生育对二甲基苯蒽诱导的雌性SD大鼠乳腺癌发生的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:由于社会经济的原因越来越多的妇女推迟生育孩子的年龄,妇女开始做母亲的年龄不断增大。但是随之而来,妇女乳腺癌的发病率也迅速上升。乳腺癌被认为是多种病原学共同作用的结果,其中公认的一项危险因素是生育。许多流行病学研究证实,未经产妇女同经产妇女相比,乳腺癌发病率明显增高,然而,迄今没有充足的实验数据说明上述结果的正确性。本文通过动物实验研究生育及生育早晚对二甲基苯蒽(DMBA)诱导的SD大鼠乳腺癌发生、发展的影响,探讨生育对乳腺癌发生、发展的相关性,对更新乳腺癌防治观念,降低乳腺癌的发病率起到一定的指导作用。
     方法:
     1.本试验分别选取8周龄的健康雌性SD处鼠80只,36周龄的健康雌性SD处鼠40只,12周龄的健康雄性SD大鼠10只,共计130只。将所用120只SD雌鼠随机分为试验组和对照组:①8周龄处鼠组20只(早生育对照组);②8周龄处鼠DMBA组20只(早生育试验组)③36周龄处鼠组20只(晚生育对照组);④36周龄处鼠DMBA组20只(晚生育试验组)⑤8周龄处鼠组20只(未生育对照组);⑥8周龄处鼠DMBA组20只(未生育试验组)。
     2.所有大鼠在适应饲养一周后开始实验。将8周龄40只和36周龄40只SD雌性处鼠均与雄鼠交配,生育一周后(未给幼仔哺乳),将其中的早生育试验组20只和晚生育试验组20只连同未生育试验组20只处鼠分别按体重分两次给予10mg/100gDMBA灌胃(两次给药间隔2周)。生育对照组和未生育对照组给予正常饮食喂养,不给予任何干预措施。
     3.试验组DMBA给药时间分别达到24周后连同相应对照组全部处死并解剖,进行肉眼观察,取乳腺及肿瘤组织石蜡包埋,每个蜡块切片进行常规的H-E染色和AgNOR经典染色法进行大鼠乳腺上皮细胞的核仁组成区嗜银染色计数,用免疫组化二步法检测C-erbB-2、PCNA、Ki-67、MCM2在大鼠乳腺上皮细胞中的表达。
     4.所有计数结果用SPSS 13.0软件进行统计分析。
     结果:
     1.发病率:至24周试验结束时,共有32只大鼠发病。未生育DMBA组存活20只,有19只发病,发病率为95.0%;早生育DMBA组存活18只,有3只发病,发病率为16.7%;晚生育DMBA组存活17只,有10只发病,发病率为58.8%。对照组均无发病。经过统计学Fisher确切概率法处理,未生育DMBA组和早生育DMBA组之间、未生育DMBA组和晚生育DMBA组之间、早生育DMBA组和晚生育DMBA组之间的发病率均具有统计学上的差异(分别为p=9.59×10-7、p=0.014、p=0.015)。
     2.潜伏期:以第一次给予二甲基苯蒽至触诊大鼠发现肿瘤计算潜伏期。至24周试验结束时未生育DMBA组(10.25±0.83)周、早生育DMBA组(17.25±3.20)周;晚生育DMBA组(14.50±0.96)周。经过统计学秩和检验处理,未生育DMBA组和早生育DMBA组之间、未生育DMBA组和晚生育DMBA组之间、早生育DMBA组和晚生育DMBA组之间的发病率均具有统计学上的差异(分别为p=0.001、p=1.90×10-6、p=0.014)。
     3.肿瘤直径:所有发病大鼠的肿瘤直径以肿瘤的长径计数。未生育DMBA组为(2.86±0.54)厘米,早生育DMBA组肿瘤直径为(2.65±1.67)厘米;晚生育DMBA组(2.41±0.50)厘米。经过统计学秩和检验处理,三组之间的肿瘤大小无统计学差异(p=1.00、p=0.54、p=0.81)。
     4.AgNOR计数:未生育DMBA组为7.52±1.24;早生育DMBA组为:3.52±3.00;晚生育DMBA组为:4.76±1.20。经过统计学秩和检验处理,未生育DMBA组和早生育DMBA组之间、未生育DMBA组与晚生育DMBA组之间比较具有统计学差异(P=0.009,P=0.008)。早生育DMBA组和晚生育DMBA组之间比较无统计学差异(P=0.287)。
     5.C-erbB-2蛋白表达:统计学处理时将“-”和“+”归为一组(阴性表达),“++”和“+++”归为一组计算(阳性表达)。未生育DMBA组阴性表达:4,阳性表达:16;早生育DMBA组阴性表达:15,阳性表达:3;晚生育DMBA组阴性表达:12,阳性表达:5。用Fisher确切概率法统计:未生育DMBA组和早生育DMBA组之间、未生育DMBA组与晚生育DMBA组之间比较具有统计学差异(p=0.00023,p=0.003)。早生育DMBA组和晚生育DMBA组之间比较无统计学差异(p=0.443)。
     6.PCNA的表达:统计学处理时将“-”和“+”归为一组(阴性表达),“++”和“+++”归为一组计算(阳性表达)。未生育DMBA组阴性表达:6,阳性表达:14;早生育DMBA组阴性表达:15,阳性表达:3;晚生育DMBA组阴性表达:13,阳性表达:4。用Fisher确切概率统计:未生育DMBA组和早生育DMBA组之间、未生育DMBA组与晚生育DMBA组之间比较具有统计学差异(p=0.001,p=0.008)。早生育DMBA组和晚生育DMBA组之间比较无统计学差异(p=0.691)。
     7.Ki-67的表达:统计学处理时将“-”和“+”归为一组,“++”和“+++”归为一组计算。未生育DMBA组阴性表达:3,阳性表达:17;早生育DMBA组阴性表达:15,阳性表达:3;晚生育DMBA组阴性表达:11,阳性表达:6。用Fisher确切概率统计:未生育DMBA组和早生育DMBA组之间、未生育DMBA组与晚生育DMBA组之间比较具有统计学差异(p=5.1×10-5,p=0.003)。早生育DMBA组和晚生育DMBA组之间比较无统计学差异(p=0.264)。
     8.MCM2的表达:统计学处理时将“-”和“+”归为一组,“++”和“+++”归为一组计算。未生育DMBA组阴性表达:4,阳性表达:16;早生育DMBA组阴性表达:15,阳性表达:3;晚生育DMBA组阴性表达:11,阳性表达:
     6.用Fisher确切概率统计:未生育DMBA组和早生育DMBA组之间、未生育DMBA组与晚生育DMBA组之间比较具有统计学差异(p=0.00023,p=0.008)。早生育DMBA组和晚生育DMBA组之间比较无统计学差异(p=0.264)。
     结论:
     1.给予SD大鼠单次剂量10mg/100g DMBA两次灌胃,可以成功制作大鼠乳腺癌的动物模型,以模拟人体乳腺肿瘤的发生、发展过程,进行有关乳腺癌发生机理的研究和各种干预试验。
     2.生育可以降低DMBA诱导的SD大鼠乳腺组织的致癌作用。
     3.未生育SD大鼠对DMBA的敏感性强于生育SD大鼠,致癌率高于生育SD大鼠。
     4.晚生育SD大鼠对DMBA的敏感性强于早生育SD大鼠,致癌率高于早生育SD大鼠。
     5.生育可以降低DMBA诱导的SD大鼠乳腺癌组织中AgNOR、C-erbB-2、PCNA、Ki-67、MCM2的表达,预示着有较好的预后。
Objective: With the development of society and economy, more and more women postpone the age of the reproduction, the age of being mother is becoming older and older. Meanwhile, the incidence of breast cancer rises quickly. Breast cancer is considered as outcome of many etiology factors effect, it is well known that reproduction is one of the risk factors. Many epidemiology researches have certified that nulliparous women are at increased risk of breast cancer compared with parous women.
     We study the effect of reproduction and the age of reproduction to epithelial cells of mammary gland induced by DMBA in SD rat, which can help us clear the effect of occurrence and development of breast cancer, to renew the idea of prevention and cure of breast cancer, and direct clinical work to breast cancer.
     Methods:
     1.80 healthy female virgin SD rats of 8 weeks、40 healthy female virgin SD rats of 36 weeks and 10 healthy male SD rats of 12 weeks. Each category was radomedly divided into 2 groups: control group ( non DMBA) and experimental group (DMBA):①20 female virgin SD rats of 8 weeks (control group of early reproduction) ;②20 female virgin SD rats of 8 weeks (experimental group of early reproduction);③20 female virgin SD rats of 36 weeks (control group of late reproduction);④20 female virgin SD rats of 36 weeks (experimental group of late reproduction);⑤20 female virgin SD rats of 8 weeks (control group of nulliparity) ;⑥20 female virgin SD rats of 8 weeks (experimental group of nulliparity)
     2.40 female virgin SD rats of 8 weeks and 40 female virgin SD rats of 36 weeks are mated with male SD rats.When female virgin SD rats breeded, 20 female virgin SD rats of 8 weeks and 20 female virgin SD rats of 36 weeks are feeded with 10mg/100g DMBA twice, as well as another 20 female virgin SD rats of 8 weeks.
     3.All female rats were killed after 24 weeks. The morphological change was observed in macroscopic observation. Breast tissue get from rats were imbedded with paraffin then stained with H-E Silver-binding nucleoar organizer regions (AgNOR) were counted and the expressions of C-erbB-2、PCNA、Ki-67and MCM2 were detected by S-P method.
     4.The data was organized and processed with SPSS13.0 statistical software.
     Results:
     1.Incidence:There have 32 rats with breast cancer in 55 survival rats, 19 in experimental group of nulliparity (DMBA), 3 in experimental group of early reproduction (DMBA), 10 in experimental group of late reproduction (DMBA), 0 in all control groups. It shows statistical difference between group of nulliparity (DMBA) and group of early reproduction (DMBA)、group of nulliparity (DMBA) and group of late reproduction (DMBA)、group of early reproduction (DMBA) and group of late reproduction (DMBA). (p=9.59×10-7、p=0.014、p=0.015)
     2.Latency: group of nulliparity (DMBA)(10.25±0.83)weeks; group of early reproduction (DMBA)(17.25±3.20)weeks; group of late reproduction (DMBA)(14.50±0.96)weeks. It shows statistical difference between group of nulliparity (DMBA) and group of early reproduction (DMBA)、group of nulliparity (DMBA) and group of late reproduction (DMBA)、group of early reproduction (DMBA) and group of late reproduction (DMBA). (p=0.001、p=1.90×10-6、p=0.014)
     3. Diameter of tumor: group of nulliparity (DMBA()2.86±0.54)cm; group of early reproduction (DMBA)(2.65±1.67)cm; group of late reproduction (DMBA)(2.41±0.50)cm.It shows no statistical difference in three groups.(p=1.00、p=0.54、p=0.81)
     4.The AgNOR in rat breast epithelioglandular: The AgNOR in rat breast epithelioglandular of group of nulliparity (DMBA)(7.52±1.24)higher than that of group of early reproduction (DMBA)(3.52±3.00)and group of late reproduction (DMBA)(4.76±1.20).(P=0.009,P=0.008)It shows no statistical difference between group of early reproduction (DMBA) and group of late reproduction.(p=0.287)
     5.The positive expression of C-erbB-2 in rat breast epithelioglandular: The positive expression of C-erbB-2 in rat breast epithelioglandular of group of nulliparity (DMBA) (16/20) higher than that of group of early reproduction (DMBA()3/18)and group of late reproduction (DMBA()5/17) (p=0.00023,p=0.003). It shows no statistical difference between group of early reproduction (DMBA) and group of late reproduction.(p=0.443)
     6.The positive expression of PCNA in rat breast epithelioglandular: The positive expression of PCNA in rat breast epithelioglandular of group of nulliparity (DMBA) (14/20) higher than that of group of early reproduction (DMBA)(3/18)and group of late reproduction (DMBA)(4/17)(p=0.001,p=0.008 ) . It shows no statistical difference between group of early reproduction (DMBA) and group of late reproduction.(p=0.691)
     7.The positive expression of Ki-67 in rat breast epithelioglandular: The positive expression of Ki-67 in rat breast epithelioglandular of group of nulliparity (DMBA) (17/20) higher than that of group of early reproduction (DMBA)(3/18)and group of late reproduction (6/17)(DMBA)(p=5.1×10-5,p=0.003). It shows no statistical difference between group of early reproduction (DMBA) and group of late reproduction.(p=0.264)
     8.The positive expression of MCM2 in rat breast epithelioglandular: The positive expression of MCM2 in rat breast epithelioglandular of group of nulliparity (DMBA) (16/20) higher than that of group of early reproduction (DMBA()3/18)and group of late reproduction (DMBA()6/17)(.p=0.00023,p=0.008 ) It shows no statistical difference between group of early reproduction (DMBA) and group of late reproduction.(p=0.264)
     Conclusion:
     1.The animal model of breast cancer in rat can be made by given twice DMBA intragastric administration, to simulate the incidence and development of human breast tumor, and used to study the mechanism in breast carcinogenesis and do many intervention studies.
     2.Reproduction can decline the incidence of breast cancer which induced by DMBA. It can put off the reproductive experimental group onset time.
     3.The sensitivity to DMBA in group of nulliparity (DMBA) is greater than group of reproduction, the incidence of breast cancer in group of nulliparity (DMBA) is higher than group of reproduction (DMBA).
     4.The sensitivity to DMBA in group of late reproduction (DMBA) is greater than group of early reproduction (DMBA), the incidence of breast cancer in group of late reproduction (DMBA) is higher than group of early reproduction (DMBA).
     5.AgNOR、C-erbB-2、PCNA、Ki-67、MCM2 show that reproduction gives SD rats better prognosis.
引文
1 Bernstein L. Epidemiology of endocrine-related risk factors for breast cancer. J Mammary Gland Biol Neoplasia, 2002,7(1):3-15
    2 Modugno F, Ness RB, Wheeler JE. Reproductive risk factors for epithelial ovarian cancer according to histologic type and invasiveness. Ann Epidemiol,2001,11(8):568-574
    3 Jensen A, Sharif H, Olsen JH et al. Risk of Breast Cancer andGynecologic Cancers in a Large Population of Nearly 50,000 Infertile Danish Women.A J Epidemiology, 2008,168(1):49-57
    4 MacMahon B, Cole P, and Brown J. Etiology of human breast cancer, a review. J. Nat. Cancer Inst,1973,50(4):21-42
    5 Adami HO, Hansen J, Jung B, et al. Age at first birth, parity,and risk of breast cancer in a Swedish population. Br J Cancer, 1980, 42(5):651-658
    6 Ewertz M, Duffy SW. Risk of breast cancer in relation to reproductive factors in Denmark. Br J Cancer, 1988,58(1):99–104
    7 Ewertz M, Duffy SW, Adami HO, et al. Age at first birth, parity and risk of breast cancer: a meta-analysis of 8 studies from the Nordic countries. Int J Cancer, 1990,46(5):597–603
    8 Holmberg H, Holm LH, Lundell M, et al. Excess breast cancer risk and the role of parity, age at first childbirth and exposure to radiation in infancy. British Journal of Cancer,2001,85(3),362–366
    9 Brinton LA, Scoccia B, Moghissi KS, et al. Breast cancer risk associated with ovulation-stimulating drugs. Hum Reprod, 2004,19(9):2005–2013
    10 Russo J, Rivera R, Russo IH. Influence of age and parity on the development of the human breast. Breast Cancer Res. Treat,1992,23(3): 211-218
    11 Yang J, Yoshizawa K, Nandi S, et al. Protective effects of pregnancy and lactation against N-methyl-N-nitrosourea-induced mammary carcinomas in female Lewis rats. Carcinogenesis, 1999, 20(4):623-628
    12 Russo J, Gusterson BA, Rogers AE, et al. Comparative study of human and rat mammary tumorigenesis. Lab Invest, 1990,62(4):244-278
    13 Trichopoulos D, Petridou E. Epidemiologic studies and cancer etiology in humans. Med Exerc Nutr Health, 1994,3(4):206-255
    14 Russo J, Russo IH. Towards a physiological approach to breast cancer prevention. Cancer Epidemiol Biomarkers Prev, 1994, 3(7):353-364
    15 Musey VC, Collins DC, Musey PI, et al. Long-term effect of a first pregnancy on the secretion of prolactin. N Engl J Med, 1987, 316(5):229-234
    16 Petrakis N. Nipple aspirate fluid in epidemiologic studies of breast disease. Epidemiol Rev, 1993, 15(1):188-195
    17 Decarli A, La Vecchia C, Negri E, et al. Age at any birth and breast cancer in Italy. Int J Cancer ,1996,67(1):187-189
    18 Russo J, Tay LK, Russo IH. Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Res Treat, 1982, 2(1): 65-73
    19 Russo J, Mills MJ, Moussalli MJ, et al. Influence of human breast development on the growth properties of primary cultures. In Vitro Cell Develop. Biol, 1989,25 (7):643-649
    1 Bernstein L. Epidemiology of endocrine-related risk factors for breast cancer.J Mammary Gland Biol Neoplasia , 2002,7(1):3–15
    2 Modugno F,Ness RB,Wheeler JE. Reproductive risk factors for epithelial ovarian cancer according to histologic type and invasiveness. Ann Epidemiol 2001, 11(8):568–574
    3 Russo J, Mills MJ, Moussalli MJ, et al. Influence of human breast development on the growth properties of primary cultures. In Vitro CellDevelop. Biol, 1989, 25(7):643-649
    4 Russo J, Russo IH. Towards a physiological approach to breast cancer prevention. Cancer Epidemiol Biomarkers Prev, 1994, 3(7):353-364
    5 Russo IH, Calaf G, Russo J. Hormones and proliferative activity in breast tissue. Approaches to Breast Cancer Prevention, Editors: B.A. Stoll. Kluwer Academic Publishers, 1990, 23(4):35-51
    6 Russo J, Rivera R and Russo IH. Influence of age and parity on the development of the human breast. Breast Cancer Res. Treat, 2005, 23(3): 211-218
    7 Trichopoulos D, Petridou E. Epidemiologic studies and cancer etiology in humans. Med Exerc Nutr Health 1994,3(4):206-215
    8 MacMahon B. Reproduction and cancer of the breast. Cancer, 1993,71(4):3183-3188
    9 Yang J, Yoshizawa K, Nandi S, et al. Protective effects of pregnancy and lactation against N-methyl-N-nitrosourea-induced mammary carcinomas in female Lewis rats. Carcinogenesis, 1999, 20(4):623-628
    10 Kwa HG, Clefton F, Bulbrook RD, et al. Plasma prolactin levels and breast cancer: relations to parity, weight, height, and age at first birth. Int J Cancer, 2006, 28(1):31-34
    11 Petrakis N. Nipple aspirate fluid in epidemiologic studies of breast disease. Epidemiol Rev ,1993, 15(1):188-195
    12 Jensen A, Sharif H, Olsen JH, et al. Risk of Breast Cancer andGynecologic Cancers in a Large Population of Nearly 50,000 Infertile Danish Women.A J Epidemiology, 2008, 168(1):49-57
    13 MacMahon B, Cole P, Brown J. Etiology of human breast cancer, a review.Cancer Inst, 1973, 50(2):21-42
    14 Chie WC, Hsieh CC, Newcomb PA et al. Age at Any Full-term Pregnancy and Breast Cancer Risk. A J Epidemiology , 2000, 151(7):715-722
    15 Lambe M, Hsieh CC, Tsaih SW, et al. Parity, Age at First Birth And The Risk Of Carcinoma in situ of the breast. Int. J. Cancer, 1998, 77(3):330-332
    16 Clarke RB, Anderson E, Howell A, et al. Regulation of human breast epithelial stem cells. Cell Prolif, 2003, 36(S1):45-58
    17 Robinson GW, Hennighausen L, Johnson PF. Side-branching in the mammary gland: the progesterone-Wnt connection. Genes Dev, 2000, 14(8):889–894
    18 Fiorica JV. Special problems: breast cancer and pregnancy.Obstet Gynecol Clin North Am, 1994, 21(4):721– 32
    19 Khan SA, Rogers MA, Obando JA, et al. Estrogen receptor expression of benign breast epithelium and its association with breast cancer. Cancer Res, 1994, 54(4):993–997
    20 Marchbanks PA, McDonald JA, Wilson HG, et al. The NICHD Women’s Contraceptive and Reproductive Experiences Study: methods and operational results. Annals of Epidemiology, 2002, 12(4): 213–221
    21 Britton JA, Gammon MD, Schoenberg, JB et al. Risk of breast cancer classified by joint estrogen receptor and progesterone receptor status among women 20–44 years of age. American Journal of Epidemiology, 2002, 156(6): 507–516
    22 Sinha D, Dao TL. Induction of mammary tumours in aging rats by 7,12-dimethylbenz(a)anthracene: Role of DNA synthesis during carcinogenesis. J. Nati Cancer Inst, 1980, 64(3):519-521
    23 Patthey HC, Edidin M. Evidence for the time of appearance of H2 antigens in mouse development. Transplantation, 1976, 49(2):479-486
    24 Smith ML, Chen IT, Zhan Q, et al. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen.Science, 1994, 266(10):1376-1380
    25 Kuperwasser C, Pinkas J, Hurlbut GD et al.Cytoplasmic sequestrationand functional repression of p53 in the mammary epithelium is reversed by hormonal treatment.cancer research, 2000, 60(1):2723-2729
    26 Russo IH, Russo J. Chorionic gonadotropin,a tumoristatic and preventive agent in breast cancer. carcinogenesis, 1997, 18(9):1799-1808
    27 Russo IH, Koszalka M, Russo J. Comparative study of the influence of pregnancy and hormonal treatment on mammary carcinogenesis. Br. J. Cancer, 1991, 64(3):481-484
    28 Lukanova A, Andersson R, Wulff M et al. Human chorionic gonadotropin and alpha-fetoprotein concentrations in pregnancy and maternal risk of breast cancer: a nested caseecontrol study. Am J Epidemiol, 2008, 168(11):1284-1291
    29 Russo IH, Koszalka M, Russo J. Effect of human chorionic gonadotropin on mammary gland differentiation and carcinogenesis. Carcinogenesis, 1990, 11(10):1849-1855
    30 Fan S, Wang J, Yuan R, et al. BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science, 1999, 284(5418): 1354–1356
    31 Musolino A, Bella MA, Bortesi B, et al. BRCA mutations, molecular markers, andclinical variables in early-onset breast cancer: a population- based study. Breast, 2007, 16(3): 280–292
    32 Razandi M, Pedram A, Rosen EM, et al. BRCA1 inhibits membrane Estrogen and growth factor receptor signaling to cell proliferation in breast cancer. Mol Biol, 2004, 24(13):5900-5913
    33 Russo J, Lynch H, Russo IH. Mammary gland architecture as a determining factor in the susceptibility of the human breast cancer. Breast J, 2001, 7 (5): 278–291
    34 Nadine A, David E, Goldgar et al. Pregnancies, Breast-Feeding, and Breast Cancer Risk in the International BRCA12 Carrier CohortStudy (IBCCS). Breast J, 2006, 98(8): 535-544
    35 Cullinane CA, Lubinski J, Neuhausen SL, et al. Effect of pregnancy as a risk factor for breast cancer in BRCA1/BRCA2 mutation carriers. International Journal of Cancer, 2005, 117(6): 988–991
    36 Mixon M,Kittrell F, Medina D. Expression of Brca1 and splice variant Brca1 delta11 RNA levels in mouse mammary gland during normal development and tumorigenesis. Oncogene Breast J, 2002, 7(1):77–92
    37 Rajan JV, Marquis ST, Gardner HP, et al. Developmental expression of Brca2colocalizes with Brca1 and is associated with proliferation and differentiation in multiple tissues. Dev. Biol, 1997, 184(2):385-401
    38 Russo J, Hu YF, Silva ID, et al. Cancer risk related to mammary gland structure and development. Microsc Res Tech, 2001,52(2): 204-223

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700