棉铃虫对转基因抗虫棉的抗性筛选、监测及抗性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转基因抗虫棉的大面积种植,有效地控制了棉铃虫的暴发为害,获得了显著的社会经济效益,与此同时,其环境安全性问题尤其是抗性风险问题备受国内外关注。本文以室内连续筛选17代的棉铃虫抗性品系(AYBC、AYBT)和对照品系(AYCK)为基础,运用人工饲料添加抗虫棉种子粉的方法继续筛选至26代,并以此为试虫,研究了不同品系抗性适合度的差异和棉铃虫体内与抗性相关的13种酶活性变化,应用RAPD技术分析了种群的遗传分化程度;监测了2007~2009年黄河流域主产棉区棉铃虫田间种群的耐受性变化和抗性基因频率;并对2009年田间种群的遗传分化程度进行了RAPD分析。取得了如下的主要结果和结论:
     1、室内连续筛选26代后,与AYCK品系相比,AYBC和AYBT品系的幼虫发育历期明显延长,蛹重、产卵量、卵孵化率均明显降低,蛹历期和雌虫百分率差异不显著;与AYBT品系相比,AYBC品系的幼虫发育历期明显延长,产卵量明显降低,蛹重、蛹历期、雌虫百分率和卵孵化率差异不显著。AYBC品系和AYBT品系对Cry1Ac毒素的抗性均呈波动上升趋势,抗性倍数分别上升到5.63和11.44。表明转双价基因抗虫棉对棉铃虫抗性的产生具有延缓作用。
     2、对AYBC、AYBT和AYCK品系第26代棉铃虫幼虫中肠内的解毒酶、保护酶和蛋白酶进行活性测定。解毒酶测定结果表明,与AYCK品系相比,AYBC品系的GSTs和ACP活性明显降低,ANAE和ALP的活性明显升高;AYBT品系的AchE的活性显著降低,GSTs活性显著升高;其它酶变化不明显。与AYBT品系相比,AYBC品系的GSTs和ACP活性明显降低,其它酶类活性明显上升。保护酶测定结果表明,与AYCK品系相比,AYBC和AYBT品系的SOD、POD和CAT的活性均显著升高;与AYBT品系相比,AYBC品系3种酶的活性均显著降低。蛋白酶测定结果表明,与AYCK品系相比,AYBC和AYBT品系的胰凝乳蛋白酶和弱碱性类胰蛋白酶活性均明显降低;AYBT品系的强碱性类胰蛋白酶和APN活性均显著升高。与AYBT品系相比,AYBC品系的强碱性胰蛋白酶和弱碱性胰蛋白酶的活性降低。
     3、利用改进的单雌系F1/F2代法,系统监测了2007~2009年安阳、武城和威县的棉铃虫田间种群对Cry1Ac的耐受性变化和抗性基因频率。结果表明,3个地区中武城种群对Cry1Ac的耐受水平最高,且呈下降趋势;安阳种群次之,且呈逐年上升趋势;威县种群最低,且年际间变化不显著。保守估计了安阳、武城和威县三个地区的抗性基因频率分别为0~1.03‰、0.95‰~1.03‰和0,表明抗性基因频率仍处于正常水平。
     4、优化了棉铃虫RAPD-PCR反应体系,分析了第26代室内筛选的棉铃虫种群和2009年安阳、武城、威县田间种群的遗传分化程度。结果表明,室内种群AYBT、AYBC和AYCK聚类的遗传距离分别为0.161、0.177和0.213,三个品系最终在0.402处成聚,说明筛选26代后,AYBT、AYBC与AYCK出现了遗传分化。安阳、武城和威县田间种群聚类的遗传距离分别为0.524、0.437和0.446,三个地区种群最终在0.610处成聚,说明三个地区间的棉铃虫种群出现了明显的地域分化,地区间各自成聚。
The transgenic cotton expressing the Cry1Ac toxin shows an excellent effect on controlling the occurrence and damage of cotton bollworm. Meanwhile, the cultivation of Bt cotton also brought potential ecological and environmental security risk, in particular, the risk of resistance to transgenic cotton has been much attention at nation and abroad. The effects of transgenic cotton on cotton bollworm fitness, enzyme activities and genetic differentiation, at the same time, detection for the frequency of resistance to Cry1Ac in field were studied by lab feeding, chemistry analyzing, field monitoring from the view of biology, biochemistry, molecular biology. This paper based on cotton bollworm resistant strains (AYBC, AYBT) and the control strain (AYCK) which selected 17 generations by artificial feed mixed cotton seed powder, used the same method continued screening to 26th generation. And use it as test insects, the effects of transgenic cotton on cotton bollworm fitness, enzyme activities and genetic differentiation, as well as, monitoring for the frequency of resistance to Cry1Ac in the Yellow River Basin during 2007~2009 were studied by lab feeding, chemistry analyzing, field monitoring from the view of biology, biochemistry, molecular biology. The main results and conclusions as following:
     1. After 26 generations of selection, compared with the susceptible strain, in the AYBC and AYBT strain, larval development period was delayed; pupal weight, fecundity and egg hatching rate were reduced. Compared with AYBT strain, larval development period was delayed; fecundity was reduced. After 26 generations of selection, resistance to Cry1Ac of the AYBC strain and AYBT strain increased to 5.63 fold and 11.44 fold, respectively, compared with that of the susceptive strain. The analysis of changes in resistance of these two strains revealed that the screening material in AYBC strain could effectively delay the evolution of resistance to Cry1Ac in bollworm.
     2. We determined enzymes activities in larvae of H.armigera which from AYBC strain and AYBT strain. The results have demonstrated that: compared with the control, in AYBC strain, the activities of GSTs, ACP, chymotrypsin-like enzyme and weak alkaline trypsin-like enzyme were reduced; the activities ofα-naphthyl acetate esterase, ALP and three protective enzymes (SOD, CAT, and POD) were increased. In AYBT strain, the activities of AchE, chymotrypsin-like enzyme and weak alkaline trypsin-like enzyme were reduced; the activities of GST, SOD, POD, CAT, APN and active alkaline trypsin were increased. Compared with the AYBT strain, in AYBC strain, the activities of two trypsin-like enzymes were reduced; activity of chymotrypsin-like was not obvious change.
     3.During 2007~2009, we used genetic method of isofemale lines F1/F2 to detect the frequency of Bt resistance genes in Helicoverpa armigera populations which collected from Anyang County, Weixian County and Wucheng County. The results show that the tolerance levels of Helicoverpa armigera to Cry1Ac was highest and tended to decline during 2008~2009 in Wucheng population, higher and tended to increase year by year in Anyang population, and have not significant change in Weixian population.
     4. The optimal RAPD system for H.armigera was established. Based on this, the study used RAPD technique to analyze the genetic differentiation of populations from lab screening and field in 2009. The results show that, in population from lab screening, the genetic distance of clustering populations was 0.161 for AYBT strain, 0.177 for AYBC strain, and 0.213 for AYCK strain. Each population was clustered at first, and the genetic distance (0.402) of clustering for one species. The above result indicated that there was a significant genetic differentiation after 26 generations of selection. In field population, the genetic distance of clustering populations was 0.524 for Anyang population, 0.437 for Wucheng population, and 0.446 for Weixian population. Each population was clustered at first, and the genetic distance (0.610) of clustering for one species. The above result indicated that there was a clear geographical differentiation among the populations from three regions.
引文
1陈海燕,杨亦桦,武淑文等.棉铃虫田间种群Bt毒素Cry1Ac抗性基因频率的估算.昆虫学报, 2007, 50(1): 25~30.
    2程茂高,乔卿梅,袁国辉.植物外源抗虫基因及其应用.生物技术通报,2004 ,5:18~20.
    3高玉林.2009.田间棉铃虫对Bt棉花的耐性演化分析.博士学位论文.中国农业科学院.
    4顾耘,张迎春,王思芳.棉铃虫不同寄主种群遗传分化的RA PD分析.华东昆虫学报, 2002, 11(2): 30~34.
    5郭洪年,秦红敏,陈晓英等.新型双抗虫基因植物表达载体的构建及其在转基因烟草中的表达.自然科学进展,2002,12(6):601~606.
    6郭洪年,吴家和,陈晓英等.转Cry1Ac活性杀虫蛋白及慈菇蛋白酶抑制剂B基因的棉花.植物学报,2003,45(1):108~113.
    7郭三堆,崔洪志,夏兰芹等.双价抗虫转基因棉花研究.中国农业科学,1999,32(3): 1~7.
    8郭同斌,嵇保中,蒋继宏等.转基因杨树对杨小舟蛾体内三种保护酶活力的影响.昆虫学报,2006,49(3) :381~386.
    9郭予元.棉铃虫的研究.北京:中国农业出版社,1998.
    10何丹军,沈晋良,周威君等.应用单雌系F2代法检测棉铃虫对转Bt基因棉抗性等位基因的频率.棉花学报, 2001, 13(2): 105~108.
    11贾世荣,郭三堆,安道昌.转基因棉花.北京:科学出版社,2001:165~171.
    12贾永强,滑东辉,陈月华等. Bt毒素相关受体的研究进展.中国生物防治, 2006, 22 (增刊) 135 ~140.
    13李国平.2006.不同种植模式下棉铃虫对转基因棉花的抗性演化分析.博士学位论文.中国农业大学.
    14李周直,沈惠娟,蒋巧很等.几种昆虫体内保护酶系统活力的研究.昆虫学报,1994,37 (4):399~403.
    15梁革梅,谭维嘉,郭予元.棉铃虫Bt抗感种群间数种解毒酶和中肠蛋白酶活性的比较.植物保护学报,2001,28(2):135~138.
    16梁革梅,谭维嘉,郭予元.棉铃虫Bt抗性种群的RAPD -PCR初步分析.植物保护, 2000, 26(3):4~6.
    17梁革梅,谭维嘉,郭予元.棉铃虫对转Bt基因棉的抗性筛选及遗传方式的研究.昆虫学报,2000, 43(增): 57~62.
    18梁革梅.(2002).棉铃虫Bt毒素受体蛋白生化特性、基因克隆及其与抗性的关系.博士学位论文.中国农业科学院.
    19林同,王志英,刘宽余等.向小黑杨转化蜘蛛杀虫毒素基因.昆虫学报,2006,29(4):593~598.
    20刘凤沂,朱玉成,沈晋良. F1代法监测田间棉铃虫对转Bt基因棉的抗性.昆虫学报, 2008, 51(9): 938~945.
    21刘凤沂,朱玉成,沈晋良. F1代发监测田间棉铃虫对转Bt基因棉的抗性.昆虫学报,2008,51(9): 938~945.
    22卢美光,赵建周,范贤林等.华北地区棉铃虫对Bt杀虫蛋白的抗性监测.棉花学报, 2000, 12(4): 180~183.
    23孟香清,芮昌辉,赵建周等.抗三氟氯氰菊酯棉铃虫种群相对适合度研究.植物保护,1998, 24(6):12~14.
    24邵宗泽,喻子牛.苏云金芽胞杆菌杀虫晶体蛋白作用的分子机制研究进展.生物工程进展,2001,21(6):38~42.
    25申继忠,钱传范.亚致死剂量苏云金杆菌蜡螟亚种对大蜡螟幼虫SOD和POX活性的影响.生物防治通报,1994,10(3):118~122.
    26史艳霞,张永军,王桂荣等. Bt抗性和敏感棉铃虫幼虫中肠主要蛋白酶活性的变化.应用与环境生物学报,2008,14(3):394~398.
    27孙志新.(2008).棉铃虫对双价(Bt+CpTI)抗虫棉抗性筛选及抗性机理的初步研究.硕士学位论文.中国农业科学院.
    28唐振华,1993.昆虫抗药性及其治理.北京:农业出版社,389.
    29唐振华,韩罗珍,张朝远.抗马拉硫磷淡色库蚊不同基因型的自然内禀增长率及其对抗性演化的影响.昆虫学报,1990,33(4):385~3922.
    30王桂荣,吴孔明,梁革梅等.棉铃虫中肠钙粘蛋白基因的克隆、表达及Cry1A结合区定位.中国科学C辑生命科学,2004,34: 537~546.
    31王桂荣,吴孔明,梁革梅等.棉铃虫中肠钙粘蛋白基因的克隆、表达及Cry1Ac结合区定位.中国科学C辑生命科学,2004,34(6):537~546.
    32王建革,苏晓华,纪丽丽等.基因枪转多基因库安托杨的获得.科学通报,2006,51(23): 2755~2760.
    33吴益东,沈晋良,谭福杰等.棉铃虫对氰戊菊酯抗性品系和敏感品系的相对适合度.昆虫学报,1996,39(3):233~2373.
    34伍宁丰,孙芹,姚斌等.抗虫的转AaIT基因杨树的获得.生物工程学报,2000,16(2):129~133.
    35徐艳聆,王振营,何康来等.对Bt抗性和敏感亚洲玉米螟解毒酶和中肠蛋白酶的比较.农业生物技术学报,2006,14(6): 889~893.
    36徐艳聆,王振营,何康来等.转Bt基因抗虫玉米对亚洲玉米螟幼虫磷酸酯酶活性的影响.安徽农业科学,2007,35(3):630~631.
    37徐艳聆,王振营,何康来等.昆虫对Bt杀虫蛋白的抗性机制及治理策略.植物保护学报,2006, 33(4):437~444.
    38徐艳聆,王振营,何康来等.转Bt基因抗虫玉米对亚洲玉米螟幼虫几种主要酶系活性的影响.昆虫学报,2006,49(4):562~567.
    39许新军.2005.棉铃虫对Bt毒素-Cry1Ac抗性的生化及分子机理研究.[博士学位论文].南京农业.
    40杨峰山,吴青君,徐宝云等.小菜蛾对Bt毒素Cry1Ac和Bt制剂抗性的选育及其抗性种群的生物学适应性.昆虫学报,2006,49(1):64~ 69.
    41杨俊杰,于惠敏,张海龙.植物抗虫基因工程的研究.山东教育学院学报,2008,3:89~92.
    42杨敏生,李志兰,王颖等.双抗虫基因对三倍体毛白杨的转化和抗虫性表达.林业科学,2006,42(9):61~68.
    43叶萱.昆虫对Bt作物的抗性.世界农药,2004,26(2): 33~37.
    44袁灿,夏立秋,丁学知等.喂食Cry1Ac毒素对棉铃虫中肠类胰蛋白酶的影响.湖南师范大学自然科学学报,2009,32(2):93~97.
    45张超.植物抗虫基因工程在害虫治理中的应用.植物医生,2009,22(4):4~6.
    46张少燕,李典谟,谢宝瑜.Bt毒蛋白对棉铃虫的生长发育和相关酶活性的影响.昆虫知识,2004, 41(6):536~540.
    47张文吉,张友军,韩熹莱.棉铃虫不同龄期幼虫羧酸酯酶、谷胱甘肽转移酶、乙酰胆碱酯酶研究.植物保护学报,1996,23(2):158~162.
    48张志勇,何平.药用植物草珊瑚RAPD扩增条件优化.广西植物,2009,29(4):455~458.
    49赵建周.棉铃虫对转Bt基因棉的抗性问题与对策.农业生物技术通讯,1998,2:1~2.
    50 Akhurst R J, James W, Bird L J et al.Resistance to the Cry1Ac delta~endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J.Econ.Entomol, 2003, 96(4):1290~1299.
    51 Alyokhin AV, Ferro D N. Relative fitness of Colorado potato beetle (Coleop tera: Chrysomelidae) resistant and suscep tible to the Bacillus thuringiensis Cry3A toxin. J. Econ. Entom ol. , 1999, 92: 510~515.
    52 Andow D A, Alstad D N, Pang Y H et al. Using an F2 screen to search for resistance alleles to toxin in European cornborer (Lepidoptera: Crambidae) . Journal of Economic Entomology, 1998, 91(3): 579~ 584.
    53 Andow D A, Alstad D N. The F2 Screen for rare resistance alleles. Journal of Economic Entomology, 1998, 91(5): 1044~1050.
    54 Andow D A, Olson D M, Hellmich R L et al. Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in an Iowa population of European corn bore (Lepidoptera: Crambidae) . Journal of Economic Entomology, 2000, 93 (1):26~30.
    55 Andow, D A, D N Alstad. F2 screen for rare resistance alleles. J. Econ. Entomol, 1998, 91:572~578.
    56 Andow D A, Alstad D N, Y-H Pang et al. Using an F2 screen to seach for resistance alleles to Bacillus thuringiensis toxin in European corn borer (Lepidoptera: Crambidae).J.Econ.Entomol, 1998, 91:572~578.
    57 Andow. The risk of resistance evolution in insects to transgenic insecticidal crops. Collection of biosafety reviews, 2008, 4:142~199.
    58 Anilkumar K J, Simon A R, Ferre J et al. Production and Characterization of Bacillus thuringiensis Cry1Ac-resistance cotton bollworm Helicoverpa zea (Boddie).Appl.Env. Microbiol, 2008, 74:462~469.
    59 Bird L J, Akhurst R J. Relative fitness of Cry1A-resistant and -susceptible Helicoverpa armigera (Lepidoptera: Noctuidae) on conventional and transgenic cotton. Journal of Economic Entomology, 2004, 97:1699~1709.
    60 Bird L J, Akhurst R J. Effects of host p lant species on fitness costs of Bt resistance in Helicoverpa armigera (Lep idop tera: Noctuidae). B iol. Control, 2007,40: 196~203.
    61 Bourguet D, Chaufaux J, Seguin M et al. Frequency of alleles conferring resistance to Bt maize in French and US corn belt populations of European corn borer, Ostrinia nubilalis. Theoretical and Applied Genetics, 2003, 106 (7):1225~1233.
    62 Burd A D, Gould F, Bradley J R et al. Estimated frequency of non-recessive Bt resistance genes in bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in eastern North Carolina. Journal of Economic Entomology, 2003, 96: 137~142.
    63 Chen J, Brown M R, Hua G et al. Comparison of the localization of Bacillus thuringiensis Cry1Aδ-endotoxins and their binding proteins in larval midgut of tobacco hornworm, Manduca sexta. 2005. Cell Tissue Res., 321: 123~129.
    64 Coustau C, Chevillon C, ffrench - Constant R. Resistance to xenobiotics and parasites: can we count the cost? Trends Ecol. Evol. , 2000, 15 (9): 378~383.
    65 Ding S Y, Li X F, Zhang Z Y. Effects of two kinds of transgenic poplar on protective enzymes system in the midgut of larvae of American white moth. Journal of Forestry Research, 2001, 12(2):119~122.
    66 Downes S, Mahon R, Olsen K. Monitoring and adaptive resistance management in Australia for Bt-cotton: Current status and future challenges.Journal of Invertebrate Pathology, 2007, 95:208~213.
    67 Fernandez L E, Aimanova K G, Gill S S et al. AGP I-anchored alkaline phosphatase is a functionalmidgut receptor of Cry11Aa toxin in Aedes aegypti larvae. B iochem. J., 2006, 394 (Pt 1): 77~84.
    68 Flannagan R D, Yu C G, Mathis J P et al. Identification, cloning and expression of a Cry1Ab cadherin receptor from European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae). Insect Biochemistry and Molecular Biology, 2005, 35: 33~40.
    69 Gahan L J, Gould F, Heckel D G. Identification of a gene associated with Bt resistance in Heliothis virescens. Science, 2001, 293: 857 ~ 860.
    70 GAO Y L, Wu K M, Gould F. Frequency of Bt resistance alleles in Helicoverpa armigera during 2006-2008 in Northern China. Journal of Environmental Entomology, 2009, 38(4): 1336~1342.
    71 Gassmann A J, Carrière Y, Tabashnik B E. Fitness costs of insect resistance to Bacillus -thuringiensis. 2009, Annu. Rev. Entomol. , 54: 147~163.
    72 Gill S S, Cowles E A, Pietrantonio P V. The mode of action of Bacillus thuringiensis endotoxins. Annu.Rev.Entomol.1992, 37:615~636.
    73 González-Cabrera, Escriche B, Tabashnik B E et al. Binding of Bacillus thuringiensis toxins in resistant and susceptible strains of pink bollworm(Pectinophora gossypiella).Insect Biochem. Mol. Biol., 2003, 33:929~935.
    74 Gould F, Anderson A, Jones A et al. Initial frequency of alleles for resistance to Bacillus thuringiensis toxin in field populations of Heliothis virescens.Proc. Natl.Acad.Sci.U.S.A, 1997, 94:3519~3523.
    75 Gould F, Anderson A, Reynolds A et al.Selection and genetic analysis of a Heliolhis virescens(Lepidoptera: Nociuidae) strain witn high levels of resistance to Bacillus thuringiensis toxins.J.Econ.Entomol.1995.88 (6):1545~1559.
    76 Gould F.Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu.Rev. Entomol, 1998, 43:701~726.
    77 Griffitts J S, Haslam S M, Yang T et al. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science, 2005, 307: 922~925.
    78 Griffitts J S, Whitacre J L, Stevens D E et al. Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science, 2001, 293:860~864.
    79 Heckel D G. The complex genetic basis of resistance to Bacillus thuringiensis toxin in insects. Biocontrol Scienceand Technology, 1994, 4:405~417.
    80 Heckel D G, Gahan L J, Gould F et al. Genetics of Heliothis and Helicoverpa resistance to chemical insecticides and to Bacillus thuringiensis. Pestic.Sci, 1997, 51:251~258.
    81 Hilder V A, Barker R F, Samour R A, et al. Protein and cDNA sequences of Bowman-Birk protease inhibitors from the cowpea (Vigna unguiculata Walp.). Plant Molecular Biology, 1989, 13 (6):701 ~ 710.
    82 Huang F. Detection and monitoring of insect resistance to transgenic Bt crops. Insect Science, 2006, 13: 73~ 84.
    83 Jackson R E, Bradley J R, Gould F et al. 2002. Genetic variation for resistance to Cry1Ac and Cry2Ab in bollworm, Helicoverpa zea, in North Carolina[C]// Proc Beltwide Cotton Conf. Memphis, TN: National Cotton Council, 2002.
    84 Janmaat A F, Myers J. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proc. Biol. Sci, 2003, 270: 2263~2270.
    85 Jurat-Fuentes J L, Adang M J. A proteomic approach to study Cry1Ac binding proteins and their alterations in resistant Heliothis virescens larvae. Journal of Invertebrate Pathology, 2007, 95, (3), 187~191.
    86 Jurat-Fuentes J L, Gould F L, Adang M J. Altered glycosylation of 63-and 68-kilodalton microvillar proteins in Heliothis virescens correlates with reduced Cry1 toxin binding, decreased pore formation, and increased resistance to Bacillus thuringiensis Cry1 toxins. Appl.Environ. Microbiol., 2002, 68:5711~5717.
    87 Knight P, Crickmore N, Ellar D J. The receptor for Bacillus thuringiensis Cry1A(c) delta -endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol, 1994. 11:429~436.
    88 LI G P, Gould F, Wu K M et al. Increasing tolerance to Cry1Ac cotton from cotton bollworm was confirmed in Bt cotton farming area of China. Journal of Economic Entomology, 2007, 104: 699~704.
    89 Li G P, Wu K M, Gould F et al. Bt toxin resistance gene frequencies in Helicoverpa armigera populations from the Yellow River cotton farming region of China. Entomol. Exp. Appl, 2004,112:135~143.
    90 Li G P, Wu K M, Gould F et al.Increasing tolerance to Cry1Ac cotton from cotton bollworm was confirmed in Bt cotton farming area of China.Ecol Entomol, 2007, 32: 366~375.
    91 Liang G M ,Wu K M, Yu H K et al.Changes of inheritance mode and fitness in Helicoverpa armigera(Hübner)(Lepidoptera:Noctuidae)along with its resistance evolution to Cry1Ac toxin.J. Invertebr.Pathol, 2008, 97(2):142~149.
    92 Liang G M, Wu K M, Guo Y Y. Diapause cold hardiness and flight ability of Cry1Ac-resistant and-susceptible strains of Helicoverpa armigera (Lepidoptera: Noctuidae). Eur.J.Entomol, 2007, 104: 699~704.
    93 Liu Y B, Tabashnik B E, Pusztai-Carey M. Field-evolved resistance to Bacillus thuringiensis toxin Cry1C in diamondback moth.J.Econ.Entomol., 1996, 89:798~804.
    94 Luo K, Tabashnik B, Adang M J. Binding of Bacillus thuringiensis Cry1Ac toxin to amino -peptidase in susceptible and resistant diamondback moths(Plutella xylostella).Appl. Environ.Microbiol.,1997,63:1024~1027.
    95 Mahon R J, Olsen K M, Downes S et al. Frequency of alleles conferring resistance to the Bt toxins Cry1Ac and Cry2Ab in Australian population of Helicoverpa armigera (Lepidoptera: Noctuidae). J.Econ. Entomol, 2007, 100:1844~1853.
    96 Matten S R, Head G P, Quemada H D. How governmental regulation can help or hinder the integration of Bt crops into IPM programs. Integration of Insect-Resistant Genetically Modified Crops within IPM Programs, edsRomeis J, Shelton AM, Kennedy G G (Springer, New York), 2008, 27~39.
    97 McGaughey W H. Insect resistance to the biological insecticide Bacillus thuringiensis. Science, 1985, 229:193~195.
    98 McNall R J, Adang M J. Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis. Insect Biochemistry and Molecular Biology, 2003, 33(10): 999~1010.
    99 Moar W J, Pusztai-Carey M, Faassen H V et al. Development of Bacillus thuringiensis Cry1C resistance by Spodoptera exigua(Hübner) (Lepidoptera:Noctuidae).Appl.Environ. Microbiol, 1995, 61:2086~2092.
    100 Morin S S, Henderson J A, Fabrick Y et al. DNA-based detection of Bt resistance alleles in pink bollworm. Insect Biochem. Mol. Biol, 2004, 34: 1225~1233.
    101 Nagamatsu Y, Toda S, Koike T et al.Cloning, sequencing, and expression of the Bombyx m ori receptor for Bacillus thuringiensis insecticidal Cry1Aa toxin. Biosci. Biotechnol. Biochem. , 1998, 62: 718~726.
    102 Neunzig H H. The biology of the tobacco budworm and the corn earworm in North Carolina with particular reference to tobacco as a host. North Carolina Agricultural Experiment Station. Technology Bulletin, 1969, 196:63.
    103 Oppert B, Kramer K J, Beeman RW et al. Proteinase-mediated insect resistance to Bacillusthuringiensis toxins.J Biol Chem, 1997, 272(38):23473~23476.
    104 Rajagopal R, Sivakumar S, Agrawal N et al. Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor.J Biol Chem 2002; 277: 46849–46851.
    105 Roush R T, Miller G L. Considerations for design of insecticide resistance monitoring programs. J Econ Entomol, 1986, 79: 293~298.
    106 Ryan C A. Proteinase inhibitor gene families: strategies for transformation to improve plant defenses against herbivores BioEssays, 1989, 10 (1): 20 ~ 24.
    107 Sims M A, Dennehy T J, Shriver L et al. Susceptibility of Arizona pink bollworm to Cry1Ac[C]// Proc Beltwide Cotton Conf. Memphis, TN: National Cotton Council, 2002.
    108 Storer N P, Peck S L, Gould F et al. Sensitivity analysis of a spatially-explicit stochastic simulation model of the evolution of resistance in Heliocoverpa zea (Lepidoptera: Noctuidae) to Bt transgenic corn and cotton. Journal of Economic Entomology, 2003, 96: 173~187.
    109 Storer N P, Peck S L, Gould F et al. Spatial processes in the evolution of resistance in Heliocoverp zea (Lepidoptera: Noctuidae) to Bt transgenic corn and cotton in a mixed agroecosystem: a biology-rich stochastic simulation model. Journal of Economic Entomology, 2003, 96: 156~172.
    110 Tabashnik B E, Carrière Y, Dennehy T J et al. Insect resistance to transgenic Bt crops: lessons from the laboratory and field. Journal of Economic Entomology, 2003, 96:1031~1038.
    111 Tabashnik B E, Patin A L, Sims M A et al. Frequency of resistance to Bacillus thuringiensis in field population of pink bollworm. Proc Natl Acad Sci USA, 2000, 97 (24): 12980~12984.
    112 Tieku S, Hooper N M. Inhibition of aminopeptidases N, A and W: A re-evaluation of the actions of bestatin and inhibitors of angiotensin converting enzyme. Biochemical Pharmacology, 1992, 44(9): 1725~1730.
    113 Wu K M, Guo Y Y, Greenplate J T et al. Resistance monitoring of Helicoverpa armigera (Lepidoptera: Noctuidae) to Bt insecticidal protein in China. Journal of Economic Entomology, 2002, 95: 826~831.
    114 Wu K M, Guo Y Y, Head G. Resistance monitoring of Helicoverpa armigera (Lepidoptera: Noctuidae) to Bt insecticidal protein during 2001~2004 in China. Journal of Economic Entomology, 2006, 99: 893~896.
    115 Wu K M, Guo Y Y. Geographic variation in susceptibility of Bacillus thuringiensis insecticidal protein in China. Journal of Economic Entomology, 1999, 92: 273~278.
    116 Xie R, ZhuangM, Ross L S et al. Single amino acid mutations in the cadherin receptor from Heliothis virescens affects its toxin binding ability to Cry1A toxins. J. Biol. Chem., 2005, 280: 8416~8425.
    117 Xu X, Yu L, Wu Y. Disrup tion of a cadherin gene associated with resistance to Cry1Acδ-endotoxin of B acillus thuringiensis in Helicoverpa armigera. Appl. Environ. Microbiol. , 2005, 71: 948~954.
    118 Yang L Y, Sun G, Xie L Q. Bioassays of resistance of transgenic poplar with novel binaryinsect-resistant genes to Anoplophora glabripennis (Coleoptera: Cerambycidae) and Hyphantria cunea (Lepidoptera: Arctiidae).Acta Entomologica Sinica, 2008, 51 (8): 844~848.
    119 Zhao J Z, Escriche, Collins H L et al. Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of Cry1C. App1. Environ. Microbiol. 2000. 66: 3784~3789.
    120 Zhu Y C, Kramer K J, Oppert B et al. cDNAs of aminopeptidase-like protein genes from Plodia interpunctella strains with different susceptibilities to Bacillus thuringiensis toxins. Insect Bio -chemistry and Molecular Biology. 2000, 30(3):215~224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700