北京:科学出版社,1990.
    193.张继红,王琛柱,钦俊德.苏云金芽孢杆菌δ-内毒素的杀虫机理及其增效途径[J].昆虫学报,1998,41(3):323-332.
    194.赵建周.棉铃虫对转Bt基因棉的抗性问题与对策[J].农业生物技术通讯,1998(2):1-2.
    195.范贤林,赵建周,范云六,石西平.转Bt基因植物对不同抗性棉铃虫的生长抑制作用[J].植物保护,2000,26(2):3-5.
    196.周兆斓,朱祯.植物抗虫基因工程研究进展[J].生物工程进展,1994,14(4):18-24.
    197.周晓梅,沈晋良.棉铃虫对转Cry1Ac基因棉的抗性遗传及AFLP标记研究[J].棉花学报,2005,17(5):269-274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700