生物医用钛基复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于钛和钛合金具有良好的机械性能、生物相容性和耐蚀性,因而被广泛的应用于骨组织工程的承重支架。然而,固态的钛及钛合金要比人的骨骼坚硬得多,而且不能提供新的骨组织生长能力和血管形成的空间,这会导致植入管疏松以至最后的失败。据不完全统计,大约百分之二十到二十五接受骨科移植手术的患者都需要再做一次修正手术。解决这个问题的办法就是使植入骨骼的结构和机械性能与人身体上的骨骼相匹配。然而,当孔隙率增加到能够满足自然骨骼要求并且能够使新的骨组织生长和血管形成的时候,多孔纯钛的强度随着孔隙率的提高,迅速的降低,并且强度远低于自然骨骼。因此,增强钛及其合金的强度以保证提供合格的刚度,并且在使用多孔结构时拥有足够的强度就显得尤为重要了。
     高孔隙率的多孔纯钛在植入材料领域是很有发展前景的。由于具有低廉的价格及各向异性的特点,颗粒增强型金属基复合材料获得了越来越多的关注。提高金属及金属基多孔材料的强度可以通过基体增强相来实现。例如,将细小的陶瓷颗粒或者合金元素通过粉末冶金的方法加入到基体粉末中。增强相颗粒的大小、形状以及含量将影响材料的弹性模量、强度、断裂韧性和屈服强度。
     在本次研究中我们选择了SiO2/ZrO2/Nb2O5三种具有良好生物相容性的氧化物颗粒来制备钛基复合材料,以保证样品具有良好的生物相容性和机械性能。钛基复合材料采用粉末冶金的方法制备出来。我们通过X射线衍射分析、金相显微镜、扫描电子显微镜和机械性能测试研究了成分组成和烧结温度对钛基复合材料机械性能和生物相容性的影响。密度测试的结果表明,随着烧结温度的提高,材料的致密度均有所提高。机械性能测试的结果表明加入氧化物后,钛基复合材料的强度相对于纯钛均有了显著的提高,同时还保持了良好的塑性。加入量为2%SiO2并且烧结温度在1100℃的样品的屈服强度达到1566MPa并且极限应变也有15.96%。加入量为4%ZrO2并且烧结温度在1100℃的样品的屈服强度达到1280MPa并且极限应变也有24.13%。加入量为2%Nb2O5并且烧结温度在1100℃的样品的屈服强度达到1494MPa并且极限应变也有16.44%。生物相容性实验的结果表明此次研究的钛基复合材料均具有良好的生物相容性和细胞粘附性。类成骨细胞在钛基复合材料上的生长和繁殖情况均好于纯钛
     本课题证明了SiO2/ZrO2/Nb2O5颗粒增强型钛基复合材料在骨组织植入材料领域是一种很有发展前景的材料。
Titanium and its alloys are widely used as load-bearing implants for bone tissue engineering due to their good mechanical properties, good biocompatibility and excellent corrosion resistance. However, titanium and its alloys in their solid forms are much stiffer than human bone and do not provide new bone tissue ingrowth abilities and vascularisation, leading to implant loosening and eventual failure. It is estimated that20-25%of patients having an orthopaedic implant will eventually require a secondary revision surgery. The solution is to match both the architecture and the mechanical properties of implants to those of nature bone. However, the strength of porous pure titanium deceases dramatically with the introduction of porosity and is lower than that of natural bone, when the porosity is increased sufficiently to match the stiffness of natural bone and enable new bone tissue ingrowth and vascularisation. Therefore, it is important to enhance the strength of titanium and its alloys to ensure appropriate stiffness, as well as adequate strength when it is used in a porous structure.
     Porous pure titanium (Ti) scaffold with high porosity is promising for use as implant materials. Particulate-reinforced metal composites have attracted extensive attention as a result of their relatively low costs and characteristic isotropic properties. The mechanical properties of metal and its foams can be improved by matrix reinforcement, e.g. adding fine ceramic particles or alloying elements in the base powder of the powder metallurgical route. The size, shape and volume fraction of the reinforcement affect the elastic modulus, strength, fracture toughness and compressive creep properties
     In this study, biocompatible SiO2/ZrO2/Nb2O5particles are selected for fabricating the particulate-reinforced Ti composites to ensure its biocompatibility and mechanical property. The particulate-reinforced Ti composites are fabricated using powder metallurgy (P/M). The effects of composition and sintering temperature on the microstructure and properties of the Titanium-Based Composites were investigated by X-ray diffraction, optical microscope, scanning electron microscopy and mechanical properties tests. The relative density result showed that the relative density increased with increasing sintering temperature. The results indicate that the strengths of the composites are significantly higher than that of pure titanium. At the same time these composites preserved good elasticity. The sample added2%SiO2and sintered at1100℃exhibited a compressive strength of1566MPa and a ultimate strain of15.96%. The sample added4%ZrO2and sintered at1100℃exhibited a compressive strength of1280MPa and a ultimate strain of24.13%. The sample added2%Nb2O5and sintered at1100℃exhibited a compressive strength of1494MPa and a ultimate strain of16.44%. In vitro results reveal that the composite possesses excellent biocompatibility and cell adhesion. Osteoblast-like cells grew and spread better on the surfaces of the Ti/SiO2composites than pure Ti.
     This study demonstrates that the SiO2/ZrO2/Nb2O5particulate-reinforced Ti composite is a promising material for great potential use as an orthopedic implant material.
引文
[1]Vincent J F V. Structural biomaterials[M]. Princeton University Press,1990
    [2]Park J B and R S. Lakes,Biomaterials:An Introduction[M]. Plenum Press, New York,1992.
    [3]Black J, Biological Performance of Materials[M]. Marcel Dekker, Inc., New York,1992.
    [4]Silver F H. Biomaterials, Medical Devices and Tissue Engineering:An Integrated Approach[M]. Chaprnap & Hall,1994.
    [5]Wise D L, Trantolo D J, Altobelli D E, Yaszernski M J, Gresser J D and Schwartz E R. Encyclopedic of Biomaterials and Bioengineering[M], Marcel Dekker. Inc., New York, 1995, Part A.
    [6]Byrom D. Biomaterials:Novel Materials from Biological Sources[M]. Stockton Press, New York,1991.
    [7]Aksay I A, Baer E, Sarikaya M and Tirrell D A. Hierarchically Structured Materials[M]. Materials Research Society, Pittsburgh, Pennsylvania,1992.
    [8]Szycher M. High Performance Biomaterials:A Complete Guide to Medical and Pharmceutical Applications[M]. Technomic Press, U.S.A.1990.
    [9]顾汉卿,徐国风主编.生物医学材料学[M],天津科技翻译出版公司,1993.
    [10]张兴栋,曾汉民主编.高科技新材料要览[M].中国科学技术出版社,1993:31-32.
    [11]师昌绪主编.材料科学大词典[M].百科知识出版社,1996.
    [12]刘江.医用金属材料的研制与应用[J].金属功能材料,2007,14(6):38-42.
    [13]郝应其,孙元. 生物材料及人工关节[M].北京航空材料研究所,1986.
    [14]田莳,李秀臣,刘正堂. 金属物理性能[M].北京:北京航空工业出版社,1984.
    [15]曹乃光.金属塑性加工原理[M].北京:冶金工业出版社,1983.
    [16]万愉如,许昌淦.高强度及超高强度钢[M].北京:机械工业出版社,1988.
    [17][美]约翰·D·费豪文[著],卢光熙,赵子伟[译].物理冶金学基础[M].上海:上海科学技术出版社,1980.
    [18]余永宁.材料科学基础[M].北京.高等教育出版社,2006.
    [19]陈志源,林江.高强材料学[M].上海:同济大学出版社,1993.
    [20]张树松,全爱莲.钢的强韧化机理与技术途径[M].北京:兵器工业出版社,1995.
    [21]陈进化.位错基础[M].上海:上海科学技术出版社,1984.
    [22]候增寿,卢光锡.金属学原理[M].上海.上海科学技术出版社,1990.
    [23]张俊善,材料强度学[M].哈尔滨工业大学出版社,2003.
    [24]Polmear I J. Titanium alloys. Light Alloys (Fourth Edition) [M]. Oxford: Butterworth-Heinemann,2005:299-365.
    [25]Rack H J, Qazi J I. Titanium alloys for biomedical applications [J]. Mater Sci Eng C.2006,26:1269-1277.
    [26]Sporer S M, Paprosky W G. Biologic fixation and bone ingrowth[J]. Orthopedic clinics of north America.2005,36(1)105-111.
    [27]Wen C E, Yamada Y, Hodgson P D. Fabrication of novel alloy foams for biomedical applications[J]. Mater Forum 2005,29:274-278.
    [28]Wen C E, Yamada Y, Hodgson P D. Fabrication of novel TiZr alloy foams for biomedical applications[J]. Materials Science and Engineering:C.2006,26(8):1439-1444.
    [29]Wen C E, Yamada Y, Shimojima K, Chino Y, Hosokawa H, Mabuchi M. Novel titanium foam for bone tissue engineering[J]. Journal of Materials Research 2002,17(10):2633-2639.
    [30]Xiong J Y, Li Y C, Wang X J, Hodgson P D, Wen C E. Titanium-nickel shape memory alloy foams for bone tissue engineering [J]. Journal of the Mechanical Behavior of Biomedical Materials.2008,1(3):269-273.
    [31]Li Y C, Xiong J Y, Lin J G, Forrest M, Hodgson P D, Wen C E. Mechanical Properties and Energy Absorption of Ceramic Particulate and Resin-Impregnation Reinforced Aluminium Foams [J]. Materials Forum.2007,31:52-56.
    [32]Liu B, Liu Y, He X Y, Tang H P, Chen L F, Huang B Y. Preparation and Mechanical Properties of Particulate-Reinforced Powder Metallurgy Titanium Matrix Composites[J]. Metallurgical and Materials Transactions A 2007,38(11):2825-2831.
    [33]Wen C E, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T. Processing of biocompatible porous Ti and Mg[J]. Scr. Mater.2001,45:1147-1153.
    [34]Wen C E, Yamada Y, Shimojima K, Chino Y, Asahina T, Mabuchi M. Processing and mechanical properties of autogenous titanium implant materials [J]. J. Mater. Sci:Mater Med.2002,13:397-401.
    [35]Currey J D. Bones Structure and Mechanics[M]. Second ed. New Jersey:Princeton Uinversity Press.2006.
    [36]Thomson R C, Wake M C, Yaszemski M J, Mikos A G. Biodegradable polymer scaffolds to regenerate organs[J]. Adv Polym Sci.1995,122:245-274.
    [37]Gibson L G, Ashby M F. Cellular Solids:Structure and Properties[M]. Cambridge, U. K: Cambridge University Press,1997.
    [38]Banno T, Li Y C, Wen C E, Yamada Y. Mechanical Properties of Micro-Porous Metals Produced by Space-Holding Sintering[J]. Advanced Materials Research.2007,29-30:75-78.
    [39]Alvarez K, Hyuna S-K, Nakano T, Umakoshi Y, Nakajima H. In vivo osteocompatibility of lotus-type porous nickel-free stainless steel in rats[J]. Materials Science and Engineering: C.2008,29(4):1182-1190.
    [40]Sargeant T D, Guler M O, Oppenheimer S M, Mata A, Satcher R L, Dunand D C, et al. Hybrid bone implants:Self-assembly of peptide amphiphile nanofibers within porous titanium[J]. Biomaterials.2008,29(2):161-171.
    [41]Mauney J R, Jaquiery C, Volloch V, Heberer M, MartinⅠ, Kaplan D L. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering[J]. Biomaterials.2005,26(16): 3173-3185.
    [42]Thomson R C, Wake M C, Yaszemski M J, Mikos A G. Biodegradable polymer scaffolds to regenerate organs Advances in Polymer Science Berlin/ Heidelberg[M]. Springer.1995:245-274.
    [43]Evans F G, Lissner H R. Tensile and Compressive Strength of Human Parietal Bone[J]. J. Appl. Physiol.1957,10:493-497.
    [44]Ranganath S. A review on particulate-reinforced titanium matrix composites [J]. Journal of Materials Science.1997,32(1):1-16.
    [45]Ibrahim I A, Mohamed F A, Lavernia E J. Particulate reinforced metal matrix composites - a review [J]. Journal of Materials Science.1991,26(5):1137-1156.
    [46]Kaczmar J W, Pietrzak K, Wlosinski W. The production and application of metal matrix composite materials[J]. Journal of Materials Processing Technology.2000,106(1-3):58-67.
    [47]Liu Y, Chen L F, Tang H P, Liu C T, Liu B, Huang B Y. Design of powder metallurgy titanium alloys and composites[J]. Materials Science and Engineering:A.2006, 418(1-2):25-35.
    [48]Elbir S, Yilmaz S, Toksoy A K, Guden M, Hall I W. J Mater Sci[J].2003,33:4745-4755.
    [49]Esmaeelzadeh S, Simchi A, Lehmhus D. In:Nakajima H, Kanetake N, editors. Porous Metals and Metal Foaming Technology[M]. Kyoto, Japan.2005:101-106.
    [50]Godfrey T M T, Goodwin P S, Ward-Close C M. Titanium Particulate Metal Matrix Composites Reinforcement, ProductionMethods, and Mechanical Properties[J]. Advanced Engineering Materials.2002,2(3):85-92.
    [51]Tanaka Y, Yang J M, Liu Y F, Kagawa Y. Characterization of nanoscale deformation in a discontinuously reinforced titanium composite using AFM and nanolithography[J]. Scripta Materialia.2007,56(3):209-212.
    [52]Morsi K, Patel V V, Naraghi S, Garay J E. Processing of titanium-titanium boride dual matrix composites[J]. Journal of Materials Processing Technology.2008,196(1-3):236-242.
    [53]Tong W, Ravichandran G, Christman T, Vreeland Jr T. Processing SiC-particulate reinforced titanium-based metal matrix composites by shock wave consolidation [J]. Acta Metallurgica et Materialia.1995,43(1):235-250.
    [54]Choe H, Abkowitz S, Abkowitz S M, Dunand D C. Mechanical properties of Ti-W alloys reinforced with TiC particles[J]. Materials Science and Engineering:A.2008,485(1-2):703-710.
    [55]Sheldon B, Curtin W. Nanoceramic composites:tough to test[J]. Nature Materials.2004, 3(8):505-506.
    [56]De Castro V, Leguey T, Munoz A, Monge M A, Pareja R. Relationship between hardness and tensile tests in titanium reinforced with yttria nanoparticles[J]. Materials Science and Engineering A.2005,400-401:345-348.
    [57]Kondoh K, Threrujirapapong T, Imai H, Umeda J, Fugetsu B. Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes[J]. Composites Science and Technology.2009,69:1077-1081.
    [58]Chawla N, Chawla K K. Metal Matrix Composites Springer. New York,2006.
    [59]Tjong S C, Novel nanoparticle-reinforced metalmatrix compositeswith enhanced mechanical properties[J]. Advanced Engineering Materials,2007,9(8):639-652.
    [60]Hanawa T, Kaga M, Itoh Y, Echizenya T, Oguchi H, Ota M. Cytotoxicities of oxides, phosphates and sulphides of metals[J]. Biomaterials.1992,13(1):20-24.
    [61]Yoshida K, Morita M, Mishina H. Cytotoxicity of metal and ceramic particles in different size[J]. The Japanese Society of Mechanic Engineerings, Sceries C.2003,46(4):1284-1289.
    [62]Karlsson H L, Gustafsson J, Cronholm P, Moller L, Size-dependent toxicity of metal oxide particles-A comparison between nano and micrometer size[J]. Toxicology Letters.2009,188(2): 112-118.
    [63]Zhu R R, Wang S L, Chao J, Shi DL, Zhang R, Sun X Y, Yao S D. Bio-effects of nano-TiO2 on DNA and cellular ultrastructure with different polymorph and size[J]. Materials Science & Engineering C-Biomimetic And Supramolecular Systems.2009,29(3):691-696.
    [64]AruojaV, Dubourguier H C, Kasemets K, Kahru A, Toxicity of nanoplarticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata[J]. Science Of The Total Environment.2009,407(4):1461-1468.
    [65]Li Y C, Xiong J Y, Wong C S, Hodgson P D, Wen C E, Bioactivating the surfaces of titanium by Sol-Gel process[J]. Mater. Sci. Forum.2009,614:67-71.
    [66]LiY C, Wong C S, Xiong J Y, Hodgson P D, Wen C E, In vitro biocompatibility assessment of titanium and titanium alloying elements:toxicity of titanium powde[J]r. Journal of Orthopaedic Research 2009, in press.
    [67]Wang X J, LiY C, LinJ, Yamada Y, Hodgson P D, Wen C E, In vitro bioactivity evaluation of titanium and niobium metals with different surface morphologies [J]. Acta Biomater..2008,4:1530-1535.
    [68]Wang X J, LiY C, LinJ, Yamada Y, Hodgson P D, Wen C E, Apatite-inducing ability of titanium oxide layer on titanium surface:the effect of surface energy[J]. J. Mater. Res.2008,23(6):1682-1688.
    [69]韩建德,闽光辉,于化顺等.真空热压烧结炉的研制[J].工业炉.2001,23(2):8-10.
    [70]Rodan S B, ImaiY, Thiede M A et al. Cancer Res[J].1987,47:4961.
    [71]Zhao L, Lin K L, Chang J, Inorg J. Mater[J].2003,6:1280.
    [72]Liu J X, Yang D Z, Cai Y J, Chin J. Ceramic Soc[J].2001,29:350.
    [73]Li Q, YuanL, Corros Sci. Protect Tech[J].1997,9:21.
    [74]Piconi C, Maccauro G. Zirconia as a ceramic biomaterial[J]. Biomaterials.1999,20:1-25.
    [75]Adolfsson E, Hermanson L. Zirconia Fluarapatite. Materials produced by HIP[J]. Biomaterials.1999,20:1263-7.
    [76]Ng K W, ManH C, Yue T M. Applied Surface Science[J].008,254:6725-6730.
    [77]Kim Han-Sol, Kim Won-Yong, Lim Sung-Hwan, Microstructure and elastic modulus of Ti-Nb-Si ternary[J]. Scripta Materialia.2006,54:887-891.
    [78]NouriA, Chen X B, Li Y C, YamadaY, Hodgson P D, Wen C E. Synthesis of Ti-Sn-Nb alloy by powder metallurgy[J]. Materials Science and Engineering A.2008,485:562-570.
    [79]Ana Lu'cia Roselino Ribeiro, Rubens Caram Junior, Fla'via Farias Cardoso, Romeu Belon Fernandes. Mechanical, physical and chemical characterization of Ti-35Nb-5Zr and Ti-35Nb-10Zr casting alloys[J]. J Mater Sci:Mater Med.2009,20:1629-1636.
    [80]Seshacharyulu T, Medeiros S C, Morgan J T, Malas J C, Frazie W G. Scripta Materialia[J].1999,41(3):283-288
    [81]Kim C J, Hyung W, Joo H, Jae M. KR19950026242.1995.08.21.
    [82]Kim H M, Takadama H, Kokubo T, Nishiguchi S, Nakamura T. Formation of a bioactive graded surface structure on Ti-15Mo-5Zr-3Al alloy by chemical treatment[J]. Biomaterials.2000, 21(4):353-8.
    [83]Zhang X F. et al. The Effect of Some Medical Treatment of Thalassemia on the Red Blood Cells[J]. Hyperfine Interaction.1992,71:1251.
    [84]吴增树,李国光,王定国编.生物材料毒理学以应用[M].成都科技大学出版社,1988.
    [85]卢颂庭,翁铭庆主编.生物医学工程的基础与临床[M].天津科技出版社.1988
    [86]白新德,范玉殿.金属腐蚀理论及应用[M].机械工业出版社.1996.
    [87]LiY C, Xiong J Y, WongC S, Hodgson P D,Wen C E. Tissue Eng A[J].2009, 15:3151
    [88]Li Y C, Wong C S, Xiong J Y, Hodgson P D,Wen C E. J Dent Res[J].2010, 89:493.
    [89]Yamamoto A, Honma R M S. J Biomed Mater Res [J].1998,39:331.
    [90]Geurtsen W. Crit Rev Oral Biol Med[J].2002,13:71.
    [91]Matsuno H, Yokoyama A, Watari F, Uo M, Kawasaki T. Biomaterials[J].2001,22: 1253.
    [92]Izquierdo-Barba I, Conde F, Olmo N, Lizarbe M A, Garcia M A, Vallet-Regi M. Acta Biomater[J].20062:445.
    [93]Lukito D, Xue J M, Wang J. Mater Lett[J].2005,59:3267.
    [94]Que W, Sun Z, Zhou Y, Lam Y L, Chan Y C, Kam C H. Thin Solid Films[J].2000, 359:177
    [95]黄岗,美国联邦政府先进材料与工艺技术计划简介[J].1993,(5):5-8
    [96]杨英慧,日本在生物医学、牙科和康复用金属材料方面的研究与进展[J],2005,(11):2-6
    [97]Niinomi M, Mechanical properties of biomedical titanium alloys[J]. Materials Science and Engineering A.1998,243(1):231-236.
    [98]Wen H Ko, Solid-state capacitive pressure transducers [J]. Sensors and Actuators.1986, 10(3-4):303-320.
    [99]周芝骏,宁崇德.钛的性质及其应用[M].高等教育出版社,1993.
    [100]李玉宝.生物医学材料[M].北京:化学工业出版社,2003.
    [101]崔福斋,冯庆玲.生物材料学[M].北京:清华大学出版社,2004.
    [102]韩明臣,段庆文.降低钛成本的方法概述[J].稀有金属快报.2004,23(8):6-10.
    [103]Froes F H, Eylon D, Eichelman G E et al. Developments in Titanium Powder Metallurgy[J]. JOM.1980,32(2):47-54.
    [104]Froes F H, Eylon D. Titanium Net Shape Technology[M]. Los Angeles:Chemical Abstracts Press.1984:95-107.
    [105]Koike J, Shimoyama Y, Fujii H et al. Characterization of Superplasticity in Ti-5.5Al-1Fe Alloys[J]. Scripta Mater,1998,39(8):1009-1014
    [106]Saito T, Takamiya H, Furuta T. Thermomechanical Properties of P/M (3 Titanium Metal Matrix Composite[J]. Mater Sci Eng.1998, A243:273-278
    [107]Nobuyuki S, Hiroshi I, Astushi O. Superplastic Formability of Ti-4.5Al-3V-2Fe-2Mo Alloy[J]. Jpn Inst Light Met,1999,49(8):363-367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700