棉铃虫(Helicoverpa armigera)对多杀菌素的抗性机理及多杀菌素对其胁迫效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉铃虫Helicoverpa armigera (Hubner)是北方棉区重要害虫,即使Bt棉的广泛种植依然不能使我们忽视其重要的害虫地位。目前,棉铃虫已经对多种药剂产生抗性,也为该虫的防治带来重重困难。多杀菌素是由土壤放线菌。刺糖多孢菌(Saccharopolyspora spinosa)经有氧发酵后产生的胞内次级代谢产物。自1997年注册登记以来,如今已经在37个国家150多种作物上用于鳞翅目等害虫的防治。其独特的作用机理获得了广大用户的好评,也使之成为抗性治理策略中的潜力药剂。为了探讨棉铃虫对多杀菌素的抗性发展规律、抗性风险及抗性机理,我们筛选了抗多杀菌素的棉铃虫品系并进行了相关的研究。研究结果如下:
     1、抗多杀菌素棉铃虫品系的室内筛选及抗性风险评估
     以泰安田间种群为起始种群,用多杀菌素进行抗性选育。在筛选前期(1.7代),抗性发展缓慢,仅达到原来的3.4倍。从第9代开始抗性迅速增长,经过15代的筛选后,抗性达到24.1倍,属于中抗水平;经过多杀菌素筛选后,棉铃虫对毒死蜱、灭多威、氰戊菊酯、阿维菌素和虫螨腈的敏感性并没有显著变化(LD99水平),表明多杀菌素与所测定的五种药剂没有产生交互抗性;对多杀菌素抗性和敏感品系进行生物学研究发现,抗性品系种群存活率下降50%左右,种群发育时间延长4-5天,单雌产卵量仅为敏感品系的一半,净增殖率(Ro)和内禀增长率(‰)分别为敏感品系的25.35%和65%。
     本研究结果表明,棉铃虫对多杀菌素的抗性发展比较缓慢,但仍具有产生中等抗性的风险。交互抗性问题并不能显著影响多杀菌素对棉铃虫的防效,多杀菌素仍是治理抗性棉铃虫的合理有效的轮用药剂。多杀菌素在棉铃虫种群上会产生抗性代价,在多杀菌素缺失的情况下,这有利于抗性种群的敏感性恢复。因此,田间实行药剂轮用,间断性暂停多杀菌素的使用,对延缓多杀菌素抗性有着重要意义。
     2、棉铃虫对多杀菌素的抗性机理研究
     以多杀菌素抗性和敏感品系为研究对象,采用增效试验、酶学测定及基因分析方法,发现PBO和TPP都能够明显降低棉铃虫对多杀菌素的抗性,抗性比分别降低到原来的31.8%和68.0%,而增效剂DEM对抗多杀菌素试虫的抗药性没有显著影响;抗性试虫细胞色素P450氧脱甲基活性是敏感试虫的8.26倍,羧酸酯酶和谷胱甘肽-S-转移酶分别为1.02和1.04倍;CYP6AEl4基因在抗性品系中过量表达,是相对敏感品系的7.73倍,其次是CYP9A12、CYP9A18、CYP6B2和CYP6B7基因在抗性品系中的表达量是敏感品系的2.45-3.53倍,CYP6AE12在两个品系中的表达量几乎一致,而CYP9A14和CYP6B6在抗性品系中的表达量降低,仅为敏感品系的0.87和0.70倍。这些结果表明细胞色素P450氧脱甲基酶的活性增强是棉铃虫对多杀菌素产生抗性的重要机制。进一步而言,CYP6AE14基因是多杀菌素抗性形成的关键基因,CYP9A12、CYP9A18、CYP6B2和CYP6B7也很可能是作为辅助因子推动抗性的发展。因此,在田间适当选用PBO作为增效剂可以提高多杀菌素对棉铃虫的毒力,延缓其抗性的发展。
     3、多杀菌素对棉铃虫生长发育及其解毒酶活性的影响
     通过测定棉铃虫在多杀菌素作用下的生物学特征、解毒酶活性及解毒酶基因转录方面的变化,从而更好地理解抗性代价的形成、抗性发生的原因和发展特性。
     研究发现,试验浓度下的多杀菌素对棉铃虫不仅仅具有致死效应(增加幼虫死亡率;降低化蛹率、羽化率及孵化率)还具有亚致死效应(降低虫重、蛹重;延长幼虫期、预蛹期、蛹期;缩短成虫期;降低单雌产卵量),通过这些影响来改变棉铃虫种群密度及发展动态。
     在试验浓度下,多杀菌素能够明显诱导棉铃虫P450氧脱甲基酶活性增强,这种诱导效应与浓度呈正相关。在处理48 h后,多杀菌素最高可以诱导P450氧脱甲基酶比活力达到原来的5.8倍。然而,在相同的浓度下,多杀菌素对羧酸酯酶和谷胱甘肽-S-转移酶的比活力都没有明显的影响。
     通过接触试验发现,多杀菌素可以显著诱导CYP6AE14的表达,处理组是对照组的4.15倍。其次是CYP6B2、CYP6B7、CYP9A12和CYP9A18基因,也分别被诱导3.32、2.79、2.6和2.07倍。CYP9A14和CYP6B6基因没有被诱导增加,反而被抑制。
     以上结果都表明,单次诱导和多次筛选后对种群生物学特性、酶学特性及基因表达的影响趋势是一致的,存在着一定的关系,这说明诱导在抗性形成的过程中起到一定的作用,是抗性形成的一种方式。从量上来看,多次筛选后的改变并不是单次诱导简单的相加,在失去药剂的情况下,这种诱导效应很可能会恢复到正常水平,这也证实了棉铃虫对多杀菌素的抗性发展缓慢的原因。
     4、次生物质与多杀菌素联合作用
     在试验浓度下,与次生物质(棉酚、单宁、槲皮素)或Bt没有显著改变多杀菌素对棉铃虫生物学特性的影响(如降低化蛹率、蛹重;延长幼虫期、蛹期;降低繁殖力)。这些结果表明,寄主植物中次生物质和Bt对多杀菌素亚致死效应的影响不大。从生物学的角度来看,次生物质对多杀菌素的影响可以忽略,但这并不代表田间使用时我们可以忽略次生物质。许多研究表明,次生物质可以通过改变昆虫体内的某些机理进而影响杀虫剂的防治效果。
The cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae), is one of the most important lepidopteran pests on a wide range of crops in the north of China. By now, serious resistance of H. armigera to conventional insecticides has resulted in many problems in controlling of this pest. Spinosad is a naturally derived fermentation product of soil actinomycete Saccharopolyspora spinosa. Since it was registered as an insecticide in 1997, spinosad has been used on over 150 various crops in 37 countries for controlling the pest especially lepidoptera larvae. Because of its unique action mechanism, popular spinosad become the potential insecticide for management of resistance. In order to clarify the dynamic development of spinosad resistance, the state of cross-resistance and the resistant mechanism, we selected a spinosad-resistant strain of H. armigera with topical application in the laboratory and documented a series of related studies. The results are as follows:
     1. The selection of spinosad-resistant strain of H. armigera and the research of cross-resistance
     The parental strain was collected from Tai'an and selected with topical application in the laboratory. The development of resistance was slow during the early selection process (G1-G7), which was just about 2.73-fold increase in resistance compared with the parental strain. Exponential increase of resistance was found from the ninth generation. After 15 generations of selection, the resistance level to spinosad in the selected strain was up to 24.1-fold compared with the parental strain. After selected with spinosad, the susceptibilities of this moderate resistance strain against tested insectcides (chlorpyrifos, methomyl, fenvalerate, avermectin and chlorfenapyr) did not changed significantly, indicating that there was no cross-resistance existed between spinosad and tested five pesticides. Comparing the resistant with the susceptible strain, we found the survival of the resistant strain was half compared with susceptible strain, the development of resistant H. armigera larvae was prolonged about 4-5 days, the number of eggs laid per resistant female was 359, which was half of the susceptible female's, Net replacement rate (R0) and the intrinsic rate of population increase (rm) from the resistant strain were 25.35% and 65% compared with susceptible strain.
     Our results showed, even though the development of resistance is slow, H. armigera still has the potential to development moderate resistance. Cross-resistance of spinosad with other pesticides is not a significant factor that could prevent the effective use of spinosad against H. armigera. Spinosad should be recommended for rotational use to control the resistant H. armigera population. Spinsoad conferred the fitness cost in H. armigera, suggesting relaxation of selection pressure was likely to favor reversion to susceptibility for the H. armigera population. Therefore, the development of resistance to spinosad in H. armigera should be delayed by rational resistance management measures such as pesticide rotations.
     2. The study of resistant mechanism of H. armigera to spinosad
     From the studies of synergism, enzyme and gene, we found PBO and TPP could decrease significantly the toxicity of spinosad against H. armigera, and the resistant ratio reduced to 31.8% and 68.0% respectively. However, DEM exhibited no significant effects on toxicity of spinosad; Compared with CarE or GST activity, increasing activity of ODM was found in the resistant strain with difference at significant level, which was 8.26 times of that in the parental strain; CYP6AE14 from the resistant strain was overexpressed about 7.73-fold than that of the susceptible strain. CYP9A12, CYP9A18, CYP6B2 and CYP6B7 were ranged from 2.45-3.53-fold, but CYP9A14 and CYP6B6 were about 0.87- and 0.70- fold compared with the susceptible strain respectively. Our results indicated that resistance to spinosad in the cotton bollworm might be associated with an increase in cytochrome P450 monooxygenase. In addition, CYP6AE14 was the key gene during the development of spinsoad resistance. CYP9A12, CYP9A18, CYP6B2 and CYP6B7 could be enhancing factors to promote the resistant development. Based on our results, rational applications of PBO might increase the efficacy of spinosad in control of this pest and prolong the useful life of spinosad.
     3. Effects of spinosad on biological characteristics, detoxifying enzymes and detoxifying genes of H. armigera after treatment with spinosad
     By clarification of changes about biological characteristics, detoxifying enzymes and detoxifying genes after treatment with spinosad, we could understand betterly the development of resistant cost, the reason of resistance and the development of resistance.
     Our found that spinosad not only has lethal effects (decrease in survival of eggs, larvae and pupae) but also has sublethal effects (decrease in weights of larvae and pupae; prolong periods of larvae, prepupae and pupae; shorten the adult longevity; decrease in the number of eggs laid per female). By the lethal and sublethal effects, spinosad changed the density and development of population.
     Spinosad at the tested concentration could induce ODM activity significantly. The induction was in a time-, dose- and population-specific manner. Greatest induction was found to be 5.8-fold in the Taian population after exposure to spinosad for 48 h. However, exposures to spinosad did not affect significantly CarE and GST activities.
     After treatment, the greatest induction was found in the expression of CYP6AE14 among all tested gene, which was 4.15-fold compared to the control. CYP6B2、CYP6B7、CYP9A12 and. CYP9A18 were induced to 3.32-,2.79-,2.60-,2.07- fold respectively, CYP9A14 and CYP6B6 were suppressed.
     Our results showed, there are the same tendency to biological characteristics, detoxifying enzymes and detoxifying genes between single induction and multiple selection, indicating insecticide induction may play an important role during the development of spinosad resistance. Based on our data, development of resistance is not due to simple addition of every single inductions. In the absence of spinosad, the induction may favor reversion to original level, which indicates the development of resistance to spinosad in H.armigera is slow.
     4. The effects of xenobiotics on spinosad-resistant cost
     In the tested concentrations, xenobiotics (gossypol, tannin, quercetin) and Bt did not change significantly effects of spinosad on biological characteristics of H.armigera (e.g. decrease in pupation ratio and pupal weight; prolong periods of larvae and pupae; decrease in fertility). These results indicated H.armigera has strong adaptability to the host. From the sight of biology, xenobiotics of hosts have little effect on spinsoad. However, we could not neglect the exist of xenobiotics because some researches about effects of xenobiotics on insecticide toxicity have been reported.
引文
1.毕富春.多杀菌素等新杀虫剂对粘虫的杀虫活性[J].农药科学与管理,2004,25(1):22-23
    2.陈建明,左景行,俞晓平,郑许松,陈列忠,张珏锋.新型微生物杀虫剂—Spinosad(多杀菌素)的毒理学研究进展[J].浙江农业学报,2006,18(5):401-406
    3. 陈松.与氰戊菊醋抗性相关的棉铃虫细胞色素P450基因的克隆及异源表达[D].南京:南京农业大学,2005,82-84
    4.戴小枫,郭予元.棉铃虫暴发的特点、成因及治理对策[J].灾害学,1994,9(1):22-30
    5.董俊峰,张继红,王深柱.植物次生物质对烟青虫和棉铃虫食物利用及中肠解毒酶活性的影响[J].昆虫学报,2002,45(3):296-300
    6.董双林.转Bt基因棉及其抗虫性研究与利用进展[J].棉花学报,1998,10(2):57-63
    7.杜顺堂,朱明军,粱世中.生物农药多杀菌素的研究进展[J].农药,2005,44(10):441-451
    8.范贤林,卢美光,赵永巧,芮昌辉,魏岑.抗氰戊菊酯棉铃虫种群的抗性发展及交互抗性水平[J].植物保护,1996,22(4):24-26
    9. 高希武.浅谈棉铃虫的化学防治[J].植物保护,1999,4:35-37
    10.高希武,董向丽,赵颖,郑炳宗.槲皮素对棉铃虫体内一些解毒酶系和靶标酶的诱导作用[J].农药学学报,1999,1(3):56-60
    11.高希武,梁同庭.阿特拉津和敌敌畏对棉铃虫和家蝇羧酸酯酶以及GSH-S-转移酶的诱导作用[J].昆虫学报,1993,36(2):167-171
    12.高希武,赵颖,王旭,董向丽,郑炳宗.杀虫药剂和植物次生性物质对棉铃虫羧酸酯酶的诱导作用[J].昆虫学报,1998,41:5-11
    13.郭予元.棉铃虫大发生原因和1998年发生趋势预测[J].植物保护,1998,24(2):25-26
    14.郝赤,李会仙,魏波,王利英.氰戊菊酯和甲氰菊酯对棉铃虫的亚致死效应[J].现代农药,2005,4(5):39-42
    15.孔凡彬,高扬帆,邓天福.棉铃虫对不同杀虫剂的交互抗性研究进展[J].广西农业科学,2005,36(2):145-147
    16.兰亦全,赵士熙.抗三氟氯氰菊酯甜菜夜蛾品系的相对适合度研究[J].华东昆虫学报,2004,13(1):88-91
    17.李妲,汪清民,黄润秋.多杀菌素的研究进展[J].农药学学报,2003,5(2):1-12
    18.李会仙,郝赤,王利英,魏波.高效氯氰菊酯和溴氰菊酯对棉铃虫的亚致死效应[J].山西农业大学学报,2005,25(3):231-233
    19.栗文凯,张智勇,胡建和,李军.实时荧光定量PCR应用技术综述[J].中国畜禽种业,2008,10:71-72
    20.李增梅,刘银泉,刘树生.多杀菌素对菜蛾绒茧蜂的致死和亚致死效应[J].农药学学报,2005,7(1):24-28
    21.梁沛,夏冰,石泰,高希武.阿维菌素和高效氯氰菊酯亚致死剂量对小菜蛾谷胱甘肽-S-转移酶的影响[J].中国农业大学学报,2003,8(3):65-68
    22.粱革梅,谭维嘉,郭予元.棉铃虫对Bt的抗性筛选及交互抗性研究[J].中国农业科学,2000,33(4):46-53
    23.刘凤沂.F1代法监测田间棉铃虫对转Bt基因棉的抗性[D].南京:南京农业大学,2008:1-2
    24.刘凤沂,朱玉成,沈晋良.F1代法监测田间棉铃虫对转Bt基因棉的抗性[J].昆虫学报,2008,51(9):938-945
    25.刘润玺,程桂林,姜延超.棉铃虫对农药的交互抗性研究[J].农药,1996,35(5):10-15
    26.卢美光,芮昌辉,赵建周,孟香清.抗Bt棉铃虫种群的交互抗性研究[J].农药学学报,2000,2(3):49-52
    27.罗浑金,李梅,傅童生.拟除虫菊酯抗性家蝇的交互抗药性研究[J].生物技术通报,2007,5:141-143
    28.吕梅,沈晋良,郑周菲.棉铃虫对丙溴磷抗性遗传特性及相对适合度研究[J].棉花学报,2004,16(6):333-337
    29.马彩霞.棉铃虫细胞色素P450基因的克隆与表达[D].西北农林科技大学,2005
    30.孟祥志.关于昆虫抗药性的发展机理及杀虫剂互作增效的探讨[J].长春大学学报,2004,14(2):80-82
    31.慕立义,王开运.我国北方棉区棉铃虫抗药性现状[J].农药,1988,27(5):5-6
    32.慕立义,王开运.棉铃虫抗药性调查及抗性规律的研究[J].农药,1995,34(6):6-9
    33.慕立义,王开运,刘峰,仪美芹,慕卫,张新.棉铃虫抗药性调查及抗性规律的研究[J].农药,1995,34(6):6-9
    34.牛洪涛,宗建平,王海迎,魏书娟,朱秀凤,罗万春.小菜蛾对丁烯氟虫腈的抗性选育及生物适合度[J].农药学学报,2007,9(3):245-250
    35.潘文亮,高占林,张克锦等.河北省主要棉区棉铃虫对杀虫剂抗性的发展趋势[J].河北农业大学学报,1997,20(4):25-29
    36.乔惠丽,洪冲,文祯中,阚云超,毕利军.昆虫抗药性分子机制[J].南阳师范学院学报,2007,6(9):50-56
    37.邱立红,张文吉.多功能氧化酶系(MFO)与棉铃虫抗药性关系初步研究[J].农药学学报,1999,1(2):54-60
    38.邱立红,郑明奇,王成菊,李学锋,张文吉.氰戊菊酯和苯巴比妥钠对敏感和抗性棉铃虫中肠多功能氧化酶系的诱导作用[J].昆虫学报,2003,46(5):573-577
    39.邱星辉,何凤琴,李梅.细胞色素介导的昆虫抗药性[J].生命的化学,2003,23(4):279-281
    40.邱星辉,冷欣夫.昆虫细胞色素P450研究:P450酶系的可诱导性[J].昆虫知识,1999,36(1):48-52
    41.邱星辉,冷欣夫.昆虫细胞色素P450基因的表达与调控及P450介导抗性的分子机制[J].农药学学报,1999,1(1):7-14
    42.邱星辉,冷欣夫.棉铃虫幼虫中肠微粒体P450差光谱与O-脱甲基酶的酶学特征及其可诱导性[J].昆虫学报,1999,42(4):347-352
    43.邱星辉,冷欣夫.棉铃虫幼虫加单氧酶活性的组织分布[J].生态学报,2000,20(2):299-303
    44.任晓霞,韩召军,王荫长.棉铃虫对久效磷抗性和敏感性品系的生物适合度[J].南京农业大学学报,2001,24(2):41-44
    45.芮昌辉,孟香清,赵建周,李富根.棉铃虫对三氟氯氰菊酯不同抗性种群的田间适合度[J].农药学学报,1999,1(3):67-70
    46.施明安,袁建忠,庄佩君,唐振华.植物农药与药剂毒理学研究进展[D].北京:中国农业科技出版社,2002,231
    47.苏建亚,沈晋良.多杀菌素的生物合成[J].中国生物工程杂志,2003,23(5):55-73
    48.孙耘芹.害虫的抗药性:Ⅱ.侦测棉铃虫抗药性的方法[J].昆虫知识,1982,19(2):46-47
    49.孙洪武,韩召军.江苏省主要棉区棉铃虫对有机磷杀虫剂的抗性[J].江苏农业学报,1999,15:206-210
    50.谭维嘉,赵焕香.取食不同寄主植物的棉铃虫对溴氰菊酯敏感性的变化[J].昆虫学报,1990,33(2):155-160
    51.汤锋,岳永德,花日茂.棉铃虫抗药性的研究进展[J].安徽农业大学学报,1998,25(3):255-259
    52.唐涛,成玉红,王成菊,张文吉,邱立红.抗氰戊菊酯棉铃虫细胞色素P450 CYP6B7基因的克隆及分析[J].农药学学报,2007,9(4):370-375
    53.唐振华.昆虫抗药性及其治理[M].北京:农业出版社,1993,382-446
    54.王刚,王开运,姜兴印,仪美芹.4种杀虫剂处理不同抗药性水平的棉铃虫3龄幼虫对其生长发育的影响[J]。山东农业大学学报,1999,30(2):104-108
    55.王建军,戴志一,杨益众.寄主植物对棉铃虫体内解毒酶活性的影响[J].江苏农业研,2000,21(2):58-61
    56.王建军,戴志一,杨益众.棉铃虫田间种群抗药性的生态学干扰和生化机制研究[J].生态学报,2001,21(10):1589-1595
    57.王开运,慕立义,刘峰,仪美芹,慕卫.棉铃虫对氰戊菊酯等杀虫剂抗性的选育及其生化机理[J].昆虫学报,1997,40(1):23-31
    58.王光峰,张友军,柏连阳,吴青君,徐宝云,朱国仁.多杀菌素对甜菜夜蛾多酚氧化酶和羧酸酯酶的影响[J].农药学学报,2003,5(2):40-46
    59.王小艺.杀虫剂对昆虫的亚致死效应[J].世界农药,2004,26(3):24-27
    60.汪信庚,刘树生.昆虫种群内桌增长率的变异估计方法[J].昆虫知识,1998,35(3):169-172
    61.王彦华,王鸣华.多杀菌素的作用机理及其抗药性的研究进展[J].农药科学与管理,2006,25(11):12-15
    62.魏波,郝赤,李会仙.杀虫剂亚致死剂量对棉铃虫靶标酶的影响[J].现代农药,2006,5(3):35-38
    63.魏辉,李洪山,戴华国.多杀菌素对小菜蛾体内多功能氧化酶和保幼激素酯酶活力的影响[J].农药学学报,2006,8(3):239-244
    64.韦存虚,朱福兴,李东霞.氰戊菊酯、辛硫磷及其混剂对棉铃虫解毒代谢酶的影响[J].扬州大学学报,2004,25(3):59-64
    65.吴刚,尤民生,赵士熙.抗性和敏感小菜蛾谷胱甘肽-S-转移酶和谷胱甘肽的比较[J].福建农业大学学报,2000,29(4):478-481
    66.吴峻,庄佩君,唐振华.中国棉铃虫P450家族的CYP6B2基因与抗药性关系[J].生物化学与生物物理学报,1999,31(1):101-103
    67.吴坤君.棉铃虫的紫云英—麦胚人工饲料[J].昆虫学报,1985,28(1):22-29
    68.吴青君,张文吉,张友军,徐宝云,朱国仁.敏感和抗阿维菌素小菜蛾的生物适合度[J].农药学学报,2000,2(1):36-40
    69.吴霞.多杀菌素-以天然产物开发新农药的范例[J].世界农药,2001,23(1):24-28
    70.吴霞.多杀菌素—害物综合治理的一个有力武器[J].世界农药,2005,27(6):21-24
    71.吴益东,沈晋良,谭福杰等.棉铃虫对氰戊菊酯抗性机理研究[J].南京农业大学学报,1995,18(2):63-68
    72.吴益东,沈晋良,谭福杰,尤子平.山东省阳谷县棉铃虫抗药性监测[J].南京农业大学学报,1995,18(3):48-53
    73.吴益东,沈晋良,谭福杰,尤子平.棉铃虫对氰戊菊酯抗性品系和敏感品系的相对适合度[J].昆虫学报,1996,39(3):233-237
    74.徐汉虹,张志样,程东美.筒篙素类似物对斜纹夜蛾的生物活性研究[J].华中农业大学学报,2000,19(6):543-546
    75.徐建祥,乔静,仲崇翔.多杀菌素对小菜蛾及其天敌的毒力研究[J].中国生态农业学报,2005,13(4):161-163
    76.许雄山,韩召军,王荫长.羧酸酯酶与棉铃虫对有机磷杀虫剂抗性的关系[J].南京农业大学学报,1999,22(4):41-44
    77.徐志红,蒋志胜.生物杀虫剂多杀菌素的中毒症状和作用机理[J].农药科学与管理,2004,25(2):25-28
    78.杨捷,李增梅,刘银泉,刘树生.小菜蛾抗多杀菌素和敏感品系耐低温能力的比较[J].农药学学报,2004,6(2):25-31
    79.杨亦桦.棉铃虫对拟除虫菊酯氧化代谢抗性的生化与分子机理[D].南京:南京农业大学,2005:1-2
    80.杨亦桦,陈松,吴益东,沈晋良.棉铃虫对辛硫磷抗性的选育、交互抗性及增效剂增效作用研究[J].棉花学报,2002,14(1):13-16
    81.姚洪渭,叶恭银,程家安.害虫抗药性适合度与内分泌调控研究进展[J].昆虫知识,2002,39(3):181-187
    82.姚洪渭,叶恭银,程家安.寄主植物影响害虫药剂敏感性的研究进展[J].昆虫学报,2002,45(2):253-264
    83.尹显慧,吴青君,李学锋,张友军,徐宝云.多杀菌素亚致死浓度对小菜蛾解毒酶系活 力的影响[J].农药学学报,2008,10(1):28-34
    84.岳丽娜.棉铃虫细胞色素P450基因的克隆与功能表达[D].南京:南京农业大学,2006,12-13
    85.岳丽娜,杨亦桦,武淑文,吴益东.棉铃虫P450基因CYP6AE12和CYP9A18的克隆与表达[J].昆虫学报,2007,50(3):234-240
    86.曾华兰,叶鹏盛,李琼芳.四川棉区棉铃虫对常用杀虫剂的抗药性监测[J].中国棉花,2001,28(3):23-24
    87.张元建,王真,竹傲,朱福兴.溴氰菊酯和辛硫磷亚致死剂量对甜菜夜蛾酶活性的影响[J].植物保护,2009,15(5):37-40
    88.朱剑翔,武淑文,杨亦桦等.小菜蛾对多杀菌素的抗性筛选及遗传方式分析[J].南京农业大学学报,2007,30(1):61-65
    89.朱明道,张敦阳,谭福杰等.农业害虫抗药性研究:棉铃虫抗药性调查及其抗药性机制的初步探讨[J].南京农业大学学报,1982,5(2):34-40
    90. Ahmad M, Arif MI, Ahmad Z. Susceptibility of Helicoverpa armigera (Lepidoptera: Noctuidae) to new chemistries in Pakistan [J]. Crop Prot.,2003:539-544
    91. Ahmad M, Denholm I, Bromilow RH. Delayed cuticular penetration and enhanced metabolism of deltamethrin in pyrethroid-resistant strains of Helicoverpa armigera from China and Pakistan [J]. Pest Manag. Sci.,2006,62:805-810
    92. Ahmad M, Hollingworth RM, Wise JC. Broad-spectrum insecticide resistance in obliquebanded leafroller Choristoneura rosaceana (Lepidoptera: Tortricidae) from Michigan [J]. Pest Manag. Sci.,2002,58:834-838
    93. Ahmad M, McCaffery AR. Resistance to insecticides in a Thailand strain of Heliothis armigera (Hubner) (Lepidoptera: Noctuidae) [J]. J. Econ. Entomol.,1988,81:45-48
    94. Banks CJ, Needham PH. Comparison of the biology of Myzus persicae Sulz. resistant and susceptible to dimethoate [J]. Ann. Appl. Biol.,1970,66 (3):465-468
    95. Bautista MAM, Tanaka T, Miyata T. Identification of permethrin-inducible cytochrome P450s from the diamondback moth, Plutella xylostella (L.) and the possibility of involvement in permethrin resistance [J]. Pestic. Biochem. Physiol.,2007,87:85-93
    96. Bhatnagar VS, Lateef SS, Sithanantham S, Pawar CS, Reed W. Research on Heliothis at ICRISAT [C]. Proc. Int. Workshop on Heliothis Management,1982,385-396
    97. Biddinger DJ, Hull LA. Sublethal effects of selected insecticides on growth and reproduction of a laboratory susceptible strain of tufted apple bud moth (Lepidoptera: Tortricidae) [J].J. Econ. Entomol.,1999,92 (2):314-324
    98. Bielza P, Quinto V, Contreras J. Resistance to spinosad in the western flower thrips, Frankliniella occidentalis (Pergande), in greenhouses of south-eastern Spain [J]. Pest Manag. Sci.,2007,63(7):682-687
    99. Bielza P, Quinto V, Fernandez E. Genetics of spinosad resistance in Frankliniella occidentalis (Thysanoptera: Thripidae) [J]. J. Econ. Entomol.,2007,100(3):916-920
    100. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding [J]. Anal. Biochem.,1976,72: 248-254
    101. Bret BL, Larson LL, Schoonover JR, Sparks TC, Thompson GD. Biological properties of spinosad [J]. Down Earth,1997,52:6-13
    102.Brevault T, Asfom P, Beyo J, Nibouche S, Vaissayre M. Assessment of Helicoverpa armigera resistance to pyrethroid insecticides in northern Cameroon [C]. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet,2002,67:641-646
    103.Bue R, Bouvier JC, Boudinhon L. Insecticide resistance and mechanisms of resistance to selected strains of Helicoverpa armigera (Lepidoptera:Noctuidae) in the south of France [J]. Crop Prat.,2005,24:814-820
    104.Burkness EC, Koch RL, Hutchison WD. Control of European corn borer and corn earworm in sweet corn [J]. Arthro. Man. Tests,2003,27:E22
    105.Busvine JR. Recommended methods for measurement of resistant to pesticides [J]. FAO Plant Prod. Prot.21(1980)49-54
    106.Chadwick LE. Physiological aspects of insect resistance to insecticides, in:origins of resistance to toxic agents (MG Sevag and RD Reinolds, eds.) [J]. Academic Press, New York,1955, pp 133-147
    107.Cleveland CB, Mayes MA, Cryer SA. An ecological risk assessment for spinosad use on cotton [J]. Pest Manag. Sci.,2002,58:70-84
    108.Cisneros J, Goulson D, Derwent LC, Penagos DI, Herna'ndez O. Toxic effects of spinosad on predatory insects [J]. Biol. Contr.,2002,23:156-163
    109.Cohen MB, Schuler MA, Berenbaum MR. A host-inducible cytochrome 450 from a host specific caterpillar molecular cloning and evolution [J]. Proc. Natl. Acad. Sci. USA,1992, 89:10920-10924
    110.Cordero RJ, Bloomquist JB, Kuhar TP. Susceptibility of two diamondback moth parasitoids, Diadegma insulare (Cresson) (Hymenoptera; Ichneumonidae) and Oomyzus sokolowskii (Kurdjumov) (Hymenoptera; Eulophidae), to selected commercial insecticides [J]. Biol. Contr.,2007,42:48-54
    111.Davey RB, George JE, Snyder DE. Efficacy of a single whole-body spray treatment of spinosad, against Boophilus microplus (Acari:Ixodidae) on cattle [J]. Vet. Parasitol., 2001,99:41-52
    112.David MS, Robert M, Edward JG. Resistance and cross- resistance to neonicotinoid insecticides spinosad in the Colorado potato beetle, Leptinotarsa decemLineata (Say) (Coleoptera: Chrysomelidae) [J]. Pest manag. Sci.,2006,62:30-37
    113.Elliott RH, Benjamin MC, Gillott C. Laboratory studies of the toxicity of spinosad and deltamethrin to Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Can. Entomol.,2007, 139:534-544
    114.Elzen GW. Lethal and sublethal effects of insecticide residues on Orius insidiosus (Hemiptera:Anthocoridae) and Geocoris punctipes (Hemiptera:Lygaeidae) [J]. J. Econ. Entomol.,2001,94:55-59
    115.Ferguson JS. Development and stability of insecticide resistance in the leaf miner Liriomyza trifolii (Diptera:Agromyzidae) to cyromazine, abamectin, and spinosad [J]. J. Econ. Entomol.,2004,97 (1):112-119
    116.Feyereisen R, Koener JF, Farnsworth DE, Isolation and sequence of cDNA encoding a cytoehrome P450 from an insecticide resistant strain of the housefly, Musca domestica [J]. Proc. Natl. Acad. Sci. USA,1989,86:1465-1469
    117.Ffrench-Constant RH, Rocheleau TA, Steichen JC, Chalmers AE. A point mutation in a Drosophila GABA receptor confers insecticide resistance [J]. Nature,1993,363 (6428): 449-451
    118.Fitt GR. The ecology of Heliothis in relation to agroecosystems[J]. Annu. Rev. Entomol., 1989,34:17-52
    119.Forrcster NW, Cahill M, Bird LJ. Managemem of pyrethroid and endosulfan resistance in Helicoverpa armigera (Lepidopter:Noctuidae)in Australia [J]. Bull Entomol. Res. Sup., 1993,1:36-43
    120.Galvan TL, Koch RL, Hutchison WD. Effects of spinosad and indoxacarb on survival, development, and reproduction of the multicolored Asian lady beetle (Coleoptera: Coccinellidae)[J]. Biol. Contr.,2005,34:108-114
    121.Gao JR, Deacutis JM, Scott JG. The nicotinic acetylcholine receptor subunits Mdalpha5 and Mdbeta3 on autosome 1 of Musca domestica are not involved in spinosad resistance [J]. Insect Mol. Biol.,2007,16 (6):691-701
    122.Gao RJ, Dong J, Zhang WJ, Chen WH. Dietary risk assessment of spinosad in China [J]. Regulatory Toxicology and Pharmacology,2007,49:31-42
    123.Goff GL, Hilliou F, Siegfried BD, Boundy S, Wajnberg E, Sofer L, Audant P. Xenobiotic response in Drosophila melanogaster: Sex dependence of P450 and GST gene induction [J]. Insect Mol. Biol.,2006,36:674-682
    124.Gunning RV, Balfe ME. Spinosad resistance in Australian Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae) [C]. Proceedings of 10th IUPAC International Congress on the Chemistry of Crop Protection,2002, p.290
    125.Gunning RV, Easton CS, Balfe ME. Pyrethroid resistance mechanisms in Australia Helicoverpa armigera [J]. Pestici. Sci.,1991,33:473-490
    126.Gunning RV, Easton CS, Greenup LR. Pyrethroid resistanee in Heliothis armigera (Hubner) (Lepidoptera: Noctuidae) [J]. Australia J. Econ. Entomol.,1984,77(5):1283-1287
    127.Habig WH, Pabst MJ, Jakoby WB. Glutathione-S-transferases:the first enzymatic step in mercapturic acid formation [J]. J. Biol. Chem.,1974,249:7130-7139
    128.Hemingway J, Field L, Vontas J. An Overview of Insecticide Resistance [J]. Science, 2002,298:96-97
    129.Holt KM, Opit GP, Nechols JR, Margolies DC. Testing for non-target effects of spinosad on twospotted spider mites and their predator Phytoseiulus persimilis under greenhouse conditions [J]. Exp. Appl. Acarol.,2006,38:141-149
    130.Hsu JC, Feng HT. Development of resistance to spinosad in oriental fruit fly (Diptera: Tephritidae) in laboratory selection and cross-resistance [J]. J. Econ. Entomol.,2006,99 (3):931-936
    131.James C. Preview: Global status of commercialized Biotech/GM crops:2004 [J]. ISAAA Briefs No.32. ISAAA:Ithaca, NY
    132.John KM, David AP, Timothy JD. Beet armyworm (Spodoptera exigua) resistance to spinosad [J]. Pest Manag. Sci.,2000,56:842-848
    133.Khot AC, Bingham G, Field LM, Moores GD. A novel assay reveals the blockade of esterases by piperonyl butoxide [J]. Pest Manag. Sci.,2008,64(11):1139-1142
    134.Kranthi KR, Ali SS, Banerjee SK. Baseline toxicity of spinosad on the cotton bollworm, Helicoverpa armigera (Hubner), in India [J]. Resistant Pest Manage., Newsletter,2000, 11:9-12
    135.Kranthi KR, Jadhav DR, Wanjari RR, Ali SS, Russell D. Carbamate and organophosphate resistance in cotton pests in India,1995 to 1999 [J]. Bull Entomol. Res., 2001,91:37-46
    136.Kranthi KR, Jadhav D, Wanjari R, Kranthi S, Russell D, Pyrethroid resistance and mechanisms of resistance in field strains of Helicoverpa armigera (Lepidoptera: Noctuidae) [J]. J. Econ. Entomol.,2001,94:253-263
    137.Kranthi KR, Russell D, Wanjari R, Kherde M, Munje S, Lavhe N and Armes N, In-season changes in resistance to insecticides in Helicoverpa armigera (Lepidoptera: Noctuidae) in India [J]. J. Econ. Entomol.2002,95:134-142
    138.Levot G, Sales N. In vitro effectiveness of ivermectin and spinosad flystrike treatments against larvae of the Australian sheep blowfly Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae) [J]. Aust. J. Entomol.,2008,47:365-369
    139.Li XT, Huang QC, Yuan JZ, Tang ZH. Fipronil resistance mechanisms in the rice stem borer, Chilo suppressalis Walker [J]. Pestic. Biochem. Physiol.,2007,89:169-174
    140.Liu H, Cupp EW, Micher KM. Insecticide resistance and cross-resistance in Alabama and Florida strains of Culex quinquefasciatus [J]. J. Med. Entomol.,2004,41 (3):408-413
    141.Liu XN, Liang P, Gao XW, Shi XY. Induction of the cytochrome P450 activity by plant allelochemicals in the cotton bollworm, Helicoverpa armigera (Hiibner) [J]. Pestic. Biochem. Physiol.,2006,84:127-134
    142.Liu N, Yue X. Insecticide resistance and cross-resistance in the house fly (Diptera: Muscidae) [J]. J. Econ. Entomol.,2000,93 (4):1269-1275
    143.Livingstone DR. Towards a specific index of impact by organic pollution for marine invertebrates [J]. Comp. Biochem. Physiol.,1991, C 100:151-155
    144.Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol [J]. Nat. Biotechnol.,2007,25 (11):1307-1313
    145.Medina P, Budia F, Estal PD, Vinuela E. Effects of three modern insecticides, pyriproxyfen, spinosad and tebufenozide, on survival and reproduction of Chrysoperla carnea adults [J]. Ann. Appl. Biol.,2003,142:55-61
    146.Moulton JK, PePPer DA, Dennehy TJ. Beet army worm (spodoptera exigua) resistance to spinosad [J]. Pest manag. Sci.,2000,56:842-848
    147.Osorio A, Martinez AM, Schneider MI. Monitoring of beet armyworm resistance to spinosad and methoxyfenozide in Mexico [J]. Pest Manag. Sci.,2008,64 (10):1001-1007
    148.Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes [J]. J. Biol. Chem.,1964,239(7):2370-2378
    149.Pearson EO. The inset pests of cotton in Tropical Africa [J]. Commonwealth Institute of Enotmology, London,1958, P 355
    150.Perry T, McKenzie JA, Batterham P. A Dalpha6 knockout strain of Drosophila melanogaster confers a high level of resistance to spinosad [J]. Insect Biochem. Mol. Biol.,2007,37 (2):184-188
    151.Pittendrigh B, Aronstein K, Zinkovsky E, Cytochrome 450 genes from Helicoverpa armigera:expression in a pyrethroid-susceptible and -resistant strain [J]. Insect Bioehem. Mol. Biol.,1997,27:507-512
    152.Pray C, Ma D, Huang JK, Qiao FB. Impact of Bt cotton in China [J]. World Development,2001,29 (5):813-825
    153.Qiu XH, Li W, Tian Y, Leng XF. Cytochrome P450 Monooxygenases in the Cotton Bollworm (Lepidoptera:Noctuidae):Tissue Difference and Induction [J]. J. Econ. Entomol.,2003,96:1283-1289
    154.Ranasinghe C, Hobbs AA, Isolation and charaeterization of two cytochrome P450 cDNA clones for CYP6B6 and CYP6B7 from Helicoverpa armigera (Hubner):possible involvement of CYP6B7 in pyrethroid resistance [J]. Insect Biochem. Mol. Biol.,1998, 28:571-580
    155.Reyes M, Franck R, Charmillot PJ. Diversity of insecticide resistance mechanisms and spectrum in European populations of the Codling moth, Cydia pomonella [J]. Pest Manag. Sci.,2007,63 (9):890-899
    156.Ren ZS, Niu GD, Wen ZM, Schuler MA, Berenbaum MR. Toxicity of aflatoxin Bl to Helicoverpa zea and bioactivation by cytochrome P450 monooxygenases [J]. J. Chem. Ecol.,2006,32:1459-1471
    157. Ren ZS, Wen ZM, Niu GD, Schuler MA, Berenbaum MR. Allelochemical induction of cytochrome P450 monooxygenases and amelioration of xenobiotic toxicity in Helicoverpa zea [J]. J. Chem. Ecol.,2007,33:449-461
    158.Salgado VL. Studies on the mode of action of spinosad:insect symptoms and physiological correlates [J]. Pestic. Biochem. Physiol.,1998,60:91-102
    159.Salgado VL, Sheers JJ, Watson GB. Studies on the mode of action of spinosad:the intemal effective concentration and the concentration dependence on neural excitation [J]. Pestic. Biochem. Physiol.,1998,60:103-110
    160.Saunders DG, Bret BL. Fate of Spinosad in the environment [J]. Down to Earth,1997,52: 14-20
    161.Sayyed AH, Ahmad M, Saleem MA. Cross-resistance and genetics of resistance to indoxacarb in Spodoptera litura (Lepidoptera:Noctuidae) [J]. J. Econ. Entomol.,2008, 101:472-479
    162.Sayyed AH, Attique MN, Khaliq A. Inheritance of resistance and cross-resistance to deltamethrin in Plutella xylostella (Lepidoptera: Plutellidae) from Pakistan [J]. Pest Manag. Sci.,2005,61(7):636-642
    163.Sayyed AH, Saeed S, Noor-Ul-Ane M. Genetic, biochemical, and physiological characterization of spinosad resistance in Plutella xylostella (Lepidoptera: Plutellidae) [J]. J. Econ. Entomol.,2008,101(5):1658-1666
    164.Schneider MI, Smagghe G, Pineda S, Vinuela E. Action of insect growth regulator insecticides and spinosad on life history parameters and absorption in third-instar larvae of the endoparasitoid Hyposoter didymator [J]. Biol. Contr.,2004,31:189-198
    165.Scott JG, Georghiou GP. Mechanisms responsible for high levels of permethrin resistance in the house fly [J].Pestic. Sci.,1986,17:195-206
    166.Scott JG, Georghiou GP. The biochemical genetics of permethrin resistance in the Learn-PyR strain of house fly [J]. Biochem. Genet.,1986,24:25-37
    167. Scott JG. Unraveling the mystery of spinosad resistance in insects [J]. J. Pestic. Sci., 2008,33 (3):221-227
    168.Shen JL, Lu P, He DJ, Zhou WJ, Chen J, Meng FX, Zhou XM, Su JY, Gao CF, Cen HM, Xu L, Pu QH. Monitoring of Bt resistance in CBW in China [C]. In: Proceedings of the 15th international plant protection congress, Foreign Languages Press, Beijing, China, 2004, pp.285
    169.Shono T, Jeffrey G. Spinosad resistance in the housefly, Musca domestica, is due to a recessive factor on autosome 1 [J]. Pesticide Biochem. Physiol.,2003,75:1-7
    170.Smirle MJ, Lowery DT, Zurowski CL. Susceptibility of leafrollers (Lepidoptera: Tortricidae) from organic and conventional orchards to azinphosmethyl, spinosad, and Bacillus thuringiensis [J]. J. Econ. Entomol.,2003,96:879-884
    171.Sparks TC, Thompson GD, Kirst HA, Hertlein MB, Larson LL, Worden TV, Thibault ST. Biologicalactivity of the spinosyns, new fermentation derivedinsect control agents, on tobacco budworm (Lepidoptera:Noctuidae) larvae [J]. J. Econ. Entomol.,1998,91:1277-1283
    172.Telang M, Srinivasan A, Patankar A. Bitter gourd proteinase inhibitors:potential growth inhibitors of Heicoverpa armigera and Spodoptera litura [J]. phytochemistry,2003,63: 643-652
    173.Torres-Vila LM, Rodriguez-Molina MC, Lacasa-Plasencia A. Testing IPM protocols for Helicoverpa armigera in processing tomato:egg-count- vs. fruit-count-based damage thresholds using Bt or chemical insecticides [J]. Crop Prot,2003,22:1045-1052
    174.Torres-Vila LM, Rodriguez-Molina MC, Lacasa-Plasencia A, Bielza-Lino P. Insecticide resistance of Helicoverpa armigera to endosulfan, carbamates and 8 organophosphates: the Spanish case [J]. Crop Prot.,2002,21:1003-1013
    175.Vinson, Brandleigh S, Law PK. Cuticular composition and DDT resistance in the tobacco bud worm [J]. J. Econ. Entomol.,1971,64 (3):1388-1390
    176.Vinuela E, Medina MP, Schneider M, Gonzalez M, Budia F, Adan A, Estal PD. Comparison of side-effects of spinosad, tebufenozide and azadirachtin on the predators Chrysoperla carnea and Podisus maculiventris and the parasitoids Opius concolor and Hyposoter didymator under laboratory conditions [J]. Pestic. BeneWcial Organ IOBC/wprs Bull,2001,24:25-34
    177. Grubor VD, Heckel DG. Evaluation of the role of CYP6B cytochrome P450s in pyrethroid resistant Australian Helicoverpa armigera [J]. Insect Mol. Biol.,2007,16(1): 15-23
    178. Wang D, Gong PY, Li M, Qiu XH, Wang KY. Sublethal effects of spinosad on survival, growth and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) [J]. Pest Manag. Sci.,2009,65:223-227
    179.Wang D, Qiu XH, Ren XX, Zhang WZ, Wang KY. Effects of spinosad on Helicoverpa armigera (Lepidoptera: Noctuidae) from China:tolerance status, synergism and enzymatic responses [J]. Pest Manag. Sci.,2009,65:1040-1046
    180. Wang XP, Hobbs AA. Isolation and sequence analysis of a cDNA clone for a pyrethroid inducible cytochrome P450 from Helicoverpa armigera [J]. Insect Biochem. Mol. Biol., 1995,25:1001-1009
    181.Wang W, Mo JC, Cheng JA, et al. Selection and characterization of spinosad resistance in Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae) [J]. Pestic. Biochem. Physiol., 2006,84:180-187
    182.Watson GB. Actions of insecticidal spinosyns on aminobutyric acid responses from small-diametercockroach neurons [J]. Pestic. Biochem. Physiol.,2001,71:20-28
    183.Wei Y, Appel AG, Moar WJ. Pyrethroid resistance and cross-resistance in the German cockroach, Blattella germanica (L) [J]. Pest Manag. Sci.,2001,57 (11):1055-1059
    184.Wheelock GD, Scott JG. Anti-P450 lpr antiserum inhibits specific monooxygenase activities in LPR house fly (Musca domestica) [J]. J.Exp.Zool.,1992,264:153-158
    185.Williams T, Valle J, Vinuela E. Is the naturally derived insecticide Spinosad compatible with insect natural enemies?[J]. Biocontrol. Sci. Tech.,2003,13:459-475
    186.Willoughby L, Chung H, Lumb C, Robin C, Batterham P, Daborn PJ. A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital [J]. Insect Biochem. Mol. Biol.,2006,36:934-942
    187.Wilson AG. Resistance of Heliothis armigera to insecticides in the Ord irrigation area, north western Australia [J]. J. Econ. Entomol.,1974,66:523-524
    188.Winteringham FPW. Mechanisms of selective insecticidal action [J]. Ann. Rev. Entomol., 1969,14:409
    189.Wu KM. Monitoring and management strategy for Helicoverpa armigera resistance to Bt cotton in China [J]. J. Invertebr. Pathol.,2007,95:220-223
    190.Wu KJ, Gong PY. A new and practical artificial diet for the cotton bollworm [J]. Entomol. Sin.,1997,14:227-282
    191. Wyss CF, Young HP, Shukla J, Roe RM. Biology and genetics of a laboratory strain of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae), highly resistant to spinosad [J]. Crop Prot.,2003,22:307-314
    192.Yang Y, Wu Y, Chen S, Devine GJ, Denholm I, Jewess P, Moores GD. The involvement of microsomal oxidases in pyrethroid resistance in Helicoverpa armigera from Asia [J]. Insect Biochem. Mol. Biol.,2004,34:763-773
    193.Yin XH, Wu QJ, Li XF, Zhang YJ, Xu BY. Sublethal effects of spinosad on Plutella xylostella (Lepidoptera:Yponomeutidae). Crop Prot.,2008,27:1385-1391
    194. Young HP, Bailey WD, Roe RM. Spinosad selection of a laboratory strain of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae), and characterization of resistance [J]. Crop Prot.,2003,22:265-273
    195.Young SJ, Gunning RV, Moores GD. Effect of pretreatment with piperonyl butoxide on pyrethroid efficacy against insecticide resistant Helicoverpa armigera (Lepidoptera: Noctuidae) and Bemisia tabaci (Sternorrhyncha: Aleyrodidae) [J]. Pest Manag. Sci.,2006, 26:114-119
    196.Yu SJ. Detoxification mechanisms in insects, in: J.L. Capinera (Ed.) [J]. Encyclopedia of Entomology,2004,1:686
    197.Zhang S, Kono S, Murai T, Miyata T. Mechanisms of resistance to spinosad in the western flower thrip, Frankliniella accidentalis (Pergande) (Thysanoptera:Thripidae) [J]. Insect Sci.,2008,15:126-132
    198.Zhang M, Scott JG. Cytochrome b5 is essential for cytochrome P450 6D1-mediated cypermethtin resistance in LPR house flies [J]. Pestic. Biochem. Physiol.,1996,55:150-156
    199.Zhao JZ, Collins HL, Li YX, Mau RF, Thompson GD, Hertlein M, Andaloro JT, Boykin R, Shelton AM. Monitoring of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad, indoxacarb, and emamectin benzoate [J]. J. Econ. Entomol.,2006,99:176-181
    200.Zhao JZ, Li YX, Collins HL. Monitoring and characterization of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad [J]. J. Econ. Entomol.,2002,95:430-436
    201.Zhou XJ, Sheng CF, Li M, Wan H, Liu D, Qiu XH. Expression responses of nine cytochrome P450 genes to xenobiotics in the cotton bollworm Helicoverpa armigera [J]. Pestic. Biochem. Physiol.,2010, doi:10.1016/j.pestbp.2010.02.003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700