棉铃虫对Bt毒素Cry1Ac抗性的分子遗传机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转基因棉花的大规模种植对控制鳞翅目害虫的为害发挥了重要作用,但害虫长期处于转基因作物Bt毒素的高压选择下,害虫对Bt作物的抗性问题将不容忽视。昆虫对Bt的抗性是一种遗传性状,其抗性基因就位于昆虫体内,参与体内各种代谢过程。目前,还没有一致的结论阐明昆虫对Bt毒素的抗性机制,其抗性机制是复杂和多样的。害虫抗性的遗传机制研究不仅有助于了解抗性本质和特征,而且是制定抗性治理策略的基础,是研究抗性的一个重要工具。无论是昆虫抗性适合度研究,还是昆虫抗性机理研究,试验材料都是非常重要的。通常研究害虫抗性都是通过比较抗、感品系之间的差异,所以尽可能缩小二者之间的差异,可以更大概率的找到抗性差异,这对研究害虫抗性,尤其是研究害虫抗性基因的DNA分子遗传标记是至关重要的。近等基因系(NIL)是一组遗传背景相同或相近,只在个别染色体区段上存在差异的品系,如果一对近等基因系在目标性状上表现差异,那么,凡是能在这对近等基因系间揭示多态性的分子标记,就可能位于目标基因的附近。因此,利用近等基因系材料,可以寻找与目标基因紧密连锁的分子标记。
     通过10多年的室内筛选,本研究室已经获得了对Bt具有较高抗性的棉铃虫种群,正在进一步研究其抗性机制。用大约一年半的时间,我们建立了棉铃虫抗性近等基因系。经过一系列回交和抗性再筛选,我们得到一个与敏感品系整个基因组具有至少93%的同源性、又具有较高抗性倍数的抗性近等基因系。
     以棉铃虫室内Bt抗性品系、敏感品系为试验材料,我们研究了棉铃虫对Bt毒素抗性的分子遗传机理。体重抑制法测定结果表明,用含区分剂量1.5μg/mL CrylAc毒料饲喂棉铃虫回交后代(BC)5d后,存活虫数:死亡虫数的比例为1:1,证实该虫对Bt毒素CrylAc的抗性为常染色体上不完全隐性遗传。
     利用AFLP分子标记技术,研究棉铃虫对Bt毒素CrylAc抗性的分子遗传机理,结果发现抗性基因BtR与AFLP标记EaaMctc2连锁,位于第4连锁群上EaaMctc2与EcaMcac1两个多态性标记之间,遗传距离分别为12.2cM±6cM和13.1cM±6cM。对标记EaaMctc2回收、克隆、测序,仅出现对于301bp处的单一条带。序列分析结果表明,该片段与GenBank中已知序列同源性较低。
     昆虫对Bt产生抗性后,在没有选择压力时,有些昆虫的抗性表现出不同程度的衰退,而有些则趋于稳定。棉铃虫抗性稳定性研究结果表明,在没有Bt选择压下,即用未加入Bt毒素的正常人工饲料饲养棉铃虫抗性品系五代,抗性倍数呈现快速下降的趋势,从3626.67倍下降到1033.33倍,下降了2593.34倍,抗性极不稳定。
The wide spread growth of Bacillus thuringiensis cotton has played an important role in Lepidopteran pests control.But because pests have been selected under the pressure of high-dose Bt toxin which produced by Bt cotton for a long time, thereby the resistance evolution of pests to Bt cotton should not be ignored. The resistance of insect pests is a genetic character; its resistance genes are in the body of insects and they participate in various kinds of metabolic processes. At present, there are no unanimous conclusions that can elucidate the molecular mechanism of Bt resistance, because it is so complex and variable. The genetic analysis of insect resistance can not only help to understand the resistance character and mechanism but also creat the basic to design the resistance management strategy.It is an important tool to investigate insect resistance. The experimental materials are very critical to research either on fitness costs or mechanisms of resistance. To study insect resistance always need to compare the differences between resistant lines and their susceptible parental lines, so it is very important to reduce the differences between them as soon as possible, which can ensure to find the resistant differences with more probability.This is important for studying on the resistance of insect, especially for researching on the DNA molecular genetic markers on resistance. The near-isogenic lines are the strains that have the same or close genetic backgrounds; they just have differences in one or two chromosome section(s). All of the markers that can reveal the polymorphisms between a pair of near-isogenic lines may locate in the vicinity of the goal traits, if there are differences in goal traits between them. Therefore, using the near-isogenic lines materials, we can find the molecular markers which tightly linked to the goal genes.
     By selection resistance for more than ten years in our laboratory, we have obtained a Bt resistant cotton bollworm (Helicoverpa armigera Hübner) strain with high level resistance to Bt Cry1Ac.Now the further resistance mechanism are being researched. A near-isogenic line of cotton bollworm was gotted using serial crossing and reseletion of the resistant allele in almost 1.5 years.This resistant strain (NIL_4) has at least 93% genetically homogeneity with the susceptible strain, and also has high resistance to Cry1Ac.
     In this dissertation, the molecular genetic mechanism of resistance to Bt in H.armigera were studied using the resistant (BtR) and susceptible (96s) strain as the materials. The determination results of weight inhibition method showed that the ratio between the survival and the dead in the backcross population (BC) of H. armigera was 1:1 after feeding diet with 1.5μg/mL Cry1Ac, a determining dose between resistant colony and heterozygote colony for 5d.This approved that the resistance genetic model was incompletely recessive autosomal heredity.
     AFLP method was applied to map the resistant gene marker in H. armigera to Bt toxin Cry1Ac on the basis of previous studies. The results showed that BtR gene flanked with two AFLP markers, EaaMctc2 and EcaMcac1, on the fourth linkage group in H. armigera, with 12.2cM±6cM and 13.1cM±6cM linkage distance. The AFLP marker EaaMctc2 was collected, cloned, and sequenced, and a band with 301bp length was obtained. The BLAST result showed that the sequence had low homology with other sequences in GenBank.
     After insects have evolved resistance, if there has no selection pressure, the resistance level will decline in some insect, whereas the resistance in other insects shows stable. We tested the resistance stability of H.armigera to Bt, the results showed that the resistance ratio declined rapidly in the absence of exposure of Cry1Ac 5 generations, the resistance ratio dropped to 1033.33-fold from 3626.67-fold.The resistance of H.armigera to Bt was not extremely stable.
引文
常菊花,刘凤沂,须志平,沈晋良.2007.害虫对Bt抗性遗传方式的研究进展.现代农药.6(5):5-13
    郭予元.1998.棉铃虫的研究.北京:中国农业出版社
    关雄.2006.苏云金芽孢杆菌研究回顾与展望.中国农业科技导报.8(6):5-11
    李号宾,吴孔明,杨秀荣,徐遥,姚举,汪飞,马祁.2006.新疆南部棉区棉铃虫发生趋势及Bt棉花的控制效率.中国农业科学.39(1):199-205
    梁革梅,谭维嘉,郭予元.1999.人工饲养棉铃虫技术的改进.植物保护.25(2):15-17
    梁革梅,谭维嘉,郭予元.2000.棉铃虫对Bt的抗性筛选及交互抗性研究.中国农业科学.33(4):46-53
    梁革梅,谭维嘉,郭予元.2000.棉铃虫对转Bt基因棉的抗性筛选及遗传方式的研究.昆虫学报.43(增刊):57-62
    梁革梅,徐广,王桂荣,吴孔明,郭予元.2005.棉铃虫中肠Bt毒素受体蛋白(APN)的分离与纯化.农业生物技术学报.13(1):102-107
    刘琴,徐健,赵松,殷向东.2006.苏云金杆菌杀虫蛋白的多样性.华东昆虫学报.15(4):263-267
    刘仁虎,孟金陵.2003.MapDraw在Excel中绘制遗传连锁图的宏.遗传.25(3):317-321
    刘凤沂,朱玉成,沈晋良.2008.F_1代法监测田间棉铃虫对转Bt基因棉的抗性.昆虫学报.51(9):938-945
    鲁成,万春玲.2001.中国野桑蚕和家蚕的AFLP分析.蚕业科学.27(4):243-252
    鲁成,李斌,赵爱春,向仲怀.2004.家蚕重要经济性状的QTL定位研究.中国科学G辑:生命科学.34(3):236-242
    罗倩,冯夏,吕利华,万树青,陈焕瑜.2007.小菜蛾对阿维菌素抗性基因的AFLP连锁图谱的构建.昆虫学报.50(5):474-480
    单长辉.2006.转基因微生物对土壤线虫的影响.河北农业大学硕士学位论文
    舒庆尧,叶恭银,崔海瑞,项友斌,高明尉.1998.Bt转基因水稻克螟稻选育.浙江农业大学学报.24(6):579-580
    万春玲,谭远德,朱玉芳,贺一原,鲁成,周择扬,向仲怀.2001.利用AFLP标记构建家蚕分子连锁图谱.中国农业科学.34(3):338-341
    吴孔明.2007.我国Bt棉花商业化的环境影响与风险管理策略.农业生物技术学报.15(1):1-4
    项友斌,梁竹青,高明尉,舒庆尧,叶恭银,成雄鹰.1999.农杆菌介导的苏云金杆菌抗虫基因Cry1Ab和Cry1Ac在水稻中的遗传转化及蛋白表达.生物工程学报.15(4):495-500
    张金卫,钟伯雄,丁农,吴卫成,赵丽华.2004.应用AFLP分子标记对6个家蚕品种的鉴定.蚕业科学.30(2):137-141
    周晓梅.2004.棉铃虫对转Bt基因棉抗性的分子遗传机理.南京农业大学博士学位论文
    周晓梅,沈晋良.2005.棉铃虫对转Cry1Ac基因棉的抗性遗传及AFLP标记研究.棉花学报.17(5):269-274
    张少平,吴孔明,程红梅.2007.棉铃虫Bt抗性基因表达差异及抗性受体APN1功能验证.中国农业科学院硕士论文
    张友洪,肖金树,周安莲.2008.AFLP分子标记技术及其在家蚕遗传育种中的应用.陕西农业科学.3:43-46
    朱玉芳,谭远德,万春玲,鲁成,贺一原,周择扬,向仲怀.2001.家蚕AFLP连锁框架图谱的构建.昆虫学报.44(4):483-493
    Adang MJ,Hua G,Chen J,Abdullah MAF.2005.Peptides for inhibiting insects.United States Patent Application US2005/0283857
    Alves AP,Spencer TA,Tabashnik BE,Siegfried BD.2006.Inheritance of Resistance to the CrylAb Bacillus thuringiensis Toxin in Ostrinia nubilalis(Lepidoptera:Crambidae).J Econ Entomol.99(2):494-501
    Akhurst RJ,James W,Bird L J,Beard C.2003.Resistance to the Cry1Ac delta-endotoxin of Bacillus thuringiensis in the cotton bollworm,Helicoverpa armigera(Lepidoptera:Noctuidae).J.Econ.Entomol.96(4):1290-1299
    Andow DA,Ires RA.2002.Monitoring and.adaptive resistance management.Eeol.Appl.12:1378-1390
    Augustin S,Courtin C,Rejasse A,Lorme P,Genissel A,Bourguet D.2004.Genetics of Resistance toTransgenic Bacillus thuringiensis Poplars in Chrysomela tremulae(Coleoptera:Chrysomelidae).J Econ Entomol.97(3):1058-1064
    Avise JC.2000.Phylogeography:the History and Formation of Species.Cambridge,Massachusetts:Harvard University Press
    Barton KA,Whiteley HR,Yang NS.1987.Bacillus thuringiensis Delta - endotoxin expressed in transgenic Nicotiana tabacum Provides resistance to lepidoptern insects.Plant Physiol.85:1103-1109
    Bassam BJ,Gaetano-Anoll(?)s G,Gresshoff PM.1991.Fast and sensitive silver staining of DNA in polyacrylamide gels.Analytical Biochemistry.196:80-83
    Bates SL,Zhao JZ,Roush RT,Shelton AM.2005.Insect resistance management in GM crops:past,present and future.Nature Biotechnology.23:57-62
    Baxter SW.2005.Molecular and genetic analysis of Bt and spinosad resistance in diamondback moth,Plutella xylostella.PhD Thesis,University of Melbourne,Melbourne,Australia
    Baxter SW,Zhao JZ,Gahan LJ,Shelton AM,Tabashnik BE,Heckel DG.2005.Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella.Insect Mol.Biol.14:327-334
    Behura SK,Valicente FH,Rider SD Jr,Chert MS,Jackson S,Stuart JJ.2004.A physically anchored genetic map and linkage to avirulence reveals recombination suppression over the proximal region of Hessian fly chromosome A2.Genetics.167(1):343-355
    Berliner E.1911.(U|¨)ber die schlaffsucht der mehlmottenraupe.(Ephestia k(u|¨) hniella zell.) und ihren erreger Bacillus thuringiensis n.sp.Zeitschrift fur Angewandte Entomologie.2:29-56
    Bird LJ,Akhurst RJ.2004.Relative fitness of Cry1A-resistant and -susceptible Helicoverpa armigera (Lepidoptera: Noctuidae) on conventional and transgenic cotton. J. Econ. Entomol.97:1699-1709
    
    Bird LJ, Akhurst RJ.2005. Fitness of Cry1 A-resistnt and-susceptible Helicoverpa armigera (Lepidoptera: Noctuidae) on transgenic cotton with reduced levels of Cry 1 Ac. J. Econ. Entomol.98:1311-1319
    
    Bolin PC, Hutchison WD, Andow DA. 1999. Long-term selection for resistance to Bacillus thuringiensis Cry1Ac endotoxin in a Minnesota population of European corn borer (Lepidoptera: Crambidae). J.Econ.Entomol.92: 1021 -1030
    
    Bravo A, Gómez I, Conde J, Mu(?)oz -Garay C, Sanchez J, Miranda R, Zhuang M, Gill SS, Soberon M.2004. Oligomerization triggers binding of a. Bacillus thuringiensis Cry1 Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains.Biochim. Biophys.Acta.1667:38-46
    
    Bravo A, Gill SS, Soberón M.2005.Bacillus thuringiensis Mechanisms and Use. In:Comprehensive Molecular Insect Science Elsevier BV.pp.175-206
    
    Bravo A, Gill SS, Soberón M.2007.Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon.49:423-435
    
    Burd AD, Gould F, Bradly JR., van Duyn JW, Moar WJ.2003.Estimated frequency of nonrecessive Bt resistance genes in bollworm, Helicoverpa zea (Boddie) (Lepidoptera:Noctuidae) in eastern North Carolina.J.Econ.Entomol.96:137- 142
    
    Busato GR, Grützmacher AD, Oliveira AC De, Vieira EA, Zimmer PD, Kopp MM, Bandeira JM De, Magalh(?)es TR.2004. Analysis of the molecular structure and diversity of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) populations associated to the corn and rice crops in Rio Grande do Sul State, Brazi. Neotropical Entomology.33: 709-716
    
    Butko P, Huang F, Pusztai-Carey M, Surewicz WK.1997.Interaction of the delta-endotoxin CytA from Bacillus thuringiensis var israelensis with lipid membranes. Biochemistry 36:12862-12868
    
    Butko P.2003.Cytolytic Toxin Cyt 1 A and Its Mechanism of Membrane Damage: Data and Hypotheses.Applied and Environmental Microbiology.69 (5):2415-2422
    
    Buzdin AA, Revina LP, Kostina LI, Zalunin IA, Chestukhina GG.2002.Interaction of 65- and 62-kD proteins from the apical membranes of the Aedes aegypti larvae midgut epithelium with Cry4B and Cry11A endotoxins of Bacillus thuringiensis. Biochemistry (Moscow) 67:540-546
    
    Carlton BC, Gonzalez JMJr.1985.Plasmids and delta-endotoxin production in different subspecies of Bacillus thuringiensis.In: Molecular biology of microbial differentiation .eds. Hoch JA, Setlow P. Washington DC: American Society for Microbiology.246-252
    
    Carlier MF.1990.Actin polymerization and ATP hydrolysis.Adv Biophys.26:51-73
    Carrière Y, Ellers-Kirk C, Sisterson M, Antilla L, Whitlow M, Dennehy TJ, Tabashnik BE.2003.Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton.Proc.Natl.Acad.Sci.USA.100:1519-1523
    Cervera MT, Cabezas JA, Simon BC, Martínez-Zapaterl JM, Beitia F, Cenis JL.2000. Genetic relationships among biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) based on AFLP analysis. Bulletin of Entomological Research.90 (5): 391-396
    
    Chaufaux J, üller-Cohn JM, Buisson C, Sanchis V, Lereclus D, Pasteur N, Mullercohn J.1997. Inheritance of Resistance to the Bacillus thuringiensis Cry1C Toxin in Spodoptera littoralis (Lepidoptera: Noctuidae).J Econ Entomol.90: 873-878
    
    Cheng XY, Sardana E, Kaplan H.1998. Agrobacteriumtransformed rice plants expressing synthetic cry1A (b) and CrylA (c) genes are highly toxic to striped stem borer and yellow stem borer. Proc. Natl. Acad. Sci. U.S.A.95: 2767-2772
    
    Clark PL, Molina-Ochoa J, Martinelli S, Skoda SR. Isenhour DJ, Lee DJ, Krumm JK, Foster JE.2007.Population variation of the fall armyworm, Spodoptera frugiperda, in the Western Hemisphere. Journal of Insect Science.7 (5): 1536-2442
    
    Corsini G, Manubens A, Lladser M, Lobos S, C.1999. AFLP analysis of the fruit fly Ceratitis capitata. Agricultural biotechnology.21 (3): 72-73
    
    Coustau C, Chevillon C, Ffrench-Constant R.2000. Resistance to xenobiotics and parasites: can we count the cost? Trends Ecol.Evol.15: 378-383
    
    Debabov V, Azizbekyan R, Kleballina O, D'yachenko V, Galushka F, Belykh R.1977. Isolation and preliminary characteristics of extrachromosomal elements of Bacillus thuringiensis DNA.Genetika. 13:496-501
    
    de Maagd RA, Bravo A, Crickmore N.2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet.l7:193-199
    
    Dulmage HT.1970.Insecticidal activity of HD-1,a new isolate of Bacillus thuringiensis.J. Invertebr.Pathol.15:232-239
    
    Demaagd RA, Bravo A, Crickmore N.2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends in Genetics. 17 (4): 193-199
    
    Donovan WP, Donovan JC, Engleman JT. 2001. Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera frugiperda. J. Invertebr. Pathol.78:45-51
    
    Dorsch JA, Candas M, Griko NB, Maaty WSA, Midboe EG, Vadlamudi RK, Bulla LA.2002.
    CrylA toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane proximal extracellular domain of BT-R-1 in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis. Insect Biochem.Mol.Biol.32:1025-1036
    
    Du J, Knowles B H, Li J, Ellar D J.1999.Biochemical characterization of Bacillus thuringiensis cytolytic toxins in association with a phospholipid bilayer.Biochem.J.338:185-193
    
    English L, Robbins HL, Von Tersch MA, Kulesza CA, Ave D, Coyle D, Jany CS, Slatin S. 1994. Mode of action of CryIIA: a Bacillus thuringiensis delta-endotoxin.Insect Biochem.Mol.Biol.24:1025-1035
    
    Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG. 1996.Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Pro NatlAcad SciUSA.93: 5389-5394
    
    Estruch JJ, Yu CG, Warren GW, Desai NM, Koziel MG, Nye GJ.2000.Class of proteins for the control of plant pests.United States Patent.US6107279
    
    Federici BA, Bauer LS.1998. Cyt1A protein of Bacillus thuringiensis is toxin to the cottonwood leaf beetle, Chrysomela scripta, and suppresses high levels of resistance to Cry3Aa. Appl. Environ. Microbiol.64: 4368-4371
    
    Ferre J, Real MD, van Rie J, Jansens S, Peferoen M.1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. U S A.88 (12): 5119-5123
    
    Ferre J, van Rie J. 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis Annu. Rev. Entomol. 47: 501-533
    
    Fernandez LE, Aimanova KG, Gill SS, Bravo A, Soberon M. 2006.A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cryl 1 Aa toxin in Aedes aegypti larvae. Biochem.J. 394:77-84
    
    Fishhoff D, Bondish K.1987. Insect tolerant transgenic tomato plants.Biotechnology.5: 807-813
    
    Frutos R, Rang C, Royer M.1999.Managing resistance to plants producing Bacillus thuringiensis toxins.Crit.Rev.Biotechnol. 19:227-276
    
    Gahan LJ, Gould F, Heckel DG.2001. Identification of a gene associated with Bt resistance in Heliothis virescens. Science.293: 857-860
    
    Gahan LJ, Ma YT, Coble MLM, Gould F, Moar WJ, Heckel DG.2005.Genetic Basis of Resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera: Noctuidae). J Econ Entomol.98 (4): 1357-1368
    
    Galushka FP, Azizbekyan RR. 1997. Investigation of plasmids different variants of Bacillus thuringiensis. Dokl.Akad. Nauk (USSR). 236: 1233-1235
    
    Glaser JA, Marten SR.2003.Sustainability of insect resistance management strategies for transgenic Bt corn.Biotechnol.Adv.22:45-69
    
    Gomez I, Pardo-López L, Mu(?)oz-Garay C, Fernandez LE, Perez C, Sanchez J, Soberon M, Bravo A.2007. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis.Peptides.28: 169-173
    
    Gonzalez JM Jr, Brown BJ, Carlton BC. 1982.Transfer of Bacillus thuringiensis plasmids encoding for 8- endotoxin among strains of B. thuringiensis and B. cereus.Proc.Natl .Acad. Sci.USA.79:6951-6955
    
    Gould F, Anderson A. 1991.Effects of Bacillus thuringienesis and HD-73 delta-endotoxin on growth, behavior, and fitness of susceptible and toxin-adapted strains of Heliothis virescens (Lepidoptera: Noctuidae). Environ. Entomol.20:30-38
    
    Gould F, Anderson A, Reynolds A, Bumgarner L, Moar W.1995.Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J. Econ. Entomol.88 (6): 1545-1559
    
    Gould F.1998. Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology. Ann Rev Entomol.43: 701-726
    
    Groeters FR, Tabashnik BE,Finson N, Johnson MW.1993. Resistance to Bacillus thuringiensis affects mating success of the diamondback moth (Lepidoptera: Plutellidae).J. Econ. Entomol.86:035-1039
    
    Groeters FR, Tabashnik BE, Finson N, Johnson MW.1994. Fitness costs of resistance to Bacillus thuringiensis in the diamondback moth (Plutella xylostella). Evolution.48:197-201
    
    Gunning RV, Dang HT, Kemp FC, Nicholson IC, Moores GD.2005. New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1 Ac toxin. Appl.Environ. Microbiol.71:2558-2563
    
    Guerchicoff A, Delecluse A, Rubinstein CP.2001.The Bacillus thuringiensis cyt genes for hemolytic endotoxins constitute a gene family. Applied and Environmental Microbiology.67:1090-1096
    
    Hama H, Suzuki K, Tanaka H.1992. Inheritance and stability of resistance to Bacillus thuringiensis formulations of the diamondback moth Plutella xylostella (Linnaeus) (Lepidoptera: Yponomeutidae). Appl. Entomol. Zool. 27: 355-362
    
    Hannay CL. 1953. Crystalline inclusions in aerabic sporeforming bacteria.Nature. 172:1004
    Hannay CL, Fitz-james PC.1955.The protein crystals of Bacillus thuringiensis Berliner.Can.J .Microbiol. 1:694-710
    
    Han S, Craig JA, Putnam CD, Carozzi NB, Trainer JA.1999.Evolution and mechanism from structures of and ADP-ribosylating toxin and NAD complex.Nature Structural Biology. 6: 932-936
    
    Hawthorne DJ.2001.AFLP-based genetic linkage map of the Colorado potato beetle Leptinotarsa decemlineata: sex chromosomes and a pyrethroid- resistance candidate gene. Genetics. 158 (2): 695-700
    
    Hawthorne DJ.2003.Quantitative trait locus mapping of pyrethriod resistance in Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae).J. Econ. Entomol.96 (4): 1021-1030
    
    Heckel DG, Abort AG, Brown TM.1988.Genetic Linkage Mapping and Insecticide Resistance in Heliothis virescens.Sericologia.28: 49
    
    Heckel DG. 1993. Comparative genetic linkage mapping in insects. Annual Review of Entomology .38:3 81-408
    
    Heckel DG. 1994. The complex genetic basis of resistance to Bacillus thuringiensis toxin in insects. Biocontrol Sci Technol.4 (4):405-417
    
    Heckel DG, Gahan LJ, Gould F, Anderson A. 1997. Identification of a Linkage Group with a Major Effect on Resistance to Bacillus thuringiensis CrylAc Endotoxin in the Tobacco Budworm (Lepidoptera: Noctuidae). J Econ Entomol.90: 75-86
    Heckel DG, Gahan LJ, Gould F, Daly JC, Trowell S. 1997. Genetics of Heliothis and Helicoverpa resistance to chemical insecticides and to Bacillus thuringiensis, Pesticide.Science.51:251-258
    
    Heckel DG, Gahan LJ, Daly JC, Trowell S.1998. A genomic approach to understanding Heliothis and Helicoverpa resistance to chemical and biological insecticides.Philosophical Transactions of the Royal Society of London-Series B.353:1713-1722
    
    Heckel DG, Gahan LJ, Liu YB, Tabashnik BE.1999.Genetic Mapping of Resistance to Bacillus thuringiensis Toxins in Diamondback Moth Using Biphasic Linkage Analysis. Proc Natl Acad Sci.96: 8373-8377
    
    Heckel DG.2002. Mechanisms of defense against and resistance to Bacillus thuringiensis toxins.In: Akhurst RJ, Beard CE, Hughes PA.(Eds.).The Biotechnology of Bacillus thuringiensis and Its Environmental Impact.CSIRO Entomology, Canberra. pp. 52-66
    
    Heckel DG. 2003. Genomics in pure and applied entomology.Annual Review of Entomology. 48:235-260
    
    Herrero S, Oppert B, Ferré J.2001.Different mechanisms of resistance to Bacillus thuringiensis toxins in the Indianmeal moth. Appl. Environ. Microbiol.67:1085-1089
    
    Herrero S, Gechev T, Bakker PL, Moar WJ, de Maagd RA.2005.Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes.BMC Genomics.6
    
    Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D.1987.A novel mechanism of insect resistance engineered into tobacco .Nature.330:160-163
    
    Hofte H, Whiteley HR. 1989.Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews 53:242-255
    
    Hossain DM, Shitomi Y, Nanjo Y, Takano D, Nishiumi T, Hayakawa T, Mitsui T, Sato R, Hori H.2005. Localization of a novel 252-kDa plasma membrane protein that binds Cry1A toxins in the midgut epithelia of Bombyx mori. Appl. Entomol. Zool.40:125-135
    
    Hoy MA.2003.Insect Molecular Genetics, 2nd edn, Academic Press/Elsevier, San Diego, California.pp.560
    
    Hua G, Jurat-Fuentes JL, Adang M.J.2004.Bt-R-la extracellular cadherin repeat 12 mediates Bacillus thuringiensis Cry1Ab binding and cytotoxicity. J. Biol. Chem. 279:28051-28056
    
    James C. 2005. Executive summary of global status of commercialized biotech.GM Crops.ISAAA Brief No.34
    
    James C. 2006. Executive summary of global status of commercialized biotech/GM Crop.ISAAA Briefs No.35.
    
    Janmaat AF, Meyers J.2003. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers Trichoplusia ni.Proc.R.Soc.Lond.B Biol. Sci.270: 2263-2270
    
    Janmaat AF, Wang P, Kain W, Zhao JZ, Myers J.2004.Inheritance of Resistance to Bacillus thuringiensis Subsp. kurstakiin Trichoplusia ni.Appl Environ Microbiol.70 (10):5859-5867
    
    Jurat-Fuentes JL, Gouid FL, Adang MJ.2002.Altered Glycosylation of 63- and 68-kilodalton microvillar proteins in Heliothis virescens correlates with reduced Cry1 toxin binding, decreased pore formation, and increased resistance to Cryl toxins. Appl. Environ. Microbiol.68:5711-5717
    
    Jurat-Fuentes JL, Gould FL, Adang MJ.2003.Dual resistance to Bacillus thuringiensis Cry1 Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance. Appl. Environ. Microbiol.69:5898-5906
    
    Jurat-Fuentes JL, Adang MJ.2004.Characterization of a Cry1 Ac receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae.Eur.J.Biochem.271: 3127-3135
    
    Jurat-Fuentes JL, Gahan LJ, Gould FL, Heckel DG, Adang MJ.2004.The HevCaLP protein mediates binding specificity of the Cry1A class of Bacillus thuringiensis toxins in Heliothis virescens. Biochemistry.43: 14299-14305
    
    Jurat-Fuentes JL, Adang MJ.2006.Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae. J. Invertebr. Pathol.92 (3): 166-171
    
    Jurat-Fuentes JL, Adang MJ. 2007. A proteomic approach to study Cry1 Ac binding proteins and their alterations in resistant Heliothis virescens larvae.J. Invertebr. Pathol.95 (3):187-191
    
    Kain WC, Zhao JZ, Janmaat AF, Myers J, Shelton AM, Wang P.2004. Inheritance of resistance to Bacillus thuringiensis Cry1 Ac toxin in a greenhouse-derived strain of cabbage looper (Lepidoptera: Noctuidae). J. Econ. Entomol.97:2073-2078
    
    Kakouli-Duarte T, Casey DG, Burnell AM.2001.Development of a diagnostic DNA probe for the fruit flies Ceratitis capitata and Ceratitis rosa (Diptera: Tephritidae) using amplified fragment-length polymorphism.Journal of Economic Entomology.94:989-997
    
    Karim S, Dean DH. 2000a. Toxicity and receptor binding properties of Bacillus thuringiensis 5-endotoxins to the midgut brush border membrane vesicles of the rice leaf folders, Cnaphalocrocis medinalis and Marasmia patnalis.Curr.Microbiol. 41:276- 283
    
    Karim S, Dean DH. 2000b. Pesticidal and receptor binding properties of Bacillus thuringiensis Cry1Ab and Cry1 Ac δ-endotoxin mutants to Pectinophora gossypiella and Helicoverpa zea.Curr.Microbiol. 41:430-440
    
    Karim S, Riazuddin S, Gould F, Dean DH. 2000. Determination of receptor binding properties of Bacillus thuringiensis 5-endotoxins to cotton bollworm (Helicoverpa zea) and pink bollworm (Pectinophora gossypiella) midgut brush border membrane vesicles.Pestic.Biochem. Physiol. 67:198-216
    
    Kirsch K, Schmutterer H.1988.Low efficacy of Bacillus thuringiensis (Berliner) formulation in controlling the diamond back moth, Plutella xylostella (L.) in the Philippines.J Appl Entomol.105:249-255
    
    Klier A, Bourgouin G, Rapoport G. 1983.Mating between Bacillus subtilis and Bacillus thuringiensis and transfer of cloned crystal genes. Mol. Gen. Genet. 19:257-262
    
    Knight PJ, Knowles BH, Ellar DJ. 1995. Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis Cry 1 Ac toxin.J. Biol. Chem.270:17765-17770
    
    Lee MK, Walters FS, Hart H, Palekar N, Chen JS.2003.The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of CrylAb-endotoxin. Applied and Environmental Micro-Biology.69 (8): 4648-4657
    
    Liang GM, Wu KM, Yu HK, Li KK, Feng X, Guo YY.2008. Changes of inheritance mode and fitness in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) along with its resistance evolution to Cry1Ac toxin. J. Invertebr. Pathol.97 (2):142-149
    
    Liu YB, Tabashnik BE. 1997. Inheritance of resistance to the Bacillus thuringiensis toxin Cry1C in the diamondback moth. Appl. Environ. Microbiol.63:2218-2223
    
    Liu YB, Tabashnik BE, Dennehy TJ, Patin AL, Bartlett AC. 1999. Development time and resistance to Bt crops. Nature.400: 519
    
    Loeb MJ, Martin PAW, Hakim RS, Goto S, Takeda M.2001.Regeneration of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis. J. Insect Physiol.47:599-606
    
    Loxdale HD, Lushai G. 1998.Molecular markers in entomology.Bulletin of Entomological Research.88: 577-600
    
    Ma G, Roberts H, Sarjan M, Featherstone N, Lahnstein J, Akhurst R, Schmidt O. 2005. Is the mature endotoxin CrylAc from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant, Helicoverpa armigera larvae?Insect Biochem. Mol. Biol. 35:729-739
    
    Mallet J, Porter P. 1992.Preventing insect adaptation to insect-resistant crops: are seed mixtures or refugia the best strategy? Proc.R.Soc.Lond.B.250:165-169
    
    Mahon RJ, Olsen KM, Garsia KA, Young SR. Resistance to Bacillus thuringiensis toxin Cry2Ab in a strain of Helicoverpa armigera (Lepidoptera: Noctuidae) in Australia. J. Econ. Entomol. 100 (3):894-902
    
    McGaughey WH. 1985. Insect Resistance to the Biological Insecticide Bacillus thuringiensis.Science.229 (4709): 193-195
    
    McGaughey WH, Beeman RW.1988. Resistance to Bacillus thuringiensis in colonies of Indianmeal moth and almond moth (Lepidoptea: Pyralidae). J. Econ. Entomol.81: 28-33
    
    Mendelson TC, Shaw KL.2005.Use of AFLP markers in surveys of arthropod diversity. Methods in Enzymology.395:161-177
    
    Meng F, Shen J, Zhou W, Cen H.2003. Long-term selection for resistance to transgenic cotton expressing Bacillus thuringiensis toxin in Helicoverpa armigera (Hiibner) (Lepidoptera: Noctuidae).Pest Manag. Sci. 60:167-172
    
    Mesrati A, Tounsi S, Jaoua S. 2005.Characterization of a novel vip32type gene from Bacillus thuringiensis and evidence of its presence on a large plasmid. Ferns Microbiol Lett.244 (2):353-358
    
    Meudt HM, Clarke AC. 2007. Almost Forgotten or Latest Practice? AFLP applications, analyses and advances.Trends in Plant science. 12 (3): 106-117
    Milne R, Wright T, Kaplan H, Dean D.1998.Spruce budworm elastase precipitates Bacillus thuringiensis delta-endotoxin by specifically recognizing the C-terminal region.Insect Biochem. Mol.Biol.28:1013-1023
    
    Ming QL, Wang CZ.2006. Genetic differentiation of Helicoverpa armigera (Hübner) and H. assulta (Guenée) (Lepidoptera: Noctuidae) based on AFLP markers. Journal of Insect Science. 13:437-444
    
    Moar WJ, Pusztai-Carey M, Van Faassen H, Bosch D, Frutos R, Rang C, Luo K, Adang MJ. 1995. Development of Bacillus thuringiensis Cry1C resistance by Spodiptera exigua (Hübner) (Lepidoptera: Noctuidae).Appl. Environ. Microbiol.61 (6):2086-2092
    
    Morin S, Biggs RW, Sisterson MS, Shriver L, Ellers-Kirk C, Higginson D, Holley D, Gahan LJ, Heckel DG, Carriere Y, Dennehy TJ, Brown JK, Tabashnik BE.2003. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc.Natl. Acad. Sci. USA.100(9):5004-5009
    
    Muehlbauer GJ, Specht JE, Thomas-Compton MA, Staswick PE.1988.Near-isogenic lines-A potential resource in the integration of conventional and molecular marker linkage maps. Crop Sci.28:729-735
    
    Müller-Cohn J, Chaufaux J, Buisson C, Gilois N, Sanchis V, Lereclus D.1996. Spodoptera littoralis (Lepidoptera: Noctuidae) resistance to CrylC and cross resistance to other Bacillus thuringiensis crystal toxins. J. Econ. Entomol.89:791-797
    
    Nagamatsu Y, Koike T, Sasaki K, Yoshimoto A, Furukawa Y.1999. The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal Cry1Aa toxin.FEBS Lett.460 (2):385-390
    
    Oppert B.1999.Protease interactions with Bacillus thuringiensis insecticidal toxins.Arch.Insect Biochem.Physiol.42:1-12
    
    Oppert B, Hartzer K, Smith CM.2000.Characterization of the digestive proteinases of Hypera postica (Gyllenhal) (Coleoptera: Curculionidae).Transactions of the Kansas Academy of Sciences. 103:99-110
    
    Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA. 1990. Insect resistant cotton plants. Biotechnology.8:939-942
    
    Promdonkoy B, Ellar DJ. 2003. Investigation of the pore forming mechanism of a Cytolitic d-endotoxin from Bacillus thuringiensis. Biochem.J 374:255-259
    
    Rahardja U, Whalon ME. 1995. Inheritance of resistance to Bacillus thuringiensis subsp.tenebrionis CrylllA 5-endotoxin in Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol.88:21- 26
    
    Rajagopal R, Sivakumar S, Agrawal N, Malhotra P, Bhatnagar RK. 2002. Silencing of Midgut Aminopeptidase N of Spodoptera litura by Double-stranded RNA Establishes Its Role as Bacillus thuringiensis Toxin Receptor. J Biol Chem.277:46849-46851
    
    Rang C, Gil P, Neisner N, Rie JV, Frutos R.2005.Novel Vip3-related protein from Bacillus thuringiensis.Applied and Environmental Microbiology.71 (10): 6276-6281
    
    Roush RT, McKenzie JA.1987.Ecological Genetics of Insecticide and Acaricide Resistance. Annu Rev Entomol.2:361-380
    
    Roush RT, Tabashnik BE.1990.Pesticide Resistance in Arthropods. New York: Chapman & Hall
    
    Roush RT. 1997a. Managing resistance to transgenic crops.In Carozzi NB, Kozielln MG. ed.In advances in insect control: the role of transgenic plants. London: Taylor and Francis.271-294
    
    Roush RT.1997b.Managing resistance to transgenic crops.In Advances in Insect Control.eds.Carozzi N, Koziel M. Taylor and Francis, London, UK.271-294
    
    Roush RT. 1998. Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Phil. Trans.R.Soc.Lond.B 353:1777-1786
    Ruppell O, Pankiw T, Page RE.2004.PIeiotropy, epistasis and new QTL: the genetic architecture of honeybee foraging behavior. Journal of Heredity.95:481-491
    
    Sangadala S, Walters FS, English LH, Adang MJ.1994.A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis Insecticidal Cry1A(c) toxin binding and (Rb+-K+)-Rb-86 efflux in vitro. J. Biol. Chem. 269:10088-10092
    
    Salvato P, Battisti A, Concato S, Masutti L, Patarnello T, Zane L. 2002.Genetic differentiation in the winter pine processionary moth (Thaumetopoea pityocampa-wilkinsoni complex), inferred by AFLP and mitochondrial DNA markers. Molecular Ecology. 11:2435-2444
    
    Sarauer BL, Gillott C, Hegedus D.2003.Characterization of an intestinal mucin from the peritrophic matrix of the diamondback moth, Plutella xylostella. Insect Mol. Biol. 12:333-343
    
    Sayyed AH, Wright DJ.2001.Cross-resistance and Inheritance of Resistance to Bacillus thuringiensis Toxin Cry 1 Ac in Diamondback Moth (Plutella xylostella L) from Lowland Malaysia.Pest Manag.Sci.57:413-421
    
    Schnepf HE, Whiteley HR. 1981.Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc Natl Acad Sci USA.78 (5):2893-2897
    
    Schnepf HE, Whiteley HR. 1985.Delineation of a toxin-encoding segment of the Bacillus thuringiensis crystal proteins gene. Biol Chem.260: 6273-6280
    
    Schnepf E, Crickmore N, van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH. 1998. Bacillus thuringiensis and Its Pesticidal Crystal Proteins.Microbiol.Mol.Biol.Rev.62: 775- 806
    
    Severson DW, Brown SE, Knudson DL.200I. Genetic and physical mapping in mosquitoes: molecular approaches. Annual Review of Entomology.46:183-219
    
    Selvapandiyan A, Arora N, Rajagopal R, Jalali SK, Venkatesan T, Singh SP, Bhatnagar RK. 2001. Toxicity analysis of N- and C-terminusdeleted vegetative insecticidal protein from Bacillus thuringiensis. Appl. Environ.Microbiol. 67:5855-5858
    
    Shai Y.2001.Molecular recognition within the membrane milieu: implications for the structure and function of membrane proteins. J.Membr Biol.182:91-104
    Shao ZZ, Cui YL, Liu XL, Yi HQ, Ji JH, Yu ZN. 1998.Processing of delta-endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors.J.Invert.Pathol.72:73-81
    
    Shelton AM Roberson JL, Tang JD, Perez C, Eigenbrode SD, Preisler HK, Wilsey WK, Cooley RJ.1993. Resistance of diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field. J. Econ. Entomol.86:697-705
    
    Shelton AM, Tang JD, Roush RT, Metz TD, Earle ED.2000.Field tests on managing resistance to Bt-engineered plants.Nat.BiotechnoI.18:339-342
    
    Shu QU, Ye GY, Cui HR, Cheng XY, Xiang YB, Wu DX, Gao MW, Xia YW.2000.Transgenic rice plants with a synthetic cry1Ab gene from Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species.Molecular Breeding.6: 433-439
    
    Sima YH, Li B, Chen DX, Sun DB, Zhao AC, Zhang L, Lu C, He SM, Xiang ZH.2006.
    Construction and analysis of an AFLP molecular linkage map of the silkworm (Bombyx mori).Chinese Journal of Agricultural Biotechnology.3 (1): 25-31
    
    Sims SR, Stone TB.1991. Genetic Basis of Tobacco Budworm Resistance to an Engineered Pseudomonas fluorescens expressing the 8-Endotoxin of Bacillus thuringiensis var. kurstaki. J Invertebr Pathol.57: 206-210
    
    Soberon M, Pardo-López L, Lápez I, Gomez I, Tabashnik BE, Bravo A.2007a. Engineering modified Bt toxins to counter insect resistance. Science.318 (5856): 1640-1642
    
    Soberon M, Fernandez LE, Perez C, Gill SS, Bravo A.2007b.Mode of action of mosquitocidal Bacillus thuringiensis toxins. Toxicon.49 (5):597~600
    
    Tabashnik BE, Cushing NL, Finson N, Johnson MW.1990. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae)J.Econ.Entomol. 83:1671-1676
    
    Tabashnik BE, Finson N, Johnson MW, Hechel DG. 1994a. Cross-resistance to toxins from Bacillus thuringiensis toxin Cry1F in the diamondback moth (Lepidoptera: Plutellidae). Appl. Environ. Microbiol.60:4627-4629
    
    Tabashnik BE, Finson N, Groeters FR, Moar WJ, Johnson MW, Luo K, Adang MJ.1994b. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc. Natl. Acad. Sci. USA. 91:4120-4124
    
    Tabashnik BE. 1994c. Evolution of resistance to Bacillus thuringiensis Annu. Rev Entomol.39:47-79
    
    Tabashnik BE.1994.Delaying insect adaptation to transgenic plants: seed mixtures and refugia reconsidered.Proc.R.Sco.Lond.B. 255:7-12
    
    Tabashnik BE, Malvar T, Liu YB, Finson N, Borthakur D, Heckel DG, Masson L, Ballester V, Granero F, Ménsua JL, Ferré J.1996. Cross-resistance of diamondback moth indicates altered interactions with domine II of Bacillus thuringiensis toxins. Appl. Environ. Microbiol.62: 2839-2844
    Tabashnik BE, Liu Y-B, Finson N, Masson L, Heckel DG.1997.One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. Proc. Natl. Acad. Sci. USA 94:1640-1644
    
    Tabashnik BE, Carriere Y, Dennehy TJ, Morin S, Sisterson MS, Roush RT, Shelton AM, Zhao JZ.2003.Insect resistance to transgenic Bt crops: lessons from the laboratory and field. J Econ Entomol.96 (4): 1031-1038
    
    Tabashnik BE, Gassmann AJ, Crowder DW, Carriere Y.2008. Insect resistance to Bt crops: evidence versus theory. Nat. biotechnol.26 (2):199-202
    
    Takami Y, Koshio C, Ishii M, Fujii H, Hidaka T, Shimizu I. 2004.Genetic diversity and structure of urban populations of Pieris butterflies assessed using amplified fragment length polymorphism. Molecular Ecology. 13:245-258
    
    Tan YD, Wan CL, Zhu YF, Lu C, Xiang ZH, Deng HW. 2001. An amplified fragment length polymorphism map of the silkworm. Genetics. 157:1277-1284
    
    Tang JD, Collins HL, Metz TD, Earle ED, Zhao JZ, Roush RT, Shelton AM.2001.Greenhouse tests on resistance management of Bt transgenic plants using refuge strategies.J.Econ.Entomol.94:240-247
    
    Trisyono A, Whalon ME.1997.Fitness costs of resistance to Bacillus thuringiensis in Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology.90:267-271
    
    Tu J, Zhang G, Datta K, Xu C, He Y, Zhang Q.Khush GS, Datta SK.2000.Field performance of transgenic elite commercial hybrid rice expessing Bacillus thruingiensis 8- endotoxin.Nature Biotechnology. 18:1101-1104
    
    Vadlamudi RK, Weber E, Ji I, Ji TH, Bulla LA Jr.1995.Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J. Biol. Chem.270: 5490-5494
    
    Vaeck M, Reynaerts A, H(o|¨)fte H, Jansens S, De Beukeleer M, Dean C, Zabeau M, Montagu MV, Leemans J.1987. Transgenic plants protected from insect attack. Nature.328:33-37
    
    Valaitis A.1995.Bacillus thuringiensis Cry1 A insecticidal toxins affect rapid release of gypsy moth midgut epithelium aminopeptidase. In: Proceedings USDA Interagency Gypsy Moth Forum, Gen.Tech.Rept.NE-213, Annapolis, MD
    
    Valaitis AP, Jenkins JL, Lee MK, Dean DH, Garner KJ.2001. Isolation and partial characterization of Gypsymoth BTR-270 an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity. Arch. Ins. Biochem. Physiol. 46:186-200
    
    van Rie J, McGaughey WH, Johnson DE, Barnett BD, van Mellaert H.1990.Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science.247:72-74
    
    Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T.1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res.23:4407-4414
    Wan P, Wu KM, Huang MS, Wu J. 2004.SeasonaI pattern of infestation by pink bollworm Pectinophora gossypiella (Saunders) in field plots of Bt transgenic cotton in the Yangtze River Valley of China. Crop Protection.23 (5):463-467
    
    Wan P, Zhang YJ, Wu KM, Huang MS.2005. Seasonal expression profiles of insecticidal protein and control efficacy against Helicoverpa armigera for Bt Cotton in the Yangtze River Valley of China. Journal of Economic Entomology.98 (1):195-201
    
    Ward ES, Ellar DJ.1988.Bacillus thuringiensis var. israelensisδ-endotoxin: Nucleotide sequence and characterization of the transcripts in Bacillus thuringiensis and Escherichia coli. Mol Biol.191:1-11
    
    Warren GW, Koziel MG, Mullins MA.1996.Novel pesticidal proteins and strains.World Intellectual Property Organization.Patent WO 96/10083
    
    Warren GW. 1997.Vegetative insecticidal proteins: novel proteins for control of corn pests. In: Carozzi NB, Koziel M (eds) Advances in insect control, the role of transgenic plants, Taylor & Francis Ltd, London.pp 109-121.ISBN 0748404171
    
    Warren GW, Koziel MG, Mullins MA. 1998. Auxiliary proteins for enhancing the insecticidal activity of pesticidal proteins.US.Patent 5770696
    
    Wong A, Forbes MR, Smith ML.2000. Characterization of AFLP markers in damselflies: prevalence of codominant markers and implications for population genetic applications. Genome.44:677-684
    
    Wu KM, Guo YY, Lv N.Greenplate JT, Deaton R.2003. Efficacy of transgenic cotton containing a cry 1 Ac gene from Bacillus thuringiensis against Helicoverpa armigera (Lepidoptera: Noctuidae) in northern China. Journal of Economic Entomology.96 (4): 1322-1328
    
    Wu KM, Guo YY.2005.The evolution of cotton pest management practices in China. Annu Rev Entomol.50:31-52
    
    Wu KM, Lu YH, Feng HQ, Jiang YY, Zhao JZ.2008. Suppression of Cotton Bollworm in Multiple Crops in China in Areas with Bt Toxin-Containing Cotton.Science.321:1676-1678
    
    Xie RY, Zhuang MB, Ross LS, Gomez I, Oltean DI, Bravo A, Soberon M, Gill SS.2005.Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry 1A toxins. J. Biol. Chem. 280:8416-8425
    
    Xu XJ, Yu LY, Wu YD. 2005.Disruption of a Cadherin Gene Associated with Resistance to Cry 1 Ac 5-Endotoxin of Bacillus thuringiensis in Helicoverpa armigera.Appl. Environ. Microbiol.71 (2): 948-954
    
    Yu CG, Mullins MA, Warren GW, Koziel MG, Estruch JJ.1997.The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects, Appl Envrion Microbiol.63 (2): 532-536
    
    Zakharyan RA.1976. Possible role of extrachromosomal DNA in the formation of the insecticidal endotoxin of Bacillus thuringiensis.Doklady Akademii Nauk Armyanskoi SSR.63 (1):42-47
    Zhang XB, Candas M, Griko NB, Rose-Young L, Bulla Jr LA.2005. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-Rl expressed in insect cells. Cell Death Differ.12: 1407-1416
    
    Zhang XB, Candas M, Griko NB, Taussig R, Bulla Jr LA.2006. A mechanism of cell death involving an adenylyl cycIase/PKA signaling pathway is induced by the CrylAb toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA.103: 9897-9902
    
    Zhao JZ, Collins HL, Tang JD, Cao J, Earle ED, Roush RT, Herrero S, Escariche B, Ferre J, Shelton AM. 2000. Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of Cry1C. Appl. Environ. Microbiol.66 (9):3784-3789
    
    Zhao JZ, Cao J, Li YX, Collins HL, Roush RT, Earle, Elizabeth D, Shelton AM.2003. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nature Biotechnology.21 (12):1493-1497
    
    Zhong D, Pai A, Yan G.2004. AFLP-based genetic linkage map for the red flour beetle (Tribolium castaneum). Journal of Heredity.95:53-61
    
    Zhu C, Ruan L, Peng D, Yu Z, Sun M. 2006. Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstai against Spodoptera exigwa.Applied Microbiology.42 (2):109-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700